
SPEECH RECOGNITIONLori Lamel and Jean-Lu
 GauvainAbstra
tSpee
h re
ognition is 
on
erned with 
onverting the spee
h waveform, ana
ousti
 signal, into a sequen
e of words. Today's most performant ap-proa
hes are based on a statisti
al modelization of the spee
h signal. The
hapter provides an overview of the main topi
s addressed in spee
h re
og-nition, that is a
ousti
-phoneti
 modeling, lexi
al representation, languagemodeling, de
oding and model adaptation. The fo
us is on methods usedin state-of-the-art speaker-independent, large vo
abulary 
ontinuous spee
hre
ognition (LVCSR). Some of the te
hnology advan
es over the last de
adeare highlighted. Primary appli
ation areas for su
h te
hnology initially ad-dressed di
tation tasks and intera
tive systems for limited domain informa-tion a

ess (usually referred to as spoken language dialog systems. The lastde
ade has witnessed a wider 
overage of languages, as well as growing in-terest in trans
ription systems for information ar
hival and retrieval, mediamonitoring, automati
 subtitling and spee
h analyti
s. Some outstandingissues and dire
tions of future resear
h are dis
ussed.1 OverviewSpee
h re
ognition is prin
ipally 
on
erned with the problem of tran-s
ribing the spee
h signal as a sequen
e of words. Today's best performingsystems use statisti
al models (Chapter 19) of spee
h. From this point ofview, spee
h is assumed to be generated by a language model whi
h pro-vides estimates of Pr(w) for all word strings w independently of the observedsignal, and an a
ousti
 model en
oding the message w in the signal x,whi
h is represented by a probability density fun
tion f(x|w). The goal ofspee
h re
ognition is to �nd the most likely word sequen
e given the observeda
ousti
 signal. The spee
h de
oding problem thus 
onsists of maximizingthe probability of w given the spee
h signal x, or equivalently, maximizingthe produ
t Pr(w)f(x|w). 1
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 spee
h re
ognizer based using statis-ti
al models, in
luding training and de
oding pro
esses.The prin
iples on whi
h these systems are based have been known formany years now, and in
lude the appli
ation of information theory to spee
hre
ognition (Bahl et al. 1976; Jelinek 1976), the use of a spe
tral represen-tation of the spee
h signal (Dreyfus-Graf 1949; Dudley and Balashek 1958),the use of dynami
 programming for de
oding (Vintsyuk 1968), and the useof 
ontext-dependent a
ousti
 models (S
hwartz et al. 1984). Despitethe fa
t that some of these te
hniques were proposed well over a de
adeago, 
onsiderable progress has been made in re
ent years in part due to theavailability of large spee
h and text 
orpora (Chapter 24), and improvedpro
essing power whi
h have allowed more 
omplex models and algorithmsto be implemented. Compared with the state-of-the-art te
hnology a de
adeago, advan
es in a
ousti
 modeling have enabled reasonable performan
e tobe obtained on various data types and a
ousti
 
onditions.The main 
omponents of a generi
 spee
h re
ognition system are shownin Figure 1. The elements shown are the main knowledge sour
es (spee
hand textual training materials and the pronun
iation lexi
on), the featureanalysis (or parameterization), the a
ousti
 and language models whi
h areestimated in a training phase, and the de
oder. The remaining se
tions ofthis 
hapter are devoted to dis
ussing these main 
omponents.2



2 A
ousti
 parameterization and modelingA
ousti
 parameterization is 
on
erned with the 
hoi
e and optimiza-tion of a
ousti
 features in order to redu
e model 
omplexity while trying tomaintain the linguisti
 information relevant for spee
h re
ognition. A
ousti
modeling must take into a

ount di�erent sour
es of variability present inthe spee
h signal: those arising from the linguisti
 
ontext and those as-so
iated with the non-linguisti
 
ontext su
h as the speaker (e.g., 
oughing,throat 
learing, breath noise) and the a
ousti
 environment (e.g., ba
kgroundnoise, musi
) and re
ording 
hannel (e.g., dire
t mi
rophone, telephone).Most state-of-the-art systems make use of hidden Markov models (HMM)for a
ousti
 modeling, whi
h 
onsists of modeling the probability densityfun
tion of a sequen
e of a
ousti
 feature ve
tors. In this se
tion 
ommonparameterizations are des
ribed, followed by a dis
ussion of a
ousti
 modelestimation and adaptation.2.1 A
ousti
 feature analysisThe �rst step of the a
ousti
 feature analysis is digitization, where the 
on-tinuous spee
h signal is 
onverted into dis
rete samples. The most 
om-monly used sampling rates are 16kHz and 10kHz for dire
t mi
rophone in-put, and 8kHz for telephone signals. The next step is feature extra
tion(also 
alled parameterization or front-end analysis), whi
h has the goal ofrepresenting the audio signal in a more 
ompa
t manner by trying to removeredundan
y and redu
e variability, while keeping the important linguisti
information (Hunt 1996). Most re
ognition systems use short-time 
epstralfeatures based either on a Fourier transform or a linear predi
tion model.Cepstral parameters are popular be
ause they are a 
ompa
t representa-tion, and are less 
orrelated than dire
t spe
tral 
omponents. This simpli�esestimation of the HMM parameters by redu
ing the need for modeling thefeature dependen
y. An inherent assumption is that although the spee
h sig-nal is 
ontinually 
hanging, due to physi
al 
onstraints on the rate at whi
hthe arti
ulators 
an move, the signal 
an be 
onsidered quasi-stationary forshort periods (on the order of 10ms to 20ms).The two most popular sets of features are 
epstrum 
oe�
ients obtainedwith a Mel Frequen
y Cepstral (MFC) analysis (Davis and Mermelstein1980) or with a Per
eptual Linear Predi
tion (PLP) analysis (Hermansky3



