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Abstract. Multi-Layer Perceptron (MLP) features have recently been attracting
growing interest for automatic speech recognition due to their complementarity
with cepstral features. In this paper the use of MLP features is evaluated in a
large vocabulary continuous speech recognition task, exploring different types of
MLP features and their combination. Cepstral features and three types of Bottle-
Neck MLP features were first evaluated without and with unsupervised model
adaptation using models with the same number of parameters. When used with
MLLR adaption on a broadcast news Arabic transcription task, Bottle-Neck MLP
features perform as well as or even slightly better than a standard 39 PLP based
front-end. This paper also explores different combination schemes (feature con-
catenations, cross adaptation, and hypothesis combination). Extending the feature
vector by combining various feature sets led to a 9% relative word error rate re-
duction relative to the PLP baseline. Significant gains are also reported with both
ROVER hypothesis combination and cross-model adaptation. Feature concatena-
tion appears to be the most efficient combination method, providing the best gain
with the lowest decoding cost.

1 Introduction

Over the last decade there has been growing interest in developing automatic speech-
to-text transcription systems that can process broadcast data in a variety of languages.
The availability of large text and audio corpora on the Internet has greatly facilitated the
development of such systems, which nowadays can work quite well on unseen data that
is similar to what has been used for training. However, there is still a lot of room for
improvement for all system components including the acoustic front end, the acoustic,
pronunciation and language models. One promising research direction is the use of
MLP features in a large speech recognition task, in this case, the transcription of Arabic
broadcast news from the DARPA GALE task.

Features for speech-to-text obtained from neural networks have recently been in-
cluded as a component of a state-of-the-art LVCSR systems [1l]. They are known to
contain complementary information to cepstral features, which is why most often both
features are used together.
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Conventional neural network systems such as TANDEM [2]] and TRAP [3]] use three-
layer MLPs trained to estimate phone posterior probabilities at every frame, which are
then used as features fora GMM/HMM system. They are sometimes referred to as prob-
abilistic features. The size of the MLP output features is reduced by a principal com-
ponents analysis (PCA) transform. However, this might not necessarily be the optimal
choice, especially when the dimensionality reduction is severe. The recently proposed
bottle-neck features override this issue by employing four or five-layer MLPs and using
outputs of a small hidden layer as features [413]]. Not only does it allow for an arbitrary
vector size, it also suggests using more MLP training targets for better discriminability.

Probabilistic features have never been shown to consistently outperform cepstral fea-
tures in LVCSR. However, they can markedly improve the performance when used in
conjunction with them. A number of multi-stream combination techniques have been
successfully used for this purpose, four of which are studied in this work. These are
MLP combination, feature concatenation, model adaptation and ROVER voting.

In this work, the bottle-neck architecture was used to deliver three types of MLP fea-
tures, which differ in their input speech representations. Acoustic models are estimated
using the three feature sets, and their performance is compared to a baseline system
using PLP features. Different methods to combine the MLP and PLP features are ex-
plored, as well as combination of system outputs, with the goal of learning the most
effective combination methods.

2 Arabic BN Task Description

The speech recognizer is a development version of the Arabic speech-to-text system
component used in the AGILE participation in the GALE’07 evaluation. The transcrip-
tion system has two main components, an audio partitioner and a word recognizer [[6].
The audio partitioner is based on an audio stream mixture model, and serves to divide
the continuous stream of acoustic data into homogeneous segments, associating clus-
ter, gender and labels with each non-overlapping segment. The recognizer makes use
of continuous density HMMs for acoustic modeling and n-gram statistics for language
modeling. Each context-dependent phone model is a tied-state left-to-right CD-HMM
with Gaussian mixture observation densities where the tied states are obtained.

Word recognition is performed in one or two passes, where each decoding pass
generates a word lattice with cross-word, position-dependent, gender-independent
acoustic models, followed by consensus decoding with 4-gram and pronunciation prob-
abilities [67]. Unsupervised acoustic model adaptation is performed for each segment
cluster using the CMLLR (Constrained Maximum Likelihood Linear Regression) and
MLLR [8] techniques prior to second decoding pass.

