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Abstract

Speech recognition is concerned with converting the speech waveform, an
acoustic signal, into a sequence of words. Today’s most performant ap-
proaches are based on a statistical modelization of the speech signal. The
chapter provides an overview of the main topics addressed in speech recog-
nition, that is acoustic-phonetic modeling, lexical representation, language
modeling, decoding and model adaptation. The focus is on methods used
in state-of-the-art speaker-independent, large vocabulary continuous speech
recognition (LVCSR). Some of the technology advances over the last decade
are highlighted. Primary application areas for such technology initially ad-
dressed dictation tasks and interactive systems for limited domain informa-
tion access (usually referred to as spoken language dialog systems. The last
decade has witnessed a wider coverage of languages, as well as growing in-
terest in transcription systems for information archival and retrieval, media
monitoring, automatic subtitling and speech analytics. Some outstanding

issues and directions of future research are discussed.

1 Overview

Speech recognition is principally concerned with the problem of tran-
scribing the speech signal as a sequence of words. Today’s best performing
systems use statistical models (Chapter 19) of speech. From this point of
view, speech is assumed to be generated by a language model which pro-
vides estimates of Pr(w) for all word strings w independently of the observed
signal, and an acoustic model encoding the message w in the signal z,
which is represented by a probability density function f(x|w). The goal of
speech recognition is to find the most likely word sequence given the observed
acoustic signal. The speech decoding problem thus consists of maximizing
the probability of w given the speech signal x, or equivalently, maximizing
the product Pr(w) f(z|w).
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Figure 1: System diagram of a generic speech recognizer based using statis-

tical models, including training and decoding processes.

The principles on which these systems are based have been known for
many years now, and include the application of information theory to speech
recognition (Bahl et al. 1976; Jelinek 1976), the use of a spectral represen-
tation of the speech signal (Dreyfus-Graf 1949; Dudley and Balashek 1958),
the use of dynamic programming for decoding (Vintsyuk 1968), and the use
of context-dependent acoustic models (Schwartz et al. 1984). Despite
the fact that some of these techniques were proposed well over a decade
ago, considerable progress has been made in recent years in part due to the
availability of large speech and text corpora (Chapter 24), and improved
processing power which have allowed more complex models and algorithms
to be implemented. Compared with the state-of-the-art technology a decade
ago, advances in acoustic modeling have enabled reasonable performance to
be obtained on various data types and acoustic conditions.

The main components of a generic speech recognition system are shown
in Figure 1. The elements shown are the main knowledge sources (speech
and textual training materials and the pronunciation lexicon), the feature
analysis (or parameterization), the acoustic and language models which are
estimated in a training phase, and the decoder. The remaining sections of

this chapter are devoted to discussing these main components.



2  Acoustic parameterization and modeling

Acoustic parameterization is concerned with the choice and optimiza-
tion of acoustic features in order to reduce model complexity while trying to
maintain the linguistic information relevant for speech recognition. Acoustic
modeling must take into account different sources of variability present in
the speech signal: those arising from the linguistic context and those as-
sociated with the non-linguistic context such as the speaker (e.g., coughing,
throat clearing, breath noise) and the acoustic environment (e.g., background
noise, music) and recording channel (e.g., direct microphone, telephone).
Most state-of-the-art systems make use of hidden Markov models (HMM)
for acoustic modeling, which consists of modeling the probability density
function of a sequence of acoustic feature vectors. In this section common
parameterizations are described, followed by a discussion of acoustic model

estimation and adaptation.