1990). In both 
ases a Mel s
ale short term power spe
trum is estimatedon a �xed window (usually in the range of 20 to 30ms). In order to avoidspurious high frequen
y 
omponents in the spe
trum due to dis
ontinuities
aused by windowing the signal, it is 
ommon to use a tapered window su
has a Hamming window. The window is then shifted (usually a third or ahalf the window size), and the next feature ve
tor 
omputed. The most
ommonly used o�set is 10ms. The Mel s
ale approximates the frequen
yresolution of the human auditory system, being linear in the low frequen
yrange (below 1000 Hz) and logarithmi
 above 1000 Hz. The 
epstral param-eters are obtained by taking an inverse transform of the log of the �lterbankparameters. In the 
ase of the MFC 
oe�
ients, a 
osine transform is ap-plied to the log power spe
trum, whereas a root-Linear Predi
tive Coding(LPC) analysis is used to obtain the PLP 
epstrum 
oe�
ients. Both setof features have been used with su

ess for LVCSR, but PLP analysis hasbeen found for some systems to be more robust in presen
e of ba
kgroundnoise. The set of 
epstral 
oe�
ients asso
iated with a windowed portionof the signal is referred to as a frame or a parameter ve
tor. Cepstralmean removal (subtra
tion of the mean from all input frames) is 
ommonlyused to redu
e the dependen
y on the a
ousti
 re
ording 
onditions. Com-puting the 
epstral mean requires that all of the signal is available prior topro
essing, whi
h is not the 
ase for 
ertain appli
ations where pro
essingneeds to be syn
hronous with re
ording. In this 
ase, a modi�ed form of
epstral subtra
tion 
an be 
arried out where a running mean is 
omputedfrom the N last frames (N is often on the order of 100, 
orresponding to1s of spee
h). In order to 
apture the dynami
 nature of the spee
h signal,it is 
ommon to augment the feature ve
tor with �delta� parameters. Thedelta parameters are 
omputed by taking the �rst and se
ond di�eren
es ofthe parameters in su

essive frames. Over the last de
ade there has beengrowing in interest in 
apturing longer term dynami
s of spee
h than of thestandard 
epstral features. A variety of te
hniques have been proposed fromsimple 
on
atenation of sequential frames to the use of TempoRAl Patterns(TRAPs) (Hermansky and Sharma, 1998), In all 
ases the wider 
ontextresults in a larger number of parameters that 
onsequently need to be re-du
ed. Dis
riminative 
lassi�ers su
h as Multi Layer Per
eptrons (MLP)are e�
ient methods for dis
riminative feature estimation. Over the years,several groups have developed mature te
hniques for extra
ting probabilisti
4
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Figure 2: A typi
al 3-state phone HMM with no skip state (top) whi
hgenerates feature ve
tors (x1...xn) representing spee
h segments.MLP features and in
orporating them in spee
h-to-text systems (Zhu et al.,2005; Stol
ke et al., 2006). While probabilisti
 features have not been shownto 
onsistently outperform 
epstral features in LVCSR, being 
omplemen-tary they have been shown to signi�
antly improve performan
e when usedtogether (Fousek et al., 2008).2.2 A
ousti
 modelsHidden Markov models are widely used to model the sequen
es of a
ousti
feature ve
tors (Rabiner and Juang 1986). These models are popular as theyare performant and their parameters 
an be e�
iently estimated using wellestablished te
hniques. They are used to model the produ
tion of spee
h fea-ture ve
tors in two steps. First a Markov 
hain is used to generate a sequen
eof states, and se
ond spee
h ve
tors are drawn using a probability densityfun
tion (PDF) asso
iated to ea
h state. The Markov 
hain is des
ribed bythe number of states and the transitions probabilities between states. Themost widely used elementary a
ousti
 units in LVCSR systems are phone-based 1, where ea
h phone2 is represented by a Markov 
hain with a small1For some languages, most notably tonal languages su
h as Chinese longer units 
orre-sponding to syllables or demisyllables (also 
alled onsets and o�sets or initials and �nals)have been explored. While the use of larger units remains relatively limited to phone units,they may better 
apture tone information and may be well-suited to 
asual speaking styles.2Phones usually 
orrespond to phonemes, but may also 
orrespond to allophones su
has �aps or glottal stop. 5



number of states. While di�erent topologies have been proposed, all makeuse of left-to-right state sequen
es in order to 
apture the spe
tral 
hangea
ross time. The most 
ommonly used 
on�gurations have between 3 and5 emitting states per model, where the number of states imposes a minimaltime duration for the unit. Some 
on�gurations allow 
ertain states to beskipped, so as to redu
e the required minimal duration. The probability ofan observation (i.e. a spee
h ve
tor) is assumed to be dependent only on thestate, whi
h is known as a 1st order Markov assumption.Stri
tly speaking, given an n-state HMM with parameter ve
tor λ, theHMM sto
hasti
 pro
ess is des
ribed by the following joint probability den-sity fun
tion f(x, s|λ) of the observed signal x = (x1, ..., xT ) and the unob-served state sequen
e s = (s0, ..., sT ),
f(x, s|λ) = πs0

T∏

t=1

ast−1st
f(xt|st) (1)where πi is the initial probability of state i, aij is the transition proba-bility from state i to state j, and f(·|s) is the emitting PDF asso
iated withea
h state s. Figure 2 shows a 3-state HMM with the asso
iated transitionprobabilities and observation PDFs.Phone based models o�er the advantage that re
ognition lexi
ons 
an bedes
ribed using the elementary units of the given language, and thus bene�tfrom many linguisti
 studies. It is of 
ourse possible to perform spee
h re
og-nition without using a phonemi
 lexi
on, either by use of �word models� (aswas the more 
ommonly used approa
h 10 years ago) or a di�erent mappingsu
h as the fenones (Bahl et al. 1988). Compared with larger units (su
has words, syllables, demisyllables), small subword units redu
e the numberof parameters, enable 
ross word modeling, fa
ilitate porting to new vo
ab-ularies and most importantly, 
an be asso
iated with ba
k-o� me
hanismsto model rare 
ontexts. Fenones o�er the additional advantage of automati
training, but la
k the ability to in
lude a priori linguisti
 models.A given HMM 
an represent a phone without 
onsideration of its neigh-bors (
ontext-independent or monophone model) or a phone in a parti
ular
ontext (
ontext-dependent model). The 
ontext may or may not in
ludethe position of the phone within the word (word-position dependent), andword-internal and 
ross-word 
ontexts may be merged or 
onsidered sepa-rated models. The use of 
ross-word 
ontexts 
ompli
ates de
oding (see se
-tion 5). Di�erent approa
hes are used to sele
t the 
ontextual units based6



