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Abstract

This paper describes the design of an acoustic language
recognition system based on BLSTM that can discriminate
closely related languages and dialects of the same language. We
introduce a Divide-and-Conquer (D&C) method to quickly and
successfully train an RNN-based multi-language classifier. Ex-
periments compare this approach to the straightforward train-
ing of the same RNN, as well as to two widely used LID tech-
niques: a phonotactic system using DNN acoustic models and
an i-vector system. Results are reported on two different data
sets: the 14 languages of NIST LRE07 and the 20 closely re-
lated languages and dialects of NIST OpenLRE15. In addition
to reporting the NIST Cavg metric which served as the primary
metric for the LRE07 and OpenLRE15 evaluations, the EER
and LER are provided. When used with BLSTM, the D&C
training scheme significantly outperformed the classical train-
ing method for multi-class RNNs. On the OpenLRE15 data
set, this method also outperforms classical LID techniques and
combines very well with a phonotactic system.

Index Terms: speech recognition, language identification,
RNN, BLSTM

1. Introduction
Automatic spoken language recognition is the task of automati-
cally identifying the language spoken in a given speech segment
using the characteristics of the speech signal.

LIMSI has been developing phonotactic systems for lan-
guage recognition since the early 1990s, when the use of phone-
based acoustic likelihoods was proposed for language identifi-
cation [1, 2]. The basic approach was extended to use parallel
phone recognizers with phonotactic characteristics [3], lexical
information [4, 5] and phone lattices [6, 7]. Variant approaches
based on phone decoding with phonotactic models have been
explored for many years and have been shown to provide state-
of-the-art results [8, 9, 10].

In preparation for the National Institute of Science and
Technology (NIST) 2015 Language Recognition Evaluation
(OpenLRE15 [11]), we evaluated acoustic methods that when
combined with the phonotactic system improved the language
recognition performance [12]. With its innate ability to ex-
ploit long range dependencies, Bidirectional Long Short Term
Memory (BLSTM) neural networks were natural candidates as
purely acoustic classifiers. This choice was also motivated by
our previous experience with BLSTM on Speech Activity De-
tection [13] and some earlier work on this topic [14] which
showed good results on short segments for a limited number
of languages.

Our first attempt to train multi-class Recurrent Neural Net-
work (RNN) based on LSTM cells gave not-competitive results
for language recognition. To overcome this, small RNNs were
trained as binary classifiers in order to separate each language
from the others. This produced much better results which sug-
gested that the problem was not with the RNN itself or its
size but with the training process. To address this problem
a four-step training process was designed that we refer to as
Divide-and-Conquer (D&C). This method was compared with
straighforward RNN training. The BLSTM-based system was
also compared to two widely employed language identification
(LID) techniques: an i-vector system and a phonotactic system.

The next section describes the BLSTM-based language rec-
ognizer and the proposed D&C training process. Section 3 pro-
vides a short description of the two baseline systems, followed
by Section 4 which details the results obtained on two NIST
evaluation data sets.

2. RNN-based language classifier
Over the last few years, RNNs and in particular RNNs based on
LSTM have been successfully applied to a wide range of clas-
sification tasks for which the discriminative information is em-
bedded in a sequence. For spoken language identification, [14]
showed that LSTM-RNN can outperform other LID techniques
on short utterances for a small number (8) of languages.

This section describes the specific RNN used in this study
and a new divide-and-conquer training approach to success-
fully discriminate between the 14 languages of the NIST LRE07
evaluation as well as between the 20 closely related languages
of the NIST OpenLRE15 evaluation.

2.1. Augmented BLSTM

Long Short-Term Memory cells as shown in Figure 1 were in-
troduced to overcome some of the shortcomings of classical
RNNs [15] and were popularized after Graves demonstrated
their good performance for optical character recognition and
speech sequence labeling [16, 17].

Given an input sequence p = (p1, ...,pT ), a standard RNN
computes the output vector sequence z = (z1, ..., zT ) by iter-
ating the equations 1 and 2 from t = 1 → T :

ht = σ1

(
W 1 · p̃t + b1

)
with p̃t =

[
pt

ht−1

]
(1)

zt = σz

(
W z · ht + bz

)
(2)

The use of LSTM cells instead of the classic summation
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Figure 1: LSTM cell. The dashed lines correspond to the added
links between the gates for the augmented LSTM cell.

units modifies the computation of ht as follows:

it = σi

(
W i · p̃t +W c

i · ct−1 + bi
)

(3)

f t = σf

(
W f · p̃t +W c

f · ct−1 + bf
)

(4)

ct = f t � ct−1 + it � σc

(
W c · p̃t + bc

)
(5)

ot = σo

(
W o · p̃t +W c

o · ct + bo
)

(6)

ht = ot � σh

(
ct
)

(7)

where � is the element-wise multiplication, it, f t, ct and ot

are respectively the input gate, the forget gate, the cell and the
output gate activation vectors. They have all the same size as
the hidden vector ht. W c

i , W c
f , and W c

o are diagonal matrices
so that the heart of a cell is only visible to the gates of the same
cell.

