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ABSTRACT

In this paper we aim to enhance keyword search for conversa-
tional telephone speech under low-resourced conditions. Two
techniques to improve the detection of out-of-vocabulary key-
words are assessed in this study: using extra text resources
to augment the lexicon and language model, and via subword
units for keyword search. Two approaches for data augmenta-
tion are explored to extend the limited amount of transcribed
conversational speech: using conversational-like Web data
and texts generated by recurrent neural networks. Contrastive
comparisons of subword-based systems are performed to
evaluate the benefits of multiple subword decodings and sin-
gle decoding. Keyword search results are reported for all the
techniques, but only some improve performance. Results are
reported for the Mongolian and Igbo languages using data
from the 2016 Babel program.

Index Terms— Speech recognition, keyword search, text
augmentation, language modeling, low-resourced languages

1. INTRODUCTION

Today’s speech recognition systems make use of statistical
acoustic and language models (LMs) which are trained on
large data sets. System performance generally improves with
increasing training data. Low-resourced languages are con-
sidered those with a low availability on the Internet, and usu-
ally have limited text resources, with little or no available
transcribed audio or pronunciation dictionaries.

Training language models under low-resourced condi-
tions is a challenge. Web data are frequently used to improve
language model for broadcast news, as in [1, 2]. Conversa-
tional speech has specific syntactic and semantic nature that is
significantly different from written language. There are little
conversational-like Web texts for low-resourced languages.
Web data usage for low-resourced languages was investigated
in [3, 4, 5]. Alternatively, texts generated with recurrent
neural networks (RNNs) demonstrated gains in [6, 7].

In the keyword search (KWS) task the out-of-vocabulary
(OOV) keywords usually are poorly detected and degrade
keyword search performance. Various methods have been

proposed to address this problem. One approach is con-
verting word lattices to phoneme lattices and performing
phoneme based search [8, 9]. Some studies [10, 11] propose
using lattices of subword units. The proxy approach is used
in [12], where keyword search allows matches to vocabulary
words which are phonetically similar to the specified key-
word. KWS performance improvement using joint decoding
is investigated in [13], using multiple system combination
in [14], and multilingual acoustic models in [15, 16].

This paper explores two techniques to improve a keyword
search system for low-resourced conversational speech, with
the aim of increasing the detection of OOV keywords. 1) Ex-
tra text resources are assessed to augment language model
and lexicon. Documents collected from the Web are used for
language model training. These texts were gathered by sub-
mitting conversational-like queries to a search engine in order
to reach conversational-like data [4]. Additionally, texts gen-
erated by RNNs are explored. 2) Different approaches for
the use of subwords are explored to determine the impact on
keyword search. First, two ways of subword decoding are in-
vestigated: multiple decoding where each character n-gram
subword set is decoded separately and then keyword hits are
combined; and single decoding when different n-gram sub-
word texts are concatenated. We also investigate the impact of
n-gram subwords size, various sets of concatenated subword
texts, and concatenated subword texts with the word texts.

2. DATA

All the experiments reported in this paper use data provided
by the IARPA-Babel program [17] for Mongolian and Igbo.

Mongolian (IARPA-babel401b-v2.0b), more specifically
Halh Mongolian is a Mongolic language spoken in Mongolia
by approximately 3 million speakers. The official standard
spelling uses Mongolian Cyrillic. Igbo (IARPA-babel306b-
v2.0c) is a Niger-Congo language (Volta-Niger) spoken in
south-eastern Nigeria by about 25 million people. It is based
on Latin alphabet with additional dotted characters.

The data are comprised of spontaneous telephone conver-
sations, with about 40 hours of manually transcribed training
data. About a 85 million and 120 million word text corpus
was collected from the Web for Mongolian and Igbo respec-
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Table 1. Mongolian results using various texts for LM training: manual transcriptions (trs); Web data (web); RNN generated
text (rnn). For KWS word units are used.