on frequen
y or using 
lustering te
hniques, or de
ision trees, and di�erent
ontext types have been investigated: single-phone 
ontexts, triphones, gen-eralized triphones, quadphones and quinphones, with and without positiondependen
y (within or 
ross word). The model states are often 
lustered soas to redu
e the model size, resulting in what are referred to as �tied-state�models.A
ousti
 model training 
onsists of estimating the parameters of ea
hHMM. For 
ontinuous density Gaussian mixture HMMs, this requires es-timating the means and 
ovarian
e matri
es, the mixture weights and thetransition probabilities. The most popular approa
hes make use of the Max-imum Likelihood (ML) 
riterion, ensuring the best mat
h between the modeland the training data (assuming that the size of the training data is su�
ientto provide robust estimates).Estimation of the model parameters is usually done with the Expe
tation-Maximization (EM) algorithm (Dempster et al. 1977) whi
h is an itera-tive pro
edure starting with an initial set of model parameters. The modelstates are then aligned to the training data sequen
es and the parametersare reestimated based on this new alignment using the Baum-Wel
h rees-timation formulas (Baum et al. 1970; Lipora
e 1982; Juang 1985). Thisalgorithm guarantees that the likelihood of the training data given the mod-els in
reases at ea
h iteration. In the alignment step a given spee
h frame
an be assigned to multiple states (with probabilities summing to 1) usingthe forward-ba
kward algorithm or to a single state (with probability 1)using the Viterbi algorithm. This se
ond approa
h yield to slightly lowerlikelihood but in pra
ti
e there is very little di�eren
e in a

ura
y espe
iallywhen large amounts of data are available. It is important to note that theEM algorithm does not guaranty �nding the true ML parameter values, andeven when the true ML estimates are obtained they may not be the bestones for spee
h re
ognition. Therefore, some implementation details su
h asa proper initialization pro
edure and the use of 
onstraints on the parametervalues 
an be quite important.Sin
e the goal of training is to �nd the best model to a

ount of the ob-served data, the performan
e of the re
ognizer is 
riti
ally dependent uponthe representativity of the training data. Some methods to redu
e this depen-den
y are dis
ussed in the next subse
tion. Speaker-independen
e is obtainedby estimating the parameters of the a
ousti
 models on large spee
h 
orpora7




ontaining data from a large speaker population. There are substantial dif-feren
es in spee
h from male and female talkers arising from anatomi
aldi�eren
es (on average females have a shorter vo
al tra
t length resulting inhigher formant frequen
ies, as well as a higher fundamental frequen
y) andso
ial ones (female voi
e is often �breathier� 
aused by in
omplete 
losureof the vo
al folds). It is thus 
ommon pra
ti
e to use separate models formale and female spee
h in order to improve re
ognition performan
e, whi
hrequires automati
 identi�
ation of the gender.2.3 AdaptationIn this se
tion we dis
uss te
hniques that have been used with 
ontinuousdensity HMMs, although similar te
hniques have been developed for dis
reteand semi-
ontinuous HMMs.The performan
es of spee
h re
ognizers drop substantially when thereis a mismat
h between training and testing 
onditions. Several approa
hes
an be used to minimize the e�e
ts of su
h a mismat
h, so as to obtain are
ognition a

ura
y as 
lose as possible to that obtained under mat
hed 
on-ditions. A
ousti
 model adaptation 
an be used to 
ompensate mismat
hesbetween the training and testing 
onditions, su
h as due to di�eren
es ina
ousti
 environment, to mi
rophones and transmission 
hannels, or to par-ti
ular speaker 
hara
teristi
s. The te
hniques are 
ommonly referred toas noise 
ompensation, 
hannel adaptation, and speaker adaptation respe
-tively. Sin
e in general no prior knowledge of either the 
hannel type, theba
kground noise 
hara
teristi
s or the speaker is available, adaptation isperformed using only the test data in an unsupervised mode.The same tools 
an be used in a
ousti
 model training in order to 
om-pensate for sparse data, as in many 
ases only limited representative dataare available. The basi
 idea is to use a small amount of representative datato adapt models trained on other large sour
es of data. Some typi
al usesare to build gender-dependent, speaker-spe
i�
 or task-spe
i�
 models, or touse speaker adaptive training (SAT) to improve performan
e. When used formodel adaption during training it is 
ommon to use the true trans
riptionof the data, known as supervised adaptation.Three 
ommonly used s
hemes to adapt the parameters of an HMM 
anbe distinguished: Bayesian adaptation (Gauvain and Lee 1994); adaptationbased on linear transformations (Leggetter and Woodland 1995); and model8




omposition te
hniques (Gales and Young 1995). Bayesian estimation 
anbe seen as a way to in
orporate prior knowledge into the training pro
edureby adding probabilisti
 