2.1 Acoustic feature analysis

The first step of the acoustic feature analysis is digitization, where the con-
tinuous speech signal is converted into discrete samples. The most com-
monly used sampling rates are 16kHz and 10kHz for direct microphone in-
put, and 8kHz for telephone signals. The next step is feature extraction
(also called parameterization or front-end analysis), which has the goal of
representing the audio signal in a more compact manner by trying to remove
redundancy and reduce variability, while keeping the important linguistic
information (Hunt 1996). Most recognition systems use short-time cepstral
features based either on a Fourier transform or a linear prediction model.
Cepstral parameters are popular because they are a compact representa-
tion, and are less correlated than direct spectral components. This simplifies
estimation of the HMM parameters by reducing the need for modeling the
feature dependency. An inherent assumption is that although the speech sig-
nal is continually changing, due to physical constraints on the rate at which
the articulators can move, the signal can be considered quasi-stationary for
short periods (on the order of 10ms to 20ms).

The two most popular sets of features are cepstrum coefficients obtained
with a Mel Frequency Cepstral (MFC) analysis (Davis and Mermelstein
1980) or with a Perceptual Linear Prediction (PLP) analysis (Hermansky



1990). In both cases a Mel scale short term power spectrum is estimated
on a fixed window (usually in the range of 20 to 30ms). In order to avoid
spurious high frequency components in the spectrum due to discontinuities
caused by windowing the signal, it is common to use a tapered window such
as a Hamming window. The window is then shifted (usually a third or a
half the window size), and the next feature vector computed. The most
commonly used offset is 10ms. The Mel scale approximates the frequency
resolution of the human auditory system, being linear in the low frequency
range (below 1000 Hz) and logarithmic above 1000 Hz. The cepstral param-
eters are obtained by taking an inverse transform of the log of the filterbank
parameters. In the case of the MFC coefficients, a cosine transform is ap-
plied to the log power spectrum, whereas a root-Linear Predictive Coding
(LPC) analysis is used to obtain the PLP cepstrum coefficients. Both set
of features have been used with success for LVCSR, but PLP analysis has
been found for some systems to be more robust in presence of background
noise. The set of cepstral coefficients associated with a windowed portion
of the signal is referred to as a frame or a parameter vector. Cepstral
mean removal (subtraction of the mean from all input frames) is commonly
used to reduce the dependency on the acoustic recording conditions. Com-
puting the cepstral mean requires that all of the signal is available prior to
processing, which is not the case for certain applications where processing
needs to be synchronous with recording. In this case, a modified form of
cepstral subtraction can be carried out where a running mean is computed
from the N last frames (N is often on the order of 100, corresponding to
1s of speech). In order to capture the dynamic nature of the speech signal,
it is common to augment the feature vector with “delta” parameters. The
delta parameters are computed by taking the first and second differences of
the parameters in successive frames. Over the last decade there has been
growing in interest in capturing longer term dynamics of speech than of the
standard cepstral features. A variety of techniques have been proposed from
simple concatenation of sequential frames to the use of TempoRAl Patterns
(TRAPs) (Hermansky and Sharma, 1998), In all cases the wider context
results in a larger number of parameters that consequently need to be re-
duced. Discriminative classifiers such as Multi Layer Perceptrons (MLP)
are efficient methods for discriminative feature estimation. Over the years,

several groups have developed mature techniques for extracting probabilistic
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Figure 2: A typical 3-state phone HMM with no skip state (top) which

generates feature vectors (xj...x,) representing speech segments.

MLP features and incorporating them in speech-to-text systems (Zhu et al.,
2005; Stolcke et al., 2006). While probabilistic features have not been shown
to consistently outperform cepstral features in LVCSR, being complemen-
tary they have been shown to significantly improve performance when used
together (Fousek et al., 2008).