Vocab LM OOV WER MTWV
% % All INV-INV OOV-INV OOV-OOV

23k trs (baseline) 4.3 48.1 0.460 0.516 - 0.138
23k trs+rnn 4.3 47.9 0.461 0.516 - 0.142
100k trs+web 1.9 47.0 0.505 0.529 0.470 0.266
100k trs+web+rnn 1.9 46.8 0.504 0.529 0.456 0.267
700k trs+web 0.9 47.1 0.503 0.522 0.435 0.309
700k trs+web+rnn 0.9 46.7 0.500 0.523 0.386 0.325

Table 2. Igbo results using various texts for LM training: manual transcriptions (trs); Web data (web); RNN generated text
(rnn). For KWS word units are used.

Vocab LM OOV WER MTWV
% % All INV-INV OOV-INV OOV-OOV

17k trs (baseline) 2.4 54.7 0.326 0.343 - 0.288
17k trs+rnn 2.4 54.4 0.330 0.350 - 0.277
100k trs+web 1.8 54.9 0.330 0.340 0.240 0.308
100k trs+web+rnn 1.8 54.9 0.329 0.340 0.242 0.306
700k trs+web 1.3 55.2 0.330 0.341 0.233 0.323
700k trs+web+rnn 1.3 55.0 0.333 0.346 0.245 0.321

tively. The Web data was collected (Wikipedia, subtitles and
other sources), filtered by BBN and shared with the Babe-
lon participants [4]. Additional 120 million word text corpus
for Mongolian and 90 million for Igbo was generated using
RNNs [18] by LIMSI and provided to the Babelon team.

All results are reported on the official Babel 10 hour de-
velopment data set. For the keyword search experiments, the
official 2016 year list of development keywords provided by
NIST was used. The Mongolian development keyword list
contains 2404 keywords, and Igbo contains 2364 keywords.
Based on the vocabulary of their respective transcriptions, for
Mongolian there are 358 and for Igbo 601 OOV keywords.
A keyword may be a single word or a sequence of words.
If any word in the keyword list is out-of-vocabulary then the
keyword is considered OOV with respect to the system’s vo-
cabulary. The remaining keywords are in-vocabulary (INV).

3. SYSTEM OVERVIEW

3.1. Speech-to-text system

In our experiments the speech-to-text (STT) systems are built
via a flat start training, where the initial segmentation is
performed without any a priori information. It uses left-to-
right 3-state hidden Markov models (HMMs) with Gaussian
mixture observation densities, in total about 10k tied states
with about 15 components per state [19]. Next, deep-neural
network (DNN) is used to estimate the HMM state likeli-
hoods replacing the GMMs [20]. The 6-layer DNN models
have about 10M parameters, and the softmax output layer
targets HMM states. Word position dependent and word
position independent acoustic models are used in the word-

and subword-based systems respectively. They are trained
on multilingual stacked bottleneck features provided to the
Babelon team by BUT [21].

Back-off trigram LMs with Kneser-Ney smoothing were
trained using the LIMSI STK toolkit. The vocabularies con-
sist of all words from the training transcriptions and the most
likely words from Web texts. The experiments use phone-
mic pronunciation lexicons, where the grapheme-to-phoneme
mappings were provided by NWU to the Babelon members
(similar as in [22]). Mongolian is represented with 29 units
and Igbo with 32, along with 4 units for silence and fillers.

For each speech segment a word lattice is generated, the
final hypotheses are then obtained using consensus decod-
ing [23]. The speech-to-text system performance is measured
with the commonly used word error rate (WER) metric.

3.2. Keyword search system

For the keyword search we use the methods proposed in [10],
with a focus on OOV keywords performance improvement. A
word and a subword consensus networks are generated from
decoding lattices. Both consensus networks are searched to
locate all sequences of words and subwords that correspond
to each keyword. Keyword search is carried out with cross-
word search, ignoring word boundaries, and splitting words
in keyword term. Resulting word and subword based key-
word hits are combined. The keyword scores are normalized
using keyword-specific thresholding and exponential normal-
ization [24]. From 3 to 7 character n-grams (or letters) cross-
word subword units are used.

Keyword search results are reported in terms of the max-
imum term-weighted value (MTWV) [25]. To observe the
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Table 3. KWS performance reported when different character n-gram subword sets (from 3-gram to 7-gram) are decoded
separately, then resulting keyword hits are combined. Various texts for subword LM are used: manual transcriptions (trs), RNN
generated text (rnn). MTWV results reported using subword units.