onstraints on the model parameters. The HMMparameters are still estimated with the EM algorithm but using maximuma posteriori (MAP) reestimation formulas (Gauvain and Lee 1994). Thisleads to the so-
alled MAP adaptation te
hnique where 
onstraints on theHMM parameters are estimated based on parameters of an existing model.Speaker-independent a
ousti
 models 
an serve as seed models for genderadaptation using the gender spe
i�
 data. MAP adaptation 
an be usedto adapt to any desired 
ondition for whi
h su�
ient labeled training dataare available. Linear transforms are powerful tools to perform unsupervisedspeaker and environmental adaptation. Usually these transformations areML trained and are applied to the HMM Gaussian means, but 
an alsobe applied to the Gaussian varian
e parameters. This ML linear regression(MLLR) te
hnique is very appropriate to unsupervised adaptation be
ausethe number of adaptation parameters 
an be very small. MLLR adaptation
an be applied to both the test data and training data. Model 
ompositionis mostly used to 
ompensate for additive noise by expli
itly modeling theba
kground noise (usually with a single Gaussian) and 
ombining this modelwith the 
lean spee
h model. This approa
h has the advantage of dire
tlymodeling the noisy 
hannel as opposed to the blind adaptation perform bythe MLLR te
hnique when applied to the same problem.The 
hosen adaptation method depends on the type of mismat
h andon the amount of available adaptation data. The adaptation data may bepart of the training data, as in adaptation of a
ousti
 seed models to anew 
orpus or a subset of the training material (gender, diale
t, speakeror a
ousti
 
ondition spe
i�
) or 
an be the test data (i.e., the data to betrans
ribed). In the former 
ase supervised adaptation te
hniques 
an beapplied, as the referen
e trans
ription of the adaptation data 
an be readilyavailable. In the latter 
ase only unsupervised adaptation te
hniques 
an beapplied.3 Lexi
al and pronun
iation modelingThe lexi
on is the link between the a
ousti
-level representation and theword sequen
e output by the spee
h re
ognizer. Lexi
al design entails two9



main parts: de�nition and sele
tion of the vo
abulary items and represen-tation of ea
h pronun
iation entry using the basi
 a
ousti
 units of the re
-ognizer. Re
ognition performan
e is obviously related to lexi
al 
overage,and the a

ura
y of the a
ousti
 models is linked to the 
onsisten
y of thepronun
iations asso
iated with ea
h lexi
al entry.The re
ognition vo
abulary is usually sele
ted to maximize lexi
al 
over-age for a given size lexi
on. Sin
e on average, ea
h out-of-vo
abulary (OOV)word 
auses more than a single error (usually between 1.5 and 2 errors), itis important to judi
iously sele
t the re
ognition vo
abulary. Word list se-le
tion is dis
ussed in Se
tion 4. Asso
iated with ea
h lexi
al entry are oneor more pronun
iations, des
ribed using the 
hosen elementary units (usu-ally phonemes or phone-like units). This set of unit is evidently languagedependent. For example, some 
ommonly used phone set sizes are about 45for English, 49 for German, 35 for Fren
h, and 26 for Spanish. In generat-ing pronun
iation baseforms, most lexi
ons in
lude standard pronun
iationsand do not expli
itly represent allophones. This representation is 
hosen asmost allophoni
 variants 
an be predi
ted by rules, and their use is optional.More importantly, there often is a 
ontinuum between di�erent allophonesof a given phoneme and the de
ision as to whi
h o

urred in any given ut-teran
e is subje
tive. By using a phonemi
 representation, no hard de
isionis imposed, and it is left to the a
ousti
 models to represent the observedvariants in the training data. While pronun
iation lexi
ons are usually (atleast partially) 
reated manually, several approa
hes to automati
ally learnand generate word pronun
iations have been investigated (Cohen 1989; Rileyand Ljojle 1996).There are a variety of words for whi
h frequent alternative pronun
iationvariants are observed, and these variants are not due to allophoni
 di�eren
essu
h as the su�x -ization whi
h 
an be pronoun
ed with a diphthong (/Ai/)or a s
hwa (/@/). Alternate pronun
iations are also needed for homographs(words spelled the same, but pronoun
ed di�erently) whi
h re�e
t di�erentparts of spee
h (verb or noun) su
h as ex
use, re
ord, produ
e. Some 
om-mon 3 syllable words su
h as interest and 
ompany are often pronoun
edwith only 2 syllables. Figure 3 shows two examples of the word interest bydi�erent speakers reading the same text prompt: �In rea
tion to the news,interest rates plunged...�. The pronun
iations are those 
hosen by the re
og-nizer during segmentation using for
ed alignment. In the example on the left,10



I nt r I s t I n t r I s tI n Ç I s I n t r I sFigure 3: Spe
trograms of the word interest with pronun
iation variants:/InÇIs/ (left) and /IntrIs/(right) taken from the WSJ 
orpus (senten
es20t
0106, 40l
0206). The grid is 100ms by 1 kHz. Segmentation of theseutteran
es with a single pronun
iation of interest /IntrIst/ (middle) and withmultiple variants /IntrIst/ /IntrIs/ /InÇIs/ (bottom). The /I/ and /t/ seg-ments are light and dark grey respe
tively.the /t/ is deleted, and the /n/ is produ
ed as a nasal �ap. In the exampleon the right, the speaker said the word with 2 syllables, without the optionalvowel and produ
ing a /tr/ 
luster. Segmenting the training data withoutpronun
iation variants is illustrated in the middle. Whereas no /t/ was ob-served in the �rst pronun
iation example two /t/ segments had been aligned.An optimal alignment with a pronun
iation di
tionary in
luding all requiredvariants is shown on the bottom. Better alignment results in more a

uratea
ousti
 phone models. Careful lexi
al design improves spee
h re
ognitionperforman
e.In spee
h from fast speakers or speakers with relaxed speaking styles itis 
ommon to observe poorly arti
ulated (or skipped) unstressed syllables,parti
ularly in long words with sequen
es of unstressed syllables. Although11



su
h long words are typi
ally well re
ognized, often a nearby fun
tion wordis deleted. To redu
e these kinds of errors, alternate pronun
iations for longwords su
h as positioning (/p@zIS@n1­/ or /p@zISn1­/), 
an be in
luded in thelexi
on allowing s
hwa-deletion or syllabi
 