One shortcoming of conventional RNNs is that they are
only able to make use of the left context. For LID purposes
there is no reason not to exploit the right context as well. Bidi-
rectional LSTM neural networks (BLSTM) were developed to
do just that: two distinct LSTM networks process the sequence
both forward and backward, and then the output of both net-
works are combined and fed into the output layers (cf 2.2).
This way, one can fully exploit the long range capabilities of
LSTM cells. In the literature (e.g. [16, 17]) BLSTM networks
are reported to always outperform unidirectional ones, so only
BLSTM networks were used in this study.

In [13], an improved version of the LSTM cell was pro-
posed in which direct links are added between the three gates of
a cell as shown by the dashed lines in Figure 1.

Equations (3), (4) and (6) are thus modified into (9), (11)
and (13):

ĩ
t
= W i

i · it−1 +W f
i · f t−1 +W o

i · ot−1
(8)

it = σi

(
W i · p̃t +W c

i · ct−1 + ĩ
t
+ bi

)
(9)

f̃
t
= W i

f · it−1 +W f
f · f t−1 +W o

f · ot−1
(10)

f t = σf

(
W f · p̃t +W c

f · ct−1 + f̃
t
+ bf

)
(11)

õt = W i
o · it +W f

o · f t +W o
o · ot−1

(12)

ot = σo

(
W o · p̃t +W c

o · ct + õt + bo
)

(13)

where the nine matrices W
{i,f,o}
{i,f,o} are diagonal so that a gate

can only have access to the gates of the same cell.

With these new links the three gates of a cell can interact
more efficiently and improve the cell behavior. As a result,
this new cell, that we call LSTM+, always outperforms classical
LSTM cells.

2.2. Network Architecture

The input to the system are 8 PLP coefficients and their first and
second derivatives producing 24 dimensional features. They
are computed every 10 ms after VTLN is applied. Then, cep-
stral mean and variance normalization is performed. During our
development work, we found that it was beneficial not to pro-
cess the sequence of features as a whole (whether its duration is
0.5s or 40s) but to truncate it into overlapping sequences of 320
frames (= 3.2s) with a shift of 80 frames (= 0.8s).

All the RNNs used in this study have the same architecture
as shown in Fig. 2. They have two parts: a recurrent network
and a feed-forward network that we call the decision network.
The recurrent network is composed of two separate LSTM+ net-
works that process the input sequence in opposite directions.
These LSTM+ networks have the same sizes (c1 + c2 cells) but
different weights. The recurrent network produces sequences
of vectors with 2 × c2 dimensions that are fed to the decision
network. The decision network has only one hidden layer with
tanh activation functions and a softmax output layer that pro-
duces sequences of vectors with o2 dimensions (one for each
language).

Finally, to obtain a single classification vector, the geomet-
ric mean of all the output vectors in the output sequences is
computed.
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Figure 2: BLSTM+ Neural Network architecture

2.3. Divide-and-Conquer (D&C) training

Training of the BLSTM+ neural network was performed using
back-propagation through time as described in [18] and a modi-
fied version of [16] to take into account the new links we added
for BLSTM+. As proposed in [19], the SMORMS3 mini-batch
gradient descent algorithm was used as it yielded better results
than RMSPROP [20], Adam [21] or Sum of Functions Opti-
mizer [22].

For each training iteration, a small number of training
speech segments (about 1000) are randomly selected with an
equal number of segments per language to mitigate the effect of
the distribution of training segments across languages. During
training, we also keep track of the 200 speech segments that lead
to the biggest error rates (with an equal number of worst cases
per language) and add them to our mini-batch at each training
step.
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We compare the straightforward training of the multi-class
RNN with a four-step process based on D&C strategy:

1. For each language l among the n target languages, we
train a small binary classifier to discriminate between l
and all the other languages in the training data set. This
small binary classifier is a RNN with the architecture de-
scribed in 2.2 with c1 = c2 = 8, o1 = 2 and o2 = 1.
The total number of weights is then about 8000. Since
o2 = 1, we use a logsig activation functions for the out-
put layer. Those very small RNNs do not need to be
trained extensively: only 200 training iterations per lan-
guage are performed.