A subset of the available Arabic broadcast news data was used to train acoustic mod-
els for the development system. This subset is comprised of 389 hours of manually
transcribed data distributed by the Linguistic data consortium. These data were used
to train the baseline gender-independent acoustic models, without maximum-likelihood
linear transform (MLLT) or speaker-adaptive training (SAT). The models cover 30k
contexts with 11.5k tied states, and have 32 Gaussians per state.
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The language models were trained on corpora comprised of about 10 million words
of audio transcriptions and 1 billion words of texts from a wide variety of sources. The
recognition word list contains 200k non-vocalized, normalized entries. The language
models result from the interpolation of models trained on subsets of the available data.
The summed interpolation weights of the audio transcriptions is about 0.5. The pro-
nunciation lexicon is represented with 72 symbols, including 30 simple consonants,
30 geminate consonants, 3 long and 3 short vowels, 3 vowels+tanwin, plus 3 pseudo
phones for non-linguistic events (breath, filler, silence).

The test data is comprised of about 3 hours of broadcast news data referred to in
the GALE community as the bnat06 development set. The out-of-vocabulary rate with
this word list is about 2%, and the devset perplexity with a 4-gram language model is
about 660.

3 MLP Features

Neural network feature extraction consists of two steps. The first step is raw feature
extraction which constitutes the input layer to the MLP. Typically this vector covers a
wide temporal context (100-500 ms) and therefore is highly dimensional. Second, the
raw features are processed by the MLP followed by a PCA transform to yield the HMM
features.

Two different sets of raw features are used, 9 frames of PLPs (9xPLP) and time-
warped linear predictive TRAP (WLP-TRAP) [9]. The first set of raw features is based
on the PLP features used in the baseline system which are mean and variance normal-
ized per speaker. At each 10 ms frame, the MLP input is obtained by concatenating
9 successive frames of 13 PLP features (including energy) plus their first and second
order derivatives (A and A2), centered at the current frame. The feature vector has
9 x 39 = 351 values and covers a 150 ms window.

The second set of features is obtained by warping the temporal axis in the LP-TRAP
feature calculation. Linear prediction is used to model the Hilbert envelopes of 500 ms
long energy trajectories in auditory-like frequency sub-bands [10]. The input to the
MLP are 25 LPC coefficients in 19 frequency bands, yielding 19 x 25 = 475 values
which cover a 500 ms window. The naming conventions adopted for the various features
sets are given in Table[Tlalong with how the raw features relate to the HMM features.

The bottle-neck architecture is based on a four layer MLP with an input layer, two
hidden layers and an output layer. The second layer is large and it provides the necessary
modeling power. The third layer is small, its size is equal to the required number of
features. The output layer computes the estimates of the target class posteriors. Instead
of using these posteriors as features, a PCA transform is applied to the outputs of the
small hidden layer neurons (prior to a non-linear sigmoid function). A layer size of
39 was used in order to be able to more easily compare the performance of the MLP
features to the PLP features.

Probabilistic MLPs are typically trained with phone targets. Since the size of the
bottle-neck layer is independent of the number of output targets, it is quite easy to
increase this number to improve the discrimination capacity of the MLP. Since there
are often more differences between the states of the same phone than between different



306 P. Fousek, L. Lamel, and J.-L. Gauvain

Table 1. Naming conventions for MLP features and how the raw input features relate to the HMM
features

ID Raw features (#) HMM features (#)
PLP - PLP+A+AZ (39)
MLPgyypp p 9x(PLP+A+A2) (351) MLP (39)
MLPy1p  wWLP-TRAP (475) MLP (39)

MLPeomp  9x(PLP+A+A2) + wLP-TRAP (826) MLP (39)

states in the same position of different phones, it could be effective to replace the phone
targets to by phone state targets. The phone state segmentations were obtained via a
forced alignment using three-state triphone HMMs, with 69 phones and 3 non-linguistic
units. The number of MLP targets was therefore increased from 72 to 210.