2.2 Acoustic models

Hidden Markov models are widely used to model the sequences of acoustic
feature vectors (Rabiner and Juang 1986). These models are popular as they
are performant and their parameters can be efficiently estimated using well
established techniques. They are used to model the production of speech fea-
ture vectors in two steps. First a Markov chain is used to generate a sequence
of states, and second speech vectors are drawn using a probability density
function (PDF) associated to each state. The Markov chain is described by
the number of states and the transitions probabilities between states. The
most widely used elementary acoustic units in LVCSR systems are phone-

2

based !, where each phone? is represented by a Markov chain with a small

!For some languages, most notably tonal languages such as Chinese longer units corre-
sponding to syllables or demisyllables (also called onsets and offsets or initials and finals)
have been explored. While the use of larger units remains relatively limited to phone units,

they may better capture tone information and may be well-suited to casual speaking styles.
2Phones usually correspond to phonemes, but may also correspond to allophones such

as flaps or glottal stop.



number of states. While different topologies have been proposed, all make
use of left-to-right state sequences in order to capture the spectral change
across time. The most commonly used configurations have between 3 and
5 emitting states per model, where the number of states imposes a minimal
time duration for the unit. Some configurations allow certain states to be
skipped, so as to reduce the required minimal duration. The probability of
an observation (i.e. a speech vector) is assumed to be dependent only on the
state, which is known as a 1st order Markov assumption.

Strictly speaking, given an n-state HMM with parameter vector A, the
HMM stochastic process is described by the following joint probability den-
sity function f(x,s|\) of the observed signal x = (z1,...,27) and the unob-

served state sequence s = (sq, ..., S7),

T
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where 7; is the initial probability of state i, a;; is the transition proba-
bility from state i to state j, and f(-|s) is the emitting PDF associated with
each state s. Figure 2 shows a 3-state HMM with the associated transition
probabilities and observation PDFs.

Phone based models offer the advantage that recognition lexicons can be
described using the elementary units of the given language, and thus benefit
from many linguistic studies. It is of course possible to perform speech recog-
nition without using a phonemic lexicon, either by use of “word models” (as
was the more commonly used approach 10 years ago) or a different mapping
such as the fenones (Bahl et al. 1988). Compared with larger units (such
as words, syllables, demisyllables), small subword units reduce the number
of parameters, enable cross word modeling, facilitate porting to new vocab-
ularies and most importantly, can be associated with back-off mechanisms
to model rare contexts. Fenones offer the additional advantage of automatic
training, but lack the ability to include a prior: linguistic models.

A given HMM can represent a phone without consideration of its neigh-
bors (context-independent or monophone model) or a phone in a particular
context (context-dependent model). The context may or may not include
the position of the phone within the word (word-position dependent), and
word-internal and cross-word contexts may be merged or considered sepa-
rated models. The use of cross-word contexts complicates decoding (see sec-

tion 5). Different approaches are used to select the contextual units based



on frequency or using clustering techniques, or decision trees, and different
context types have been investigated: single-phone contexts, triphones, gen-
eralized triphones, quadphones and quinphones, with and without position
dependency (within or cross word). The model states are often clustered so
as to reduce the model size, resulting in what are referred to as “tied-state”
models.

Acoustic model training consists of estimating the parameters of each
HMM. For continuous density Gaussian mixture HMMs, this requires es-
timating the means and covariance matrices, the mixture weights and the
transition probabilities. The most popular approaches make use of the Max-
imum Likelihood (ML) criterion, ensuring the best match between the model
and the training data (assuming that the size of the training data is sufficient
to provide robust estimates).

Estimation of the model parameters is usually done with the Expectation-
Maximization (EM) algorithm (Dempster et al. 1977) which is an itera-
tive procedure starting with an initial set of model parameters. The model
states are then aligned to the training data sequences and the parameters
are reestimated based on this new alignment using the Baum-Welch rees-
timation formulas (Baum et al. 1970; Liporace 1982; Juang 1985). This
algorithm guarantees that the likelihood of the training data given the mod-
els increases at each iteration. In the alignment step a given speech frame
can be assigned to multiple states (with probabilities summing to 1) using
the forward-backward algorithm or to a single state (with probability 1)
using the Viterbi algorithm. This second approach yield to slightly lower
likelihood but in practice there is very little difference in accuracy especially
when large amounts of data are available. It is important to note that the
EM algorithm does not guaranty finding the true ML parameter values, and
even when the true ML estimates are obtained they may not be the best
ones for speech recognition. Therefore, some implementation details such as
a proper initialization procedure and the use of constraints on the parameter
values can be quite important.