LM MTWV Mongolian MTWV Igbo
subw source All INV OOV All INV OOV

3-gram trs 0.380 0.394 0.302 0.248 0.244 0.271
4-gram trs 0.393 0.405 0.329 0.258 0.251 0.280
5-gram trs 0.406 0.420 0.336 0.260 0.255 0.279
6-gram trs 0.418 0.434 0.334 0.253 0.246 0.275
7-gram trs 0.425 0.439 0.350 0.263 0.259 0.277
3-gram rnn 0.363 0.375 0.295 0.248 0.237 0.285
4-gram rnn 0.372 0.382 0.320 0.251 0.243 0.283
5-gram rnn 0.378 0.386 0.334 0.245 0.234 0.278
6-gram rnn 0.401 0.413 0.330 0.249 0.244 0.268
7-gram rnn 0.405 0.418 0.329 0.245 0.241 0.261
5-way combine trs 0.441 0.448 0.408 0.257 0.250 0.285
5-way combine rnn 0.417 0.424 0.384 0.252 0.241 0.287
10-way combine trs+rnn 0.418 0.424 0.396 0.238 0.227 0.292

Table 4. KWS performance reported when texts with different character n-gram subwords (from 3-gram to 7-gram, denoted
as (3to7)) and/or (word) units are concatenated and then single decoding is performed. Subword units are based on: manual
transcriptions (subw-trs), RNN generated text (subw-rnn). MTWV results reported using subword units.

LM MTWV Mongolian MTWV Igbo
subw-trs subw-rnn All INV OOV All INV OOV

3to7 - 0.416 0.434 0.312 0.275 0.273 0.282
3to7+word - 0.419 0.446 0.263 0.297 0.300 0.291

- 3to7 0.407 0.424 0.316 0.259 0.249 0.295
- 3to7+word 0.428 0.443 0.341 0.144 0.152 0.120

3to7 3to7 0.422 0.440 0.322 0.273 0.269 0.286
3to7+word 3to7 0.442 0.464 0.322 0.293 0.297 0.288
3to7 3to7+word 0.423 0.444 0.304 0.278 0.273 0.296
3to7+word 3to7+word 0.323 0.353 0.149 0.278 0.284 0.265

impact of augmented text on keyword search, performance is
reported for different keywords: INV-INV, OOV-INV, OOV-
OOV. When words from augmented texts are added to the lex-
icon, some originally OOV words become INV (OOV-INV),
while others remain OOV (OOV-OOV). The INV keywords
are considered with respect to the original lexicon (INV-INV).

4. DATA AUGMENTATION FOR STT & KWS

Data augmentation using the Web texts provided by BBN was
assessed to augment the lexicon and language model. Some
low-resourced languages may have little or no text resources
on the Web. Rather than only using Web data, we also in-
troduced additional texts generated with RNNs [18] based on
training transcripts. RNN has 2 hidden layers and 512 neu-
rons per layer. Training transcripts were randomly shuffled
and split into five non-overlapping subsets. For each split, an
RNN was trained using four sets and reserving the fifth set for
validation. The RNN keeps the same vocabulary and does not
address the OOV detection problem significantly.

Results obtained with data augmentation are shown in Ta-
bles 1 and 2 for Mongolian and Igbo, respectively. For Mon-
golian a 100k lexicon was selected using both the Web data
and RNN generated data. With this lexicon the OOV rate is
reduced in half and a 1.3% absolute WER improvement is ob-
tained over the baseline (48.1% vs 46.8%). RNN texts helped
to improve system by 0.2% on top of Web texts. The WER
remains almost the same even if the lexicon is increased to
700k. For Igbo, using the RNN texts with 100k lexicon leads
to 0.3% WER absolute reduction compared to the baseline
(54.7% vs 54.4%). Web data did not bring WER improve-
ment. For Igbo, LMs trained on transcriptions and RNN texts
are more accurate than LMs including Web data. This may
be in part due to the large amount of English in the Web texts
even after filtering.

Full-word based KWS results are also given for Mongo-
lian and Igbo. Adding texts improves the overall KWS perfor-
mance, with the largest gains from the better lexical coverage
(OOV-INV). Without ignoring word boundaries and splitting
words in KWS, OOV-OOV drops by 0.1 to 0.2 absolute.
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Table 5. KWS performance combining the best full-word and
subword systems.