onsonants in unstressed sylla-bles. Compound words have also been used as a way to represent redu
edforms for 
ommon word sequen
es su
h as �did you� pronoun
ed as �dija� or�going to� pronoun
ed as �gonna�. Alternatively, su
h �uent spee
h e�e
ts
an be modeled using phonologi
al rules (Oshika et al. 1975). The prin
iplebehind the phonologi
al rules is to modify the allowable phone sequen
es totake into a

ount su
h variations. These rules are optionally applied duringtraining and re
ognition. Using phonologi
al rules during training results inbetter a
ousti
 models, as they are less �polluted� by wrong trans
riptions.Their use during re
ognition redu
es the number of mismat
hes. The sameme
hanism has been used to handle liaisons, mute-e, and �nal 
onsonant
luster redu
tion for Fren
h. Most of todays state-of-the-art systems in
ludepronun
iation variants in the di
tionary, asso
iating pronun
iation probabil-ities with the variants (Bourlard et al., eds. 1999; Fosler-Lussier et al., eds.,2005).As spee
h re
ognition resear
h has moved from read spee
h to sponta-neous and 
onversational spee
h styles, the phone set has been expanded toin
lude non-spee
h events. These 
an 
orrespond to noises produ
ed by thespeaker (breath noise, 
oughing, sneezing, laughter, et
.) or 
an 
orrespondto external sour
es (musi
, motor, tapping et
).4 Language modelingLanguage models (LMs) are used in spee
h re
ognition to estimate theprobability of word sequen
es. Grammati
al 
onstraints 
an be des
ribedusing a 
ontext-free grammars (for small to medium size vo
abulary tasksthese are usually manually elaborated) or 
an be modeled sto
hasti
ally, asis 
ommon for LVCSR. The most popular statisti
al methods are n-grammodels, whi
h attempt to 
apture the synta
ti
 and semanti
 
onstraintsby estimating the frequen
ies of sequen
es of n words. The assumptionis made that the probability of a given word string (w1, w2, ..., wk) 
an beapproximated by ∏k
i=1 Pr(wi|wi−n+1, ..., wi−2, wi−1), therefore redu
ing theword history to the pre
eding n−1 words. A ba
k-o�me
hanism is generally12



used to smooth the estimates of the probabilities of rare n-grams by relyingon a lower order n-gram when there is insu�
ient training data, and toprovide a means of modeling unobserved word sequen
es (Katz 1987). Whiletrigram LMs are the most widely used, higher order (n>3) and word 
lass-based (
ounts are based on sets of words rather than individual lexi
al items)n-grams, and adapted LMs are re
ent resear
h areas aimed at improving LMa

ura
y.Given a large text 
orpus it may seem relatively straightforward to 
on-stru
t n-gram language models. Most of the steps are pretty standard andmake use of tools that 
ount word and word sequen
e o

urren
es. Themain di�eren
es arise in the 
hoi
e of the vo
abulary and in the de�nitionof words, su
h as the treatment of 
ompound words or a
ronyms, and the
hoi
e of the ba
k-o� strategy. There is, however, a signi�
ant amount ofe�ort needed to pro
ess the texts before they 
an be used.A 
ommon motivation for normalization in all languages is to redu
elexi
al variability so as to in
rease the 
overage for a �xed size task vo-
abulary. Normalization de
isions are generally language-spe
i�
. Mu
hof spee
h re
ognition resear
h for Ameri
an English has been supported byARPA and has been based on text materials whi
h were pro
essed to removeupper/lower 
ase distin
tion and 
ompounds. Thus, for instan
e, no lexi
aldistin
tion is made between Gates, gates or Green, green. In the Fren
hLe Monde 
orpus, 
apitalization of proper names is distin
tive with di�erentlexi
al entries for Pierre, pierre or Roman, roman.The main 
onditioning steps are text mark-up and 
onversion. Textmark-up 
onsists of tagging the texts (arti
le, paragraph and senten
e mark-ers) and garbage bra
keting (whi
h in
ludes not only 
orrupted text mate-rials, but all text material unsuitable for senten
e-based language model-ing, su
h as tables and lists). Numeri
al expressions are typi
ally expandedto approximate the spoken form ($150 → one hundred and �fty dollars).Further semi-automati
 pro
essing is ne
essary to 
orre
t frequent errors in-herent in the texts (su
h as obvious mispellings milllion, o�
als) or arisingfrom pro
essing with the distributed text pro
essing tools. Some normaliza-tions 
an be 
onsidered as �de
ompounding� rules in they modify the wordboundaries and the total number of words. These 
on
ern the pro
essingof ambiguous pun
tuation markers (su
h as hyphen and apostrophe), thepro
essing of digit strings, and treatment of abbreviations and a
ronyms13



(ABCD → A. B. C. D.). Another example is the treatment of numbersin German, where de
ompounding 
an be used in order to in
rease lexi
al
overage. The date 1991 whi
h in standard German is written as neun-zehnhunderteinundneunzig 
an be represented by word sequen
e neunzehnhundert ein und neunzig. Other normalizations (su
h as senten
e initial 
ap-italization and 
ase distin
tion) keep the total number of words un
hanged,but redu
e graphemi
 variability. In general the 
hoi
e is a 
ompromise be-tween produ
ing an output 
lose to 
orre
t standard written form of thelanguage and lexi
al 
overage, with the �nal 
hoi
e of normalization beinglargely appli
ation-driven.Better language models 
an be obtained using texts transformed to be
loser to the observed reading style, where the transformation rules and
orresponding probabilities are automati
ally derived by aligning prompttexts with the trans
riptions of the a
ousti
 data. For example, the wordhundred followed by a number 
an be repla
ed by hundred and 50% of thetime; 50% of the o