Since the goal of training is to find the best model to account of the ob-
served data, the performance of the recognizer is critically dependent upon
the representativity of the training data. Some methods to reduce this depen-
dency are discussed in the next subsection. Speaker-independence is obtained

by estimating the parameters of the acoustic models on large speech corpora



containing data from a large speaker population. There are substantial dif-
ferences in speech from male and female talkers arising from anatomical
differences (on average females have a shorter vocal tract length resulting in
higher formant frequencies, as well as a higher fundamental frequency) and
social ones (female voice is often “breathier” caused by incomplete closure
of the vocal folds). It is thus common practice to use separate models for
male and female speech in order to improve recognition performance, which

requires automatic identification of the gender.

2.3 Adaptation

In this section we discuss techniques that have been used with continuous
density HMMs, although similar techniques have been developed for discrete
and semi-continuous HMMs.

The performances of speech recognizers drop substantially when there
is a mismatch between training and testing conditions. Several approaches
can be used to minimize the effects of such a mismatch, so as to obtain a
recognition accuracy as close as possible to that obtained under matched con-
ditions. Acoustic model adaptation can be used to compensate mismatches
between the training and testing conditions, such as due to differences in
acoustic environment, to microphones and transmission channels, or to par-
ticular speaker characteristics. The techniques are commonly referred to
as noise compensation, channel adaptation, and speaker adaptation respec-
tively. Since in general no prior knowledge of either the channel type, the
background noise characteristics or the speaker is available, adaptation is
performed using only the test data in an unsupervised mode.

The same tools can be used in acoustic model training in order to com-
pensate for sparse data, as in many cases only limited representative data
are available. The basic idea is to use a small amount of representative data
to adapt models trained on other large sources of data. Some typical uses
are to build gender-dependent, speaker-specific or task-specific models, or to
use speaker adaptive training (SAT) to improve performance. When used for
model adaption during training it is common to use the true transcription
of the data, known as supervised adaptation.

Three commonly used schemes to adapt the parameters of an HMM can
be distinguished: Bayesian adaptation (Gauvain and Lee 1994); adaptation

based on linear transformations (Leggetter and Woodland 1995); and model



composition techniques (Gales and Young 1995). Bayesian estimation can
be seen as a way to incorporate prior knowledge into the training procedure
by adding probabilistic constraints on the model parameters. The HMM
parameters are still estimated with the EM algorithm but using maximum
a posteriori (MAP) reestimation formulas (Gauvain and Lee 1994). This
leads to the so-called MAP adaptation technique where constraints on the
HMM parameters are estimated based on parameters of an existing model.
Speaker-independent acoustic models can serve as seed models for gender
adaptation using the gender specific data. MAP adaptation can be used
to adapt to any desired condition for which sufficient labeled training data
are available. Linear transforms are powerful tools to perform unsupervised
speaker and environmental adaptation. Usually these transformations are
ML trained and are applied to the HMM Gaussian means, but can also
be applied to the Gaussian variance parameters. This ML linear regression
(MLLR) technique is very appropriate to unsupervised adaptation because
the number of adaptation parameters can be very small. MLLR adaptation
can be applied to both the test data and training data. Model composition
is mostly used to compensate for additive noise by explicitly modeling the
background noise (usually with a single Gaussian) and combining this model
with the clean speech model. This approach has the advantage of directly
modeling the noisy channel as opposed to the blind adaptation perform by
the MLLR technique when applied to the same problem.