Lang MTWV
All INV-INV OOV-INV OOV-OOV

Mongolian 0.515 0.529 0.470 0.486
Igbo 0.332 0.346 0.245 0.323

5. IMPROVING KEYWORD SEARCH

In this section we apply subword search technique with the
aim of improving the detection of OOV keywords. First we
explore the impact of n-gram size, then we compare the re-
sults of multiple decodings and single decoding.

Keyword search results using multiple decoding when
each n-gram subword set is decoded separately are given in
Table 3. For Mongolian the 7-gram transcript-based system
improves the MTWV for OOVs by 0.21 compared to the
baseline. For Igbo 3-gram RNN-based system shows the
highest OOV result among the separately decoded subword
sets, but with no improvement compared to the baseline.
Subword units reduce the OOV rate but generate false combi-
nations. Since words are longer in the Mongolian language,
character 7-gram subwords are more beneficial, however,
Igbo results are better with 3-grams due to the shorter words
of this language. The differences across the RNN and train-
ing transcript-based subwords are not significant for both
languages. For Mongolian the combination of 5 decoding
transcript-based subword systems leads to OOV improve-
ment of 0.27 MTWV absolute over the baseline (0.138 vs
0.408). As Igbo took advantage from RNN usage, combining
all 10 subword systems including both RNN and transcript-
based subword outputs gives the best OOV result, but with
only a tiny improvement over the baseline (0.288 vs 0.292).

Multiple decoding with different n-gram subword sets and
then combining keyword hits is an expensive process. Table 4
presents the results of a single decoding when texts from 3
to 7-gram subword sets and/or full-words are concatenated.
LMs are interpolated with 0.8 coefficients for transcript-based
subwords, and 0.2 for RNN subwords. Concatenated subword
texts lead to a high OOV detection for both languages (entries
with 3to7). When full-word texts are concatenated along with
the subword texts, INV detection is higher, but OOV perfor-
mance degrades in the some cases. For Mongolian RNN sub-
words plus full-words improve OOV by 0.2 MTWV absolute
compared to the baseline (0.138 vs 0.341). For Igbo inter-
polating LMs of transcript-based subwords and RNN-based
subwords plus full-words, shows the best OOV result with a
tiny gain of 0.01 absolute (0.288 vs 0.296).

Comparing OOV best results of multiple and single de-
codings (Table 3, Table 4), the performance with the latter is
less good for Mongolian, and slightly better for Igbo. Table 5
presents the results when keyword hits of the best full-word
and subword systems are combined. The final combination
leads OOV-OOV to 0.35 absolute gain over the baseline for

Mongolian, and to 0.04 absolute for Igbo.

6. CONCLUSIONS

In this paper we explored two techniques aiming to improve
keyword search performance for low-resourced conversa-
tional speech, with a focus on OOV keywords. The experi-
ments were performed for Mongolian and Igbo.

The first technique improves lexical coverage and lan-
guage model by augmenting training texts: using Web data
and via texts generated by RNNs. For Mongolian, extra Web
resources obtain WER absolute gain of 1.3%, but no gains are
obtained for Igbo, which may be due to the large number of
English words in the Web texts. RNN generated texts lead to
WER improvements for both languages: 0.2% absolute gain
for Mongolian, and 0.3% absolute for Igbo. Using word-
based units the KWS performance is improved with a large
gain for OOV-INV from the better lexical coverage. Ignoring
word boundaries and splitting words in keyword search im-
proves the OOV-OOV detection. Word-based RNNs keep the
same vocabulary and do not affect OOV-OOV significantly.

A single decoding with a language model estimated on all
subword n-gram texts concatenated, results in a modest per-
formance loss as carrying out multiple decodings with differ-
ent n-gram subword sets followed by merging keyword hits
and is much less costly in terms of computation. This was
observed with the RNN-based and transcription-based sub-
words. For Mongolian, subwords improve OOV-OOV detec-
tion by 0.27 MTWV absolute over the baseline, and for Igbo
almost no improvement is observed.

The largest gains are obtained when outputs of the best
full-word system and subword system are combined. The pro-
posed techniques lead to significant OOV-OOV improvement
by 0.35 MTWV absolute comparing to the baseline for Mon-
golian, and by tiny 0.04 absolute for Igbo.
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