uren
es of one eighth are repla
ed by an eighth, and 15%of million dollars are repla
ed with simply million.In pra
ti
e, the sele
tion of words is done so as to minimize the system'sOOV rate by in
luding the most useful words. By useful we mean thatthe words are expe
ted as an input to the re
ognizer, but also that theLM 
an be trained given the available text 
orpora. In order to meet thelatter 
ondition, it is 
ommon to 
hoose the N most frequent words in thetraining data. This 
riterion does not, however, guaranty the usefulness ofthe lexi
on, sin
e no 
onsideration of the expe
ted input is made. Thereforeit is 
ommon pra
ti
e to use a set of additional development data to sele
ta word list adapted to the expe
ted test 
onditions.There is the sometimes 
on�i
ting need for su�
ient amounts of textdata to estimate LM parameters and assuring that the data is representativeof the task. It is also 
ommon that di�erent types of LM training materialare available in di�ering quantities. One easy way to 
ombine training ma-terial from di�erent sour
es is to train a language model per sour
e and tointerpolate them. The interpolation weights 
an be dire
tly estimated onsome development data with the EM algorithm. An alternative is to simplymerge the n-gram 
ounts and train a single language model on these 
ounts.If some data sour
es are more representative than others for the task, the n-gram 
ounts 
an be empiri
ally weighted to minimize the perplexity on a set14



of development data. While this 
an be e�e
tive, it has to be done by trialand error and 
annot easily be optimized. In addition, weighting the n-gram
ounts 
an pose problems in properly estimating the ba
ko� 
oe�
ients. Forthese reasons the language models in most of todays state-of-the-art systemsare obtained via the interpolation methods, whi
h 
an also allow for taskadaptation by simply modifying the interpolation 
oe�
ients (Chen et al,.2004; Liu et al, 2008).The relevan
e of a language model is usually measured in terms of test setperplexity de�ned as Px= Pr(text|lm)−
1

n , where n is the number of wordsin the text. The perplexity is a measure of the average bran
hing fa
tor,i.e. the vo
abulary size of a memoryless uniform language model with sameentropy as the language model under 
onsideration.5 De
odingIn this se
tion we dis
uss the LVCSR de
oding problem, whi
h is the designof an e�
ient sear
h algorithm to deal with the huge sear
h spa
e obtainedby 
ombining the a
ousti
 and language models. Stri
tly speaking, the aimof the de
oder is to determine the word sequen
e with the highest likelihoodgiven the lexi
on and the a
ousti
 and language models. In pra
ti
e, how-ever, it is 
ommon to sear
h for the most likely HMM state sequen
e, i.e.the best path through a trellis (the sear
h spa
e) where ea
h node asso
iatesan HMM state with given time. Sin
e it is often prohibitive to exhaustivelysear
h for the best path, te
hniques have been developed to redu
e the 
om-putational load by limiting the sear
h to a small part of the sear
h spa
e.Even for resear
h purposes, where real-time re
ognition is not needed there isa limit on 
omputing resour
es (memory and CPU time) above whi
h the de-velopment pro
ess be
omes too 
ostly. The most 
ommonly used approa
hfor small and medium vo
abulary sizes is the one-pass frame-syn
hronousViterbi beam sear
h whi
h uses a dynami
 programming algorithm. Thisbasi
 strategy has been extended to deal with large vo
abularies by addingfeatures su
h as dynami
 de
oding, multipass sear
h and N-best res
oring.Dynami
 de
oding 
an be 
ombined with e�
ient pruning te
hniques inorder to obtain a single pass de
oder that 
an provide the answer using allthe available information (i.e. that in the models) in a single forward de
od-ing pass over of the spee
h signal. This kind of de
oder is very attra
tive15



for real-time appli
ations. Multi-pass de
oding is used to progressively addknowledge sour
es in the de
oding pro
ess and allows the the 
omplexity ofthe individual de
oding passes to be redu
ed. For example, a �rst de
od-ing pass 
an use a 2-gram language model and simple a
ousti
 models, andlater passes will make use of 3-gram and 4-gram language models with more
omplex a
ousti
 models. This multiple pass paradigm requires a proper in-terfa
e between passes in order to avoid losing information and engenderingsear
h errors. Information is usually transmitted via word graphs, althoughsome systems use N-best hypotheses (a list of the most likely word sequen
eswith their respe
tive s
ores). This approa
h is not well suited to real-timeappli
ations sin
e no hypothesis 
an be returned until the entire utteran
ehas been pro
essed.It 
an sometimes be di�
ult to add 
ertain knowledge sour
es into thede
oding pro
ess espe
ially when they do not �t in the Markovian framework(i.e. short distan
e dependen
y modeling). For example, this is the 
asewhen trying to use segmental information or to use grammati
al informationfor long term agreement. Su
h information 
an be more easily integrated inmultipass systems by res
oring the re
ognizer hypotheses after applying theadditional knowledge sour
es.Mangu, Brill and Stol
ke (2000) proposed the te
hnigue of 
onfusion net-work de
oding (also 
alled 
onsensus de
oding) whi
h minimizes an approxi-mate WER as opposed to MAP de
oding whi
h minimizes the senten
e errorrate (SER). This te
hnique has sin
e been adopted in most state-of-the-artsystems, resulting in lower WERs and better 
on�den
e s
ores. Con�den
es
ores are a measure of the reliability of the re
ognition hypotheses, and givean estimate of the word error rate. For example, an average 
on�den
e of 0.9will 
orrespond to a word error rate of 10% if deletions are ignored. Jiang(2004) provides an overview of 
on�den
e measures for spee
h re
ognition,
ommenting on the 
apa
ity and limitations of the te
hniques.6 State-of-the-Art Performan
eThe last de
ade has seen large performan
e improvements in spee
h re
og-nition, parti
ularly for large vo
abulary, speaker-independent, 
ontinuousspee
h. This progress has been substantially aided by the availability of largespee
h and text 
orpora and by signi�
ant inreases in 
omputer pro
essing16




apabilities whi
h have fa
ilitated the implementation of more 
omplex mod-els and algorithms.3 In this se
tion we provide some illustrative results fordi�erent LVCSR tasks, but make no attempt to be exhaustive.The 
ommonly used metri
 for spee
h re
ognition performan
e is the�word error� rate (Chapter 22), whi
h is a measure of the average numberof errors taking into a