The chosen adaptation method depends on the type of mismatch and
on the amount of available adaptation data. The adaptation data may be
part of the training data, as in adaptation of acoustic seed models to a
new corpus or a subset of the training material (gender, dialect, speaker
or acoustic condition specific) or can be the test data (i.e., the data to be
transcribed). In the former case supervised adaptation techniques can be
applied, as the reference transcription of the adaptation data can be readily
available. In the latter case only unsupervised adaptation techniques can be

applied.

3 Lexical and pronunciation modeling

The lexicon is the link between the acoustic-level representation and the

word sequence output by the speech recognizer. Lexical design entails two



main parts: definition and selection of the vocabulary items and represen-
tation of each pronunciation entry using the basic acoustic units of the rec-
ognizer. Recognition performance is obviously related to lexical coverage,
and the accuracy of the acoustic models is linked to the consistency of the
pronunciations associated with each lexical entry.

The recognition vocabulary is usually selected to maximize lexical cover-
age for a given size lexicon. Since on average, each out-of-vocabulary (OOV)
word causes more than a single error (usually between 1.5 and 2 errors), it
is important to judiciously select the recognition vocabulary. Word list se-
lection is discussed in Section 4. Associated with each lexical entry are one
or more pronunciations, described using the chosen elementary units (usu-
ally phonemes or phone-like units). This set of unit is evidently language
dependent. For example, some commonly used phone set sizes are about 45
for English, 49 for German, 35 for French, and 26 for Spanish. In generat-
ing pronunciation baseforms, most lexicons include standard pronunciations
and do not explicitly represent allophones. This representation is chosen as
most allophonic variants can be predicted by rules, and their use is optional.
More importantly, there often is a continuum between different allophones
of a given phoneme and the decision as to which occurred in any given ut-
terance is subjective. By using a phonemic representation, no hard decision
is imposed, and it is left to the acoustic models to represent the observed
variants in the training data. While pronunciation lexicons are usually (at
least partially) created manually, several approaches to automatically learn
and generate word pronunciations have been investigated (Cohen 1989; Riley
and Ljojle 1996).

There are a variety of words for which frequent alternative pronunciation
variants are observed, and these variants are not due to allophonic differences
such as the suffix -ization which can be pronounced with a diphthong (/a’/)
or a schwa (/o/). Alternate pronunciations are also needed for homographs
(words spelled the same, but pronounced differently) which reflect different
parts of speech (verb or noun) such as excuse, record, produce. Some com-
mon 3 syllable words such as interest and company are often pronounced
with only 2 syllables. Figure 3 shows two examples of the word interest by
different speakers reading the same text prompt: “In reaction to the news,
interest rates plunged...”. The pronunciations are those chosen by the recog-

nizer during segmentation using forced alignment. In the example on the left,
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Figure 3: Spectrograms of the word interest with pronunciation variants:
/m3us/ (left) and /mtris/(right) taken from the WSJ corpus (sentences
20tc0106, 401c0206). The grid is 100ms by 1 kHz. Segmentation of these
utterances with a single pronunciation of interest /mtrist/ (middle) and with
multiple variants /mtrist/ /mtris/ /m3us/ (bottom). The /I/ and /t/ seg-

ments are light and dark grey respectively.

the /t/ is deleted, and the /n/ is produced as a nasal flap. In the example
on the right, the speaker said the word with 2 syllables, without the optional
vowel and producing a /tr/ cluster. Segmenting the training data without
pronunciation variants is illustrated in the middle. Whereas no /t/ was ob-
served in the first pronunciation example two /t/ segments had been aligned.
An optimal alignment with a pronunciation dictionary including all required
variants is shown on the bottom. Better alignment results in more accurate
acoustic phone models. Careful lexical design improves speech recognition
performance.

