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ABSTRACT

This paper proposes a new approach to the challenging open-set lan-
guage detection task. Most state-of-the-art approaches make use of
data sources with several out-of-set languages to model such lan-
guages. In the proposed approach, no additional data from out-of-
set languages is required, only date from the target languages is used.
Experiments are conducted using the LRE-05 and the LRE-07 eval-
uation data sets with the 30s condition. A Cyyg of 4.5% and 3.4%
is obtained on these data set, respectively. These results are compa-
rable with other reported results.

Index Terms— Language recognition, Open-set, Phonotactic
approach, Gaussian Backend, Adaptation

1. INTRODUCTION

Language recognition is the task of automatically determining the
language of a given speech segment. This is achieved by extracting
information that conveys language characteristics from the speech
signal. The general task of language recognition can be divided into
several sub-tasks including language detection.

Language detection is a binary decision of whether the language
of a speech segment corresponds to a specific language from a set of
target languages. When the language of the test segment is con-
strained to be one of the target languages, the task is known as
closed-set language detection, otherwise it is known as open-set lan-
guage detection. The main difference between the two tasks is that
in the former case, the system has a priori knowledge about the
possible languages of the speech segment, while such knowledge is
not available in an open-set task. State-of-the-art language detection
systems achieve high performance on the closed-set task, but perfor-
mance often degrades substantially on an open-set task. Successful
approaches to the open-set task make use of speech data in languages
different from the set of target languages [1, 2]. The characteristics
of these out-of-set (OOS) languages are incorporated in the system
in order to improve detection of such languages. Acquiring the addi-
tional data can be costly and time consuming, which may be a reason
why only a few participants in previous NIST Language Recognition
Evaluations (LRE) submitted results for the open-set task.

In this paper a simple technique to deal with the open-set task
that is proposed does not rely on the use of additional data from
OOS languages, but rather only needs data from target languages.
The proposed technique is evaluated on the LRE-05 and LRE-07
eval data, and compared with other state-of-the-art approaches.
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2. SYSTEM DESCRIPTION

The language recognition system makes use of the Parallel Phone
Recognizer followed by Language Modeling (PPRLM) approach [3]
where each target language is represented by multiple n-gram lan-
guage models (LM), generated using phone recognizers trained in
different languages. This work uses phone lattice decoding [4] which
has been demonstrated to outperform one-best phone decoding. The
PPRLM system uses 3 context-dependent phone decoders for En-
glish, French and Spanish. The acoustic models are word-position
independent, and trained on 25 hours for Spanish, 116 hours for
French and 1760 hours for English. Each model covers about 3000
phone contexts, with 3000 tied states and a mixture of 32 Gaussians
per state. The Spanish, French and English decoders have 27, 36 and
48 phones, respectively. Silence is modeled by a single state, with a
mixture of 1024 Gaussians.

Prior to the phone lattice decoding, Constrained Maximum Like-
lihood Linear Regression (CMLLR) adaptation procedure is per-
formed. During training a Viterbi decoding pass is first performed to
find the best phone segmentation for each audio file of a given tar-
get language, which is then used to estimate the CMLLR transforms
using the maximum likelihood criterion. These transforms are used
to generate new features which are then used in a second decoding
pass to generate phone lattices. Phone decoding is done without any
phonotactic constraints (i.e., no grammar is used). This procedure is
applied both during training and test (only for segments longer than
65).

The n-gram probabilities are estimated by computing the ex-
pected n-gram frequencies from the phone lattices. Back-off 4-gram
phonotactic models are generated with Witten-Bell discounting us-
ing the SRILM toolkit.! The standard approach is for each individ-
ual phone decoder to generate one language model for each target
language. When the training data contains several data sources, the
robustness of the phonotactic approach can be enhanced by gener-
ating multiple LMs, one for each decoder and target language per
available sources [5].This approach has been adopted here. The ef-
fectiveness of using context-dependent phone models with CMLLR
adaptation was demonstrated in [6].

3. EXPERIMENTAL SET-UP

3.1. Training and development data

In this work experiments were carried out using the training and de-
velopment data sets defined by MIT Lincoln Labs when developing
their NIST LRE 2007 system [7]. The training portion is comprised
of the LRE-96 train and dev sets, the NIST LRE-07 train set, and

Uhttp://www.speech.sri.com/projects/srilm/

ICASSP 2009



randomly selected samples from the Callhome, Fisher and Mixer
corpora. The amount of training data per language varies from about
2.5 hours (for Bengali) to about 71 hours (for English) of speech.
The development data includes all segments from the LRE-96 and
LRE-03 evaluation sets, half of the data in the LRE-07 dev set and
segments from Callhome, Fisher and Mixer. The validation data in-
cludes segments from the OGI-22 and Mixer corpora, the second
part of the LRE-07 dev set. 2

In order to compare the proposed approach with the more widely
used ones, 895 segments from 8 OGI-22 languages and French LRE-
96 and LRE-03 eval set are used as out-of-set development data.