Since the MLP training is time-consuming, the MLP size and the amount of training
data needs to be properly balanced. It is known that more data and/or more parameters
always help, but at certain point the gain is not worth the effort. Table 2] gives the word
error rate as a function of the amount of MLP training data. MLPs of a constant size
(1.4 million parameters) were trained on various amounts of data using the 9xPLP raw
features by gradually adding data from more speakers. HMMs were trained on the full
389 hour data set for all conditions.

The top part of the table gives WERs for phone targets. It can be seen that the im-
provement obtained by using additional data rapidly saturates with only a negligible
gain when increasing the data by a factor of 10 (from 17 to 170 hours). The lower part
of the table corresponds to using state targets. The change from phone targets to state
targets brought a 2.4% relative reduction in WER (from 25.3% to 24.7%) with a MLP
trained on a 17-hour data subset. The phone trained MLP correctly classified about
55% of unseen frames, whereas the state trained MLP was correct on about 50% of the
frames. Given that the number of classes has tripled, it indicates that the state targets
are indeed a good choice. In contrast to the phone targets, training state targets benefits
from the additional data, with relative error rate reductions of 2-3% (24.2 to 23.4). The
reference WER with the baseline PLP system, trained on the same data with the same
model configuration, is 25.1%.

Since at the time of preparing this paper, training the MLP with wLP-TRAP features
on the full corpus was not finished, the subsequent experiments were carried out using
the MLP trained on 63 hours of speech recorded during the period from 2000 to 2002.
Though not shown in the paper, partial experiments with the MLP trained on the full
corpus show consistent improvements in performance over the values reported in the
following sections.

4 System Combination

Experiments with system combinations were carried on using four types of features as
listed in Table[Il The fourth feature set is obtained by combining the 9xPLP and the
wLP-TRAP inputs to the MLP. All the four basic features were first evaluated with-
out and with unsupervised acoustic model adaptation, as shown in the first four entries
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Table 2. Word error rates (%) for phone and state based MLP as a function of the amount of
training data (using 9xPLP raw features). All the HMMs are trained on the full 389 hours.

MLP targets MLP train data WER (%)

1.5 hrs 27.3

phones 17 hrs 25.3
170 hrs 25.0

17 hrs 24.7

states 63 hrs 24.2
301 hrs 23.4

PLP baseline 25.1

Table 3. Performance of PLP and MLP features, MLP combined features and feature
concatenation

WER (%)
# Features 1-pass 2-pass
1 PLP 25.1 22.5
2  MLPgyprp 242 227
3 MLPyLp 25.8 231
4 MLP.omb 23.8 219
5 PLP + MLPyypr p 22.7 21.2
6 PLP + MLPyp 21.7 204
7 MLPoyprp+MLPy1p 222  21.0

in Table 3] The baseline performance of the standard PLP features with adaptation is
22.5%. Without adaptation, the MLPoxpy p features are seen to perform a little better
(about 4% relative) than PLP, but with adaptation both MLPoxp; p and MLPyp are
slightly worse than PLP. This leads us to conclude that MLLR adaptation is less effec-
tive for MLP features than for PLP features. The MLP.ompb (the fourth entry in the table)
is seen to perform better than PLP both with and without adaptation and suggests that
combining raw features at the input to the MLP classifier is effective.

Next three means of fusing the information coming from the cepstral and the MLP
features were evaluated. The simplest approach is to concatenate together the features
at the input to the HMM system (this doubles the size of the feature vector, 2 x 39 = 78
features) and to train an acoustic model. Three possible pairwise feature concatenations
were evaluated and the results are given in the lower part of Table[3l These concatenated
features all substantially outperform the PLP baseline, by up to 9% relative, showing
that feature concatenation is a very effective approach. Given the significantly better
performance of the PLP + MLPy, p features over the PLP + MLPgxprp and MLPoypj p
+ MLPy, p features, the three-way concatenation was not tested as it was judged to
be not worth the increased computational complexity needed to deal with the resulting
feature vector size (3x39).