ount three error types with respe
t to a referen
etrans
ription: substitutions (one word is repla
ed by another word), inser-tions (a word is hypothesized that was not in the referen
e) and deletions(a word is missed). The word error rate is de�ned as #subs+#ins+#del# referen
e words ,and is typi
ally 
omputed after a dynami
 programming alignment of thereferen
e and hypothesized trans
riptions. Note that given this de�nitionthe word error 
an be more than 100%.Three types of tasks 
an be 
onsidered: small vo
abulary tasks, su
has isolated 
ommand words, digits or digit strings; medium-size (1000-3000words) vo
abulary tasks su
h as are typi
ally found in spoken dialog sys-tems (Chapter 34); and large vo
abulary tasks (typi
ally 65k words). An-other dimension is the speaking style whi
h 
an be read, prepared, sponta-neous or 
onversational. Very low error rates have been reported for smallvo
abulary tasks, below 1% for digit strings, whi
h has led to some 
om-mer
ial produ
ts most notably in the tele
ommuni
ations domain. Earlyben
hmark evaluations fo
used on read spee
h tasks: the state-of-the-art inspeaker-independent 
ontinuous spee
h re
ognition in 1992 is exempli�ed bythe Resour
e Management task (1000 word vo
abulary, word-pair grammar,4h a
ousti
 training data) with a word error rate of 3%. In 1995, on readnewspaper texts (the Wall Street Journal task, 160h a
ousti
 training dataand 400 M words of language model texts) word error rates around 8% wereobtained using a 65k word vo
abulary. The word errors roughly doubled forspee
h in the presen
e of noise, or on texts di
tated by journalists. The ma-turity of the te
hnology led to the 
ommer
ialization of speaker-dependent3These advan
es 
an be 
learly seen in the 
ontext of DARPA supported ben
h-mark evaluations. This framework, known in the 
ommunity as the DARPA evaluationparadigm, has provided the training materials (trans
ribed audio and textual 
orporafor training a
ousti
 and language models), test data and a 
ommon evaluation frame-work. The data have been generally been provided by the Linguisti
s Data Consortium(LDC) and the evaluations organized by the National Institute of Standards and Te
hnol-ogy (NIST) in 
ollaboration with representatives from the parti
ipating sites and othergovernment agen
ies. 17




ontinuous spee
h di
tation systems for whi
h 
omparable ben
hmarks arenot publi
ly available.Over the last de
ade the resear
h has fo
used on �found spee
h�, origi-nating with the trans
ription of radio and television broad
asts and movingto any audio found on the Internet (pod
asts). This was a major step forthe 
ommunity in that the test data is taken from a real task, as opposedto 
onsisting of data re
orded for evaluation purposes. The trans
ription ofsu
h varied presents new 
hallenges as the signal is one 
ontinuous audiostream that 
ontains segments of di�erent a
ousti
 and linguisti
 natures.Today well-trained trans
ription systems for broad
ast data have been de-veloped for at least 15 languages, a
hieving word error rates on the order ofunder 20% on unrestri
ted broad
ast news data. The performan
e on stu-dio quality spee
h from announ
ers is often 
omparable to that obtained onWSJ read spee
h data.Word error rates of under 20% have been reported for the trans
riptionof 
onversational telephone spee
h (CTS) in English using the Swit
hboard
orpus, with substantially higher WERs (30-40%) on the multilinugal Call-home (Spanish, Arabi
, Mandarin, Japanese, German) data. A wide rangeof word error rates have been reported for the spee
h re
ognition 
ompo-nents of a spoken dialog systems (Chapters 6, 7 and 34), ranging from under5% for simple travel information tasks using 
lose-talking mi
rophones toover 25% for telephone-based information retrieval systems. It is quite dif-�
ult to 
ompare results a
ross systems and tasks as di�erent trans
ription
onventions and text normalizations are often used.Spee
h-to-text systems histori
ally produ
e a 
ase insensitive, unpun
tu-ated output. Re
ently there have been a number of e�orts to produ
e STToutputs with 
orre
t 
ase and pun
tuation, as well as 
onversion of num-bers, dates, and a
ronymns to a standard written form. This is essentiallythe reverse pro
ess of the text normalization steps des
ribed in Se
tion 4.Both linguisti
 and a
ousti
 information (essentially pause and breath noise
ues) are used to add pun
tuation marks in the spee
h re
ognizer output.An e�
ient method is to res
ore word latti
es that have been expanded topermit pun
tuation marks after ea
h word, senten
es boundaries at ea
hpause, with a spe
ialized 
ase sensitive, pun
tuated language model.
18



7 Dis
ussion and Perspe
tivesDespite the numerous advan
es made over the last de
ade, spee
h re
ognitionis far from a solved problem. Current resea
h topi
s aim to develop generi
re
ognition models and to use unannotated data for training purposes, in anaim to redu
e the relian
e on manually annotated training 
orpora.Mu
h of the progress in LVCSR has been fostered by supporting infras-tru
ture for data 
olle
tion, annotation and evaluation. The Spee
h Groupat the National Institute of Standards and Te
hnology (NIST) has been or-ganizing ben
hmark evaluations for a range of human language te
hnologies(spee
h re
ognition, speaker and language re
ognition, spoken do
ument re-trieval, topi
 dete
tion and tra
king, automati
 
ontent extra
tion, spokenterm dete
tion) for over 20 years, re
ently extended to also in
lude relatedmulti-modal te
hnologies 4While the performan
e of spee
h re
ognition te
hnology has dramati
allyimproved for a number of 'dominant' languages (English, Mandarin, Ara-bi
, Fren
h, Spanish, ...), generally speaking te
hnologies for language andspee
h pro
essing are available only for a small proportion of the world'slanguages. By several estimations there are over 6000 spoken languages inthe world, but only about 15% of them are also written. Text 
orpora,whi
h 
an be useful for training the language models used by spee
h re
og-nizers, are be
oming more and more readily available on the Internet. Thesite http://www.omniglot.
om lists about 800 languages that have a writtenform.It has often been observed that there is a large di�eren
e in re
ognitionperforman
e for the same system between the best and worst speakers. Un-supervised adaption te
hniques do not ne
essarily redu
e this di�eren
e, infa
t, often they improve performan
e on good speakers more than on badones. Interspeaker di�eren
es are not only at the a
ousti
 level, but also thephonologi
al and word levels. Today's modeling te
hniques are not able totake into a