3.2. Evaluation data sets

The performances of different techniques for open-set language de-
tection are evaluated using the 30s segments in the NIST LRE-05°
and LRE-07* evaluation sets.

There are 7 target languages in the LRE-05 eval data with some
speech segments from the Mixer and Fisher corpus, but the major-
ity from the OHSU corpus. Of the total of 3662 speech segments,
only 86 correspond to the one out-of-set language (German). For the
LRE-07 data, there are 14 target languages, and about 2509 speech
segments, of which 352 belong to one of the 5 out-of-set languages
(French, Italian, Punjabi, Tagalog, Indonesian). Speech segments
were extracted mainly from the Fisher, Mixer, Callfriend and OGI
corpora.

3.3. Pre-processing

Standard 12 PLP coefficients with energy are extracted every 10 ms,
with a 30 ms window. Cepstral mean removal and variance normal-
ization are applied to each segment. These features are augmented
by their first and second derivatives, resulting in a 39 dimensional
feature vector. Speech activity detection was carried out using Gaus-
sian mixture models to segment the audio signal into speech/non-
speech regions. Two Gaussian mixtures, one for speech and one for
non-speech with 2048 and 512 mixtures, respectively, were used.

3.4. Post-processing

Language scores estimated by the individual decoders are fused as
shown in Figure 1 to estimate the final detection scores. The param-
eters of the fusion module are optimized on the development and the
validation data using the FoCal Multi-class toolkit.’

It was observed that the dynamic range of the language scores is
decoder-dependent, where decoders with fewer phones give higher
language likelihoods. To reduce this effect, mean normalization
(MN) is applied to the score for each individual segment and the
normalized scores are stacked in a feature vector. The set of feature
vectors associated with a given target language are used to train a
language dependent Gaussian or a multivariate normal distribution.
All Gaussians share a common full covariance matrix and form what
is called Gaussian Backend GB.

For this case, the decision function based on the normal density
N (x|X¢, ) for language ¢ can be simplified to:

Se(x) = (x — pe) "B (x — pue) (1)

>The LRE-05 eval set was also included in the validation data when eval-
uating on the LRE-07 eval set.

3http://www.nist.gov/speech/tests/lang/2005/

4http://www.nist.gov/speech/tests/lang/2007/

Shttp://niko.brummer.googlepages.com/focalmulticlass
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Fig. 1. A block diagram of the fusion module

where 11, is the mean vector, and ¥ is the common covariance ma-
trix. Developing and removing terms that are independent of /, the
decision function can be expressed as follows:

_ 1 _
de(x) = (87 ) % = Spi= ™ e @)

As explained in [9], the Gaussian backend can be seen as an
affine transform. The linear part of the transform is the same as
a linear discriminant analysis transform (LDA) and the translation
part corresponds to the calibration task for setting the “language de-
pendent threshold”. If the parameters of the GB are well estimated,
then it performs both score calibration and fusion. It has been re-
ported that the output of the GB can be further calibrated using a
discriminative Logistic Regression (LR) [7, 8, 6]. The outputs of the
GB is converted to a log likelihood ratio (LLR) by normalizing each
language likelihood with respect to the other likelihoods. The LLRs
are then used to train the Multi-class LR.

3.5. Tasks and performance measure

The task of interest is that of open-set language detection. The de-
tection decision is made based on the detection log likelihood ratio
llr [10]:

Piar.p(s]l)

lr(slt) =1
7'(8| ) 0g Poos~p($|0) + ZLT, ) Pnonftcw“p(swf)

3

where p(s]€) is the likelihood of the test segment s given the target
language ¢. Tt can be the outputs of the GB or the MLR. L is the
set of target languages and o represents the OOS languages.

The target language prior Piqr is equal to 0.5. The OOS lan-
guage prior Pyos 1s equal to 0.0 for the closed-set task and 0.2 for
the open-set task.’ The Pron—tar is equal to:

Pron—tar = (1 — Pyar — Poos)/(NL - 1) (4)

where Ny, is the number of target languages. The llrs in (3) are then
compared to the theoretical threshold A = 0 to make a decision.
The performance measure is the C’avg7 estimated as follows:

Cmiss -Ptar-PnLiss(LT)

1
NiLZ +ZLN Cfaanonfta%Pfa(LTaLN)
Lr +Cfa-Poos-Pfa(LT7Ln)

Cuug -

(5)
where Ppiss and Py, are the error probabilities computed from the
decision results. and C'y, = Ciiss = 1.0 are the costs of the false
acceptance and false rejection, respectively, and were specified by
NIST.