Two other more computationally expensive approaches were studied, cross model
adaptation and ROVER [I1]]. Table [ gives some combination results using cross
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Table 4. Comparing cross-adaptation and ROVER for combining multiple systems

WER (%)
Combined systems 1-pass 2-pass
351 258 215
1—>3 25.1 220
7—1 222 20.7
1—7 25.1 212
1®263 223 206
1©3 233 210
5@6 21.2 199
167 21.0 19.7

adaptation (top) and ROVER (bottom). The first entry is the result of adapting the PLP
models with the hypotheses of the MLPy,1p system. The second entry corresponds to
the reverse adaptation order, i.e. the MLPy, p are adapted using the hypotheses of the
PLP system. The next two entries use cross adaptation on top of feature concatenation.
In the first 3 cases, cross adaptation reduces the WER (note that the 2nd pass error
rates must be compared with those in Table[3)). Larger gains are obtained when the PLP
models are used in the second pass, supporting the earlier observation that MLLR adap-
tation is more effective for PLP features than for MLP features. This may be because
the MLP already removes the variability due to the speaker or because other, perhaps
non-linear, transformations are needed to adapt MLP features. The WERs in the bottom
part of the table result from ROVER combination of the first or second pass hypothe-
ses of the listed systems. ROVER combination of the three basic features performed
better than the best pair-wise cross-adaptation amongst them (3 — 1) however, neither
combination outperformed the simple feature concatenation WER of 20.4% (entry 6 in
Table[3). ROVER also helps when applied jointly with other combination methods (see
the last two rows in Table M), beating the baseline PLP system by up to 12% relative.
This best ROVER result however requires 6 decoding passes!

It is interesting to observe that the PLP features are generally best combined with
MLPy,1 p, even though the MLPoxpy p gives better score than MLPy,1 p. This may be due
on one side to the fact that the MLPoxpp p features are derived from the PLPs, and on
the other side that there is a larger difference in time spans between the standard PLP
and the wLP-TRAP features.

Table 5. Best results after MLLLR adaptation for different types of system combination of PLP
and MLPy, p features

Features WER (%) Comment
PLP + MLPy, p 20.4 best feature concatenation
1®3 21.0 best ROVER (1-3)

MLPy1p — PLP 21.5 best cross-adaptation
MLP.omb 21.9 MLP combination
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Table [J] summarizes the best results after adaptation obtained for each combination
method with PLP and MLPy, p. The systems are sorted by WER in ascending order. It
appears that feature concatenation is a very efficient combination method, as it not only
results in the lowest WER for 2 front-ends but it also has the lowest cost.

5 Summary

Three novel MLP feature sets derived using the bottle-neck MLP architecture have been
evaluated in the context of an LVCSR system. One feature set is based on nine frames
of PLP features and their derivatives, with a temporal span of 150 ms. The other feature
set is an improved version of LP-TRAP and has a longer temporal span of 500 ms.
Different schemes have been used to combine these two MLP feature sets with PLP
features to determine the most effective approach.

Experiments were carried out on the Gale Arabic broadcast news task. When used
with MLLR adaption, the MLP features perform as well or even slightly better than a
standard PLP based front-end. Doubling the feature vector by combining the two feature
sets led to a 9% relative WER reduction relative to the PLP baseline. Combining the
same feature sets via cross-model adaptation or ROVER also gave improvement but to
a lesser degree.

Feature concatenation appears to be the most efficient combination method, pro-
viding the best gain at the lowest decoding cost. In general, it seems best to combine
features based on different time spans as they provide high complementarity.

It should be noted that as shown in the paper, the MLP system accuracy can be further
improved by training the MLP on more data.
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