In speech from fast speakers or speakers with relaxed speaking styles it
is common to observe poorly articulated (or skipped) unstressed syllables,

particularly in long words with sequences of unstressed syllables. Although
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such long words are typically well recognized, often a nearby function word
is deleted. To reduce these kinds of errors, alternate pronunciations for long
words such as positioning (/poezifoniry/ or /pozifnir)/), can be included in the
lexicon allowing schwa-deletion or syllabic consonants in unstressed sylla-
bles. Compound words have also been used as a way to represent reduced
forms for common word sequences such as “did you” pronounced as “dija” or
“going to” pronounced as “gonna”. Alternatively, such fluent speech effects
can be modeled using phonological rules (Oshika et al. 1975). The principle
behind the phonological rules is to modify the allowable phone sequences to
take into account such variations. These rules are optionally applied during
training and recognition. Using phonological rules during training results in
better acoustic models, as they are less “polluted” by wrong transcriptions.
Their use during recognition reduces the number of mismatches. The same
mechanism has been used to handle liaisons, mute-e, and final consonant
cluster reduction for French. Most of todays state-of-the-art systems include
pronunciation variants in the dictionary, associating pronunciation probabil-
ities with the variants (Bourlard et al., eds. 1999; Fosler-Lussier et al., eds.,
2005).

As speech recognition research has moved from read speech to sponta-
neous and conversational speech styles, the phone set has been expanded to
include non-speech events. These can correspond to noises produced by the
speaker (breath noise, coughing, sneezing, laughter, etc.) or can correspond

to external sources (music, motor, tapping etc).

4 Language modeling

Language models (LMs) are used in speech recognition to estimate the
probability of word sequences. Grammatical constraints can be described
using a context-free grammars (for small to medium size vocabulary tasks
these are usually manually elaborated) or can be modeled stochastically, as
is common for LVCSR. The most popular statistical methods are n-gram
models, which attempt to capture the syntactic and semantic constraints
by estimating the frequencies of sequences of n words. The assumption
is made that the probability of a given word string (wq,ws, ...,wy) can be
approximated by Hle Pr(w;|wi—nt1, ...y wi—2, w;—1), therefore reducing the

word history to the preceding n—1 words. A back-off mechanism is generally

12



used to smooth the estimates of the probabilities of rare n-grams by relying
on a lower order n-gram when there is insufficient training data, and to
provide a means of modeling unobserved word sequences (Katz 1987). While
trigram LMs are the most widely used, higher order (n>3) and word class-
based (counts are based on sets of words rather than individual lexical items)
n-grams, and adapted LMs are recent research areas aimed at improving LM
accuracy.

Given a large text corpus it may seem relatively straightforward to con-
struct n-gram language models. Most of the steps are pretty standard and
make use of tools that count word and word sequence occurrences. The
main differences arise in the choice of the vocabulary and in the definition
of words, such as the treatment of compound words or acronyms, and the
choice of the back-off strategy. There is, however, a significant amount of
effort needed to process the texts before they can be used.

A common motivation for normalization in all languages is to reduce
lexical variability so as to increase the coverage for a fixed size task vo-
cabulary. Normalization decisions are generally language-specific. Much
of speech recognition research for American English has been supported by
ARPA and has been based on text materials which were processed to remove
upper /lower case distinction and compounds. Thus, for instance, no lexical
distinction is made between Gates, gates or Green, green. In the French
Le Monde corpus, capitalization of proper names is distinctive with different
lexical entries for Pierre, pierre or Roman, roman.

The main conditioning steps are text mark-up and conversion. Text
mark-up consists of tagging the texts (article, paragraph and sentence mark-
ers) and garbage bracketing (which includes not only corrupted text mate-
rials, but all text material unsuitable for sentence-based language model-
ing, such as tables and lists). Numerical expressions are typically expanded
to approximate the spoken form ($150 — one hundred and fifty dollars).
Further semi-automatic processing is necessary to correct frequent errors in-
herent in the texts (such as obvious mispellings milllion, officals) or arising
from processing with the distributed text processing tools. Some normaliza-
tions can be considered as “decompounding” rules in they modify the word
boundaries and the total number of words. These concern the processing
of ambiguous punctuation markers (such as hyphen and apostrophe), the