These values are given by NIST.
Thttp://www.nist.gov/speech/tests/lang/2007/LREO7EvalPlan-v8b.pdf
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4. RESULTS AND DISCUSSION

4.1. Closed-set detection results

To fairly asses the contribution of each step in the fusion module,
a closed-set language detection experiment was conducted. The re-
sults for the 30s condition in terms of Cy.4 are given in Table 1. The
Cavg is computed by replacing P, in the above equations with 0.

MN v v v
GB VIV I VI VIV
LLR vV | Vv
MLR VI VI VIV

LRE — 05 2.23 | 2.16 | 2.12 | 2.15 | 2.13 | 2.03

LRE — 07 270 | 2.64 | 1.43 | 1.45 | 1.40 | 1.28

Table 1. Performance of the system in terms of (100 X Cayg) for
a closed-set detection task with 30s test segments. MN: mean nor-
malization, GB: Gaussian Backend, LLR: Log-likelihood ratio and
MLR: Multi-class logistic regression

Several observations can be made. First, adding the MLR is
more beneficial for the LRE-07 eval data than for LRE-05 eval data.
A possible explanation is that the LRE-05 GB has fewer parame-
ters (d = 33) compared to the LRE-07 GB (d = 78)%. So the GB
for LRE-05 is better estimated, resulting in well calibrated scores.
Second, the MN and LLR are more effective when used together
than individually as can be seen by comparing the last 3 columns of
Table 1. A small improvement is obtained with the GB when the
scores are mean normalized (comparing columns 1 and 2), but this
improvement is not carried over when used with MLR, as can be
seen by comparing columns 3 and 4. Third, the system described
in this paper achieves a relative improvement of 13% for both eval
sets compared to the system described in [6]. This previous system
in which only one LM was generated per decoder for each language,
and the fusion was effectuated with the GB followed by MLR had a
Clavg of 2.4% and 1.6%, respectively, for the LRE-05 and LRE-07
eval data.

4.2. Open-set detection results
4.2.1. Baseline approach

As introduced earlier, a characteristic of the open-set language detec-
tion task is that no a priori knowledge about the out-of-set languages
is available to the system. Speech segments belonging to one of these
languages should be detected and rejected. A simple approach to the
open-set task is to ignore the problem and rely on the robustness of
the system designed for the closed-set task (Section 4.1). That is,
no additional information characterizing the OOS languages is inte-
grated within the system. This approach will be referred to as the
baseline approach. In the other approaches studied here, additional
knowledge is incorporated at the fusion level.

4.2.2. Gaussian backend design for open-set

The basic idea is to train an additional Gaussian to represent the OOS
languages. One approach tested in [2], consisted of using scores ob-
tained for segments belonging to languages that are not in the tar-
get language list to train the additional Gaussian. These scores are

8If only one LM is generated per target language for each decoder, then d
is 21 and 42 for LRE-05 and LRE-07, respectively.
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estimated using only LMs for the target languages. While this ap-
proach generally gives better results than the baseline approach, it
requires the availability of additional data from several OOS lan-
guages. Searching for audio files for these languages that match
some specific conditions and pre-processing them is time consum-
ing. It has also been observed that performance is better on test data
on languages for which some data happened to be included in the
training data for the OOS Gaussian. In this work, an OOS Gaussian
was trained on the OOS development data described in Section 3.1.
This approach will be referred to as the OOS-GB approach.

The new approach proposed in this paper uses the same basic
idea but, makes the assumption that no additional data from OOS
languages are available. The issue here then becomes how to design
the OOS Gaussian when only data from target languages are avail-
able? First a Target-Independent (TT) Gaussian was trained using the
development data of all target languages. This TI Gaussian is used
to represent the OOS languages. This approach will be referred to as
the TI-GB approach. Results of these three approaches in terms of
Cavg estimated using equation (3) applied at the Gaussian backend
outputs are reported in Table 2. The OOS-GB approach performs
consistently better than the other approaches.

| [ LRE-05 [ LRE-07 ]

BASELINE 6.30% 4.8T%
0O0OS-GB 5.50% 4.74%
TI-GB 5.65% 5.54%

Table 2. Detection Performance in terms of Cavg for different ap-
proaches on an open-set task for the LRE-05 and LRE-07 eval sets.

plcores)
plscores)