ount speaker-spe
i�
 lexi
al and phonologi
al 
hoi
es.Todays systems often also provide additional information whi
h is use-ful for stru
turing audio data. In addition to the linguisti
 message, thespee
h signal en
odes information about the 
hara
teristi
s of the speaker,the a
ousti
 environment, the re
ording 
onditions and the transmission4See http://www.nist.gov/spee
h/tests. 19




hannel. A
ousti
 metadata 
an be extra
ted from the audio to providea des
ription in
luding the language(s) spoken, the speaker(s), a

ent(s),a
ousti
 ba
kground 
onditions, the speaker's emotional state et
. Su
h in-formation 
an be used to improve spee
h re
ognition performan
e, and toprovide an enri
hed text output for downstream pro
essing. The automati
trans
ription 
an also be used to provide information about the linguisti

ontent of the data (topi
, named entities, spee
h style, ...). By asso
iatingea
h word and senten
e with a spe
i�
 audio segment, an automati
 tran-s
ription 
an allow a

ess to any arbitrary portion of an audio do
ument. If
ombined with other meta-data (language, speaker, entities, topi
s) a

essvia other attributes 
an be fa
ilitated.A wide range of potential appli
ations 
an be envisioned based on au-tomati
 annotation of broad
ast data, parti
ularly in light of the re
ent ex-plosion of su
h media, whi
h required automated pro
essing for indexationand retrieval (Chapters 29, 30 and 32), and question-answering. Importantfuture resear
h will address keeping vo
abulary up-to-date, language modeladaptation, automati
 topi
 dete
tion and labeling, and enri
hed trans
rip-tions providing annotations for speaker turns, language, a
ousti
 
onditions,et
. Another 
hallenging problem is re
ognizing spontaneous spee
h data 
ol-le
ted with far-�eld mi
rophones (su
h as meetings and interviews), whi
hhave di�
ult a
ousti
 
onditions (reverberation, ba
kground noise) and oftenhave overlapping spee
h from di�erent speakers.Further Reading and Relevant Resour
esAn ex
ellent referen
e is �Corpus Based Methods in Language and Spee
hPro
essing,� edited by Young and Bloothooft (1997). This book provides anoverview of 
urrently used statisti
ally based te
hniques, their basi
 prin
i-ples and problems. A theoreti
al presentation of the fundamentals of thesubje
t is given in the book �Statisti
al Methods for Spee
h Re
ognition� byJelinek (1994). A general introdu
tory tutorial on HMMs 
an be found inRabiner and Juang (1986). �Pattern Re
ognition in Spee
h and LanguagePro
essing�by Chou and Juang (2003) and and �Multilingual Spee
h Pro-
essing� by S
hultz and Kir
hho� (2006), provide more advan
ed reading.For general spee
h pro
essing referen
e, the 
lassi
al book Digital Pro
ess-ing of Spee
h Signals (Rabiner and Shafer, Prenti
e Hall, 1978) remains20



relevant. A 
omprehensive dis
ussion on signal representation 
an be foundin Chapter 1.3 of the Survey of the State of the Art in Human LanguageTe
hnology (http://www.
slu.ogi.edu/HLTsurvey) The most re
ent work inspee
h re
ognition 
an be found in the pro
eedings of major 
onferen
es(IEEE ICASSP, ISCA Interspee
h) and workshops (most notably DARPA,ISCA ITRWs, IEEE ASRU), as well as the journals on Spee
h Communi-
ation and Computer Spee
h and Language. In the latter journal a spe
ialissue in O
tober 1998 was devoted to Evaluation in Language and Spee
hte
hnology.Several web sites of interest are:European Language Resour
es Asso
iation (elra) http://www.i
p.inpg.fr/ELRA/home.htmlEuropean Spee
h Communi
ation Asso
iation (es
a) http://www.es
a-spee
h.orgLinguisti
 Data Consortium (ld
) http://www.ld
.upenn.edu/NIST Spoken Natural Language Pro
essing http://www.itl.nist.gov/div894/894.01Survey of the State of the Art in Human Language Te
hnologyhttp://www.
slu.ogi.edu/HLTsurveyLanguages of the world http://www.omniglot.
omOLAC: Open Language Ar
hives Community http://www.language-ar
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8 GlossaryA
ousti
 model: a model des
ribing the probabilisti
 behavior of the en-
oding of the linguisti
 information in a spee
h signalA
ousti
 parameterization: sele
tion of a
ousti
 features whi
h are usedto redu
e model 
omplexity without losing relevant linguisti
 informationAllophones: the 
olle
tion of di�erent realizations of a given phoneme, su
has the aspirated /t/ in �type�, the �apped /t/ in �butter�, or �nal unreleased/t/ in �hot�Ba
k-o�: me
hanism for smoothing the estimates of the probabilities ofrare events by relying on less spe
i�
 modelsContext-dependent model; a model whi
h takes into a

ount the neigh-boring phonesFrame or Parameter ve
tor: set of a
ousti
 parameters asso
iated witha windowed portion of the signalLanguage model: model used to estimate the probability of word sequen
esLexi
on: list of words known by the re
ognizer, ea
h word asso
iated withone or more pronun
iationsPhone: 
ommonly used elementary units whi
h generally 
orrespond tophonemes, but may also 
orrespond to allophonesRe
ording 
hannel: means by whi
h the audio signal is re
orded (dire
tmi
rophone, telephone, radio, et
Spee
h re
ognition: trans
ription of the spee
h signal into a sequen
e ofwords
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