2. The n small RNNs are combined into a larger multi-class
classifier. To do so, the weight matrices of the forward
and recurrent links of the small RNNs are combined into
block diagonal matrices to be used as the weights matri-
ces of the multi-class RNN. Hence, creating n indepen-
dent channels inside the multi-class RNN, each leading
to a single output. The final RNN is similar to the small
RNNs but with c1 = c2 = 8 × n, o1 = 2 × n and
o2 = n. For 14 languages, the total number of weights
is then about 400000.

3. To balance the impact of the n independent channels in-
side the recurrent network on the output of our system,
we train only the decision network for 100 iterations.
During this step, the errors are not back-propagated into
the recurrent network and the weights of the LSTM+
cells are kept constant.

4. Finally, the multi-class RNN is fully trained using the
weights obtained at the end of step 3 as a smart initializa-
tion point. To improve the behavior of the training, the
weights outside the diagonal blocks in the recombined
weight matrices are not set to zero exactly but are ran-
domly set using a gaussian distribution with a zero mean
and a small variance (10−6).

Classical training of a multi-class RNN consists of perform-
ing only the 4th step of the D&C training with a random initial-
ization of the weights.

3. Baseline systems
Two baseline systems were trained: a phonotactic system and
an i-vector system. These two classifiers are briefly described
here, see [12] for a more detailed description.

3.1. Phonotactic system (PHO)

Phonotactic systems for language identification have been pop-
ular since the mid-1990s [1, 2, 3]. Such systems rely on the
assumption that the phonotactic characteristics, that is the way
phonemes make up words and sentences, differ across lan-
guages.

The phonotactic system makes use of the Parallel Phone
Recognizer followed by Language Modeling (PPRLM) ap-
proach [3]. Pre-trained phone decoders using HMM-DNN
acoustic models for three languages (English, Italian and Rus-
sian) were used to decode all of the training data. Phone 4-gram
statistics are estimated from the resulting phone lattices [6]. The
4-gram statistics are then used to compute the expectation of the
phone log-likelihood for each target language. The posteriors of
the three phone decoders are averaged, and used as the score for
language identification.

3.2. I-vector system (IVC)

The i-vector framework [23] has been successfully applied to
both speaker verification [24, 25] and language identification
[26].

The i-vector system characterizes languages and utterances
with vectors obtained by projecting speech data onto a total
variability space T where language and channel information is
dense. It is generally expressed as:

S = m+ Tw (14)

where w is called an i-vector and m and S are the GMM
super-vector of the language independent UBM and language
adapted model, respectively.

During the test phase, the i-vector of the test utterance is
scored against the claimant (hypothesized language) specific
vector obtained in the training phase, after post-processing the
vectors for session variability compensation.

Here, the PLDA (Probabilistic Linear Discriminant Analy-
sis) technique [27], which is also commonly used for speaker
verification [24, 25] or gender identification [28], was used.

The i-vector LID system uses 7 MFCC features including
C0. Similar to [26], vocal tract length normalization (VTLN)
and cepstral mean and variance normalization (CMVN) are ap-
plied to both the training and test data. Then the Shifted Delta
Coefficients (SDC) [29] are computed and concatenated to the
MFCC vector. The final feature vectors have 56 dimensions.
The system was implemented using the Kaldi toolkit [30].

4. Results
This section presents results on the closed-set task of NIST
LRE07 with its 14 languages and post-evaluation results on the
20 languages of NIST OpenLRE15. Three evaluation metrics
are used: the NIST Cavg metric which served as the primary
metric for the OpenLRE15 and LRE07 evaluations ([11], [31]),
as well as the EER and the average language error rate defined
as:

LER =
1

nC

∑
c∈C

(
1

nDc

∑
d∈Dc

Perr(d)

)
(15)

where C is the set of language clusters, nC is the number of
clusters, Dc is the set of variants for cluster c and nDc is the
number of variants in cluster c (for LRE07, there is only one
cluster containing all the 14 target languages).

4.1. LRE07

The goal of the NIST LRE07 closed-set task was to identify
the spoken language among 14 target languages: Arabic, Ben-
gali, Chinese (Cantonese, Mandarin, MinNan, and Wu), En-
glish (American, Indian), Farsi, German, Hindustani (Hindi,
Urdu), Japanese, Korean, Russian, Spanish (Caribbean, Non-
caribbean), Thai, Tamil, and Vietnamese. The evaluation data
set is composed of 2158 audio files for each of the 3 speech test
durations: 3s, 10s and 30s.