Fig. 2. Distribution of different types of scores with the TI-GB ap-
proach for the LRE-07 eval set. (a) before adaptation and (b) after
adaptation

Figure 2(left) shows the distribution of scores (log likelihood
detection ratio) for target (TAR), non-target (NTAR) and OOS lan-
guages using the TI-GB approach on the LRE-07 eval set (similar
plots are obtained for the LRE-05 eval data). The vertical line rep-
resents the detection threshold. It can be observed that a relatively
large portion of target segments are rejected. This is also true for
the OOS-GB approach. Explicitly modeling some of the character-
istics of OOS languages reduces significantly the false acceptance
rate, but at the same time it increases the false rejection rate Pyiss.
The values of Py, and Py,;5s combined with their costs and priors
determine the final cost, which can be better or worse than the base-
line approach. The TI-GB was trained using only data from target
languages, so it models some of the target language specific informa-
tion, increasing the confusability between the target independent and
the target dependent Gaussians. We have also observed that when a



target segment is correctly detected (accepted), most of the time, the
difference between its score and the best non-target/OOS score is
relatively high. But when it is missed, this difference is rather small.
Based on these observations and inspired by the work described
in [11], we explored the effect of slightly perturbing the mean of the
target-dependent Gaussian using the target-independent Gaussian.

pe = ap” T (1 g ©)

This can be seen as a simplified form of adaptation, where « is
optimized under the closed-set condition, in order to remain com-
patible with the assumption that no additional data from OOS lan-
guages is available. The training of the GB is done as follows: First,
the dev data is used to train a primary GB and the validation data
is used to optimize the value of «. The dev and validation data
were then pooled to train the final GB. It is worth mentioning here,
that for closed-set task, the TI Gaussian is used only as an a priori
model for adaptation, but not for score estimation (in Equation (3)
P,os = 0). The obtained results are reported in Table 3 for the
closed and open-set tasks.The new distributions of scores are shown
in Figure 2 (right).

LRE-05 LRE-07

(=0.2) | (a=0.3)
CLOSED-SET TASK 2.12% 1.61%
OPEN-SET TASK 4.53% 3.37%

Table 3. Performances in terms of Cawg for open and closed set
tasks using the adapted GB on the LRE-05 and LRE-07 eval data.

It can be observed that adapting the GB has the effect of shifting
the score distribution slightly to the right. The amount of this shift is
controlled by the parameter cv. As a consequence, the P, ;55 gets re-
duced, while the Py, is increased. However, the reduction in P,
is larger than the increase in Py, and in terms of Cqyg, there is a
relative improvement of 20% and 40%, respectively, on the LRE-05
and LRE-07 eval data. These results are better than the results with
the other approaches reported in Table 2. It is interesting to note that
there is even an improvement for closed-set task with respect to the
baseline system (column 2 of Table 1) in particular for the LRE-07.

4.2.3. Combination with logistic regression

The use of the multi-class logistic regression with the adapted Gaus-
sian backend is not an easy task. The MLR is a supervised discrim-
inative technique, requiring some representative examples for each
class. In other words, some segments for the OOS class should be
available, which is in contradiction with our basic assumption. To
overcome this problem, the TI Gaussian was used to generate several
random examples as a representative of the OOS class. Results of
combining GB with MLR for the three approaches described above
are reported in Table 4. Experiments with the adapted GB are run
several times. The variance (£0.1) is due to the randomness of the
generated features.

The results show that, in contrast to the OOS-GB, MLR does
not bring any additional improvement to the adapted GB. A possi-
ble explanation is that the scores estimated by the adapted GB are
reasonably well calibrated and the use of MLR cannot bring further
improvement. However 3 of the OOS languages in the LRE-07 eval
data were also in the dev data. Removing these languages from the
dev data, the Cyvg on the LRE-07 data with the OOS-GB approach
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| [ BASELINE [ OOS-GB | ADAPTED GB |
LRE-05 6.9% 4.3% 45% +0.1
LRE-07 4.7% 3.4%/3.9*% 3.4% +0.1

Table 4. Performance in terms of Cavg on the open-set task for
the full system with different design approaches for the Gaussian
backend. *The 3 OOS languages in eval data are removed from dev.

increases to 3.9%. In this case, the adapted GB approach outper-
forms the OOS-GB approach.

5. CONCLUSION

This paper proposes a new approach to open-set language detec-
tion with the assumption that no data from out-of-set languages
is required. This approach is based on the adaptation of a target-
independent Gaussian, trained with data from all target languages.
Results are comparable with the best reported state-of-the-art ap-
proaches using additional data to model possible OOS languages.
The proposed approach can be further improved by fine optimization
(language-dependent) of the adaptation factor c.
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