processing of digit strings, and treatment of abbreviations and acronyms
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(ABCD — A. B. C. D.). Another example is the treatment of numbers
in German, where decompounding can be used in order to increase lexical
coverage. The date 1991 which in standard German is written as neun-
zehnhunderteinundneunzig can be represented by word sequence neunzehn
hundert ein und neunzig. Other normalizations (such as sentence initial cap-
italization and case distinction) keep the total number of words unchanged,
but reduce graphemic variability. In general the choice is a compromise be-
tween producing an output close to correct standard written form of the
language and lexical coverage, with the final choice of normalization being
largely application-driven.

Better language models can be obtained using texts transformed to be
closer to the observed reading style, where the transformation rules and
corresponding probabilities are automatically derived by aligning prompt
texts with the transcriptions of the acoustic data. For example, the word
HUNDRED followed by a number can be replaced by hundred and 50% of the
time; 50% of the occurences of one eighth are replaced by an eighth, and 15%
of million dollars are replaced with simply million.

In practice, the selection of words is done so as to minimize the system’s
OOV rate by including the most useful words. By useful we mean that
the words are expected as an input to the recognizer, but also that the
LM can be trained given the available text corpora. In order to meet the
latter condition, it is common to choose the N most frequent words in the
training data. This criterion does not, however, guaranty the usefulness of
the lexicon, since no consideration of the expected input is made. Therefore
it is common practice to use a set of additional development data to select
a word list adapted to the expected test conditions.

There is the sometimes conflicting need for sufficient amounts of text
data to estimate LM parameters and assuring that the data is representative
of the task. It is also common that different types of LM training material
are available in differing quantities. One easy way to combine training ma-
terial from different sources is to train a language model per source and to
interpolate them. The interpolation weights can be directly estimated on
some development data with the EM algorithm. An alternative is to simply
merge the n-gram counts and train a single language model on these counts.
If some data sources are more representative than others for the task, the n-

gram counts can be empirically weighted to minimize the perplexity on a set
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of development data. While this can be effective, it has to be done by trial
and error and cannot easily be optimized. In addition, weighting the n-gram
counts can pose problems in properly estimating the backoff coefficients. For
these reasons the language models in most of todays state-of-the-art systems
are obtained via the interpolation methods, which can also allow for task
adaptation by simply modifying the interpolation coefficients (Chen et al,.
2004; Liu et al, 2008).

The relevance of a language model is usually measured in terms of test set
perplexity defined as Px= Pr(text|LM)_%7 where n is the number of words
in the text. The perplexity is a measure of the average branching factor,
i.e. the vocabulary size of a memoryless uniform language model with same

entropy as the language model under consideration.

5 Decoding

In this section we discuss the LVCSR decoding problem, which is the design
of an efficient search algorithm to deal with the huge search space obtained
by combining the acoustic and language models. Strictly speaking, the aim
of the decoder is to determine the word sequence with the highest likelihood
given the lexicon and the acoustic and language models. In practice, how-
ever, it is common to search for the most likely HMM state sequence, i.e.
the best path through a trellis (the search space) where each node associates
an HMM state with given time. Since it is often prohibitive to exhaustively
search for the best path, techniques have been developed to reduce the com-
putational load by limiting the search to a small part of the search space.
Even for research purposes, where real-time recognition is not needed there is
a limit on computing resources (memory and CPU time) above which the de-
velopment process becomes too costly. The most commonly used approach
for small and medium vocabulary sizes is the one-pass frame-synchronous
Viterbi beam search which uses a dynamic programming algorithm. This
basic strategy has been extended to deal with large vocabularies by adding
features such as dynamic decoding, multipass search and N-best rescoring.
Dynamic decoding can be combined with efficient pruning techniques in
order to obtain a single pass decoder that can provide the answer using all
the available information (i.e. that in the models) in a single forward