Table 1 reports the results obtained on the LRE07 evalua-
tion data set. The two RNNs (with or without D&C training) are
identical in size (about 400k weights1) and were trained during
the same amount of time on the same machines. It can be seen
that the D&C training improves the LID results and leads to a

1In comparison, the number of parameters used for the i-vector and
the phonotactic systems is more than 107.
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3 sec 10 sec 30 sec average
System LER EER CAVG LER EER CAVG LER EER CAVG LER EER CAVG
PHO 34.53 12.79 18.59 11.66 4.21 6.28 2.48 0.79 1.34 16.22 5.99 8.73

IVC 45.68 18.43 24.60 18.92 8.30 10.19 6.25 3.30 3.36 23.61 10.21 12.72

RNN 46.81 16.41 25.21 20.00 7.29 10.77 9.95 4.22 5.36 25.59 9.73 13.78

RNN-D&C 42.11 15.57 22.67 17.56 6.81 9.45 6.08 3.25 3.28 21.92 9.11 11.80

PHO+IVC 31.76 13.21 17.10 8.84 3.74 4.76 1.74 0.74 0.94 14.12 5.99 7.60

PHO+RNN-D&C 28.40 9.91 15.29 8.44 3.06 4.54 2.41 0.55 1.30 13.08 4.62 7.04

Table 1: Results on LRE07 evaluation data with and without the D&C training are compared to the performance of the baseline systems.
The best system combinations are also shown. The combinations results from the geometric mean of the posterior probabilities given
by each system.

System LER EER CAVG
PHO 23.5 10.1 15.1

IVC 26.6 10.4 17.4

RNN 30.9 13.4 20.8

RNN-D&C 22.8 8.4 14.6

PHO+IVC 18.6 6.6 11.6

PHO+RNN-D&C 16.2 5.7 10.0

Table 2: Results on the OpenLRE15 evaluation data with and
without the D&C training are compared to the performance of
the baseline systems. The best system combinations are also
shown.

RNN that performs better than the i-vector system. One can
see also that both acoustic LID systems perform less well than
the phonotactic system. However, combining the RNN-D&C
system with the phonotactic system improves the results signif-
icantly across all durations and especially on short segments. It
also performs better than combining the i-vector system with
the phonotactic one.

4.2. OpenLRE15

For the OpenLRE15 evaluation, data were grouped into six lan-
guage clusters (Arabic, Chinese, English, French, Iberian and
Slavic) which contain a total of 20 closely related languages or
variants of the same language. As detailed in [12], there was
a large mismatch between the official evaluation and training
data sets which led to poor results on some of the dialects and
made it difficult to analyze and compare the performance of the
different systems.

In order to reduce the mismatch, 10% of the files of the
evaluation data set were randomly selected and added to the
training data. All the LID systems were retrained and tested on
the remaining 90% of the evaluation data set. The results of this
experiment are given in Table 2.

As observed for the LRE07 data set, the D&C training im-
proves the behavior of the RNN-based LID system (more than
25% gain on the error rates). Moreover, it yields a system that
performs better than both the i-vector and the phonotactic sys-
tems. As above, combining the two best systems (RNN-D&C
and PHO) significantly reduces the error rates.

Figure 3 illustrates the impact of the test segment duration
on the performance of each system according to the average
LER metric. It can be seen that the performance of the acoustic
systems (RNN and IVC) degrades less with decreasing speech
duration than the token-based approach (PHO). However, for
longer speech durations (> 20s), the performance of the phono-

test speech duration in seconds
[0;5] [5;10] [10;20] [20;30] > 30 all
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Figure 3: Average LER for the OpenLRE15 test data grouped
into intervals according to speech duration of the test speech
segments.

tactic system is still the best. Figure 3 also shows that the large
performance gain brought by combining systems holds for all
speech durations.

5. Conclusions
This paper introduced a divide-and-conquer training method
that significantly reduced the error rate of a language identifica-
tion system based on BLSTM-RNNs. This training method has
been evaluated on both the NIST LRE07 and NIST OpenLRE15
data sets. In both cases the proposed D&C training signif-
icantly outperformed the classical training method for multi-
class RNNs.

The resulting RNN LID system was also compared to a
phonotactic system and to an i-vector system. The D&C trained
RNN outperforms the i-vector system on both data sets and
outperforms the phonotatic system on the more challenging
OpenLRE15 data set, while requiring an order of magnitude
fewer parameters. In addition the D&C trained RNN system
combines well with the phonotatic system, leading to the best
results by a significant margin compared to any of the three in-
dividual systems, for both data sets and for all test segment du-
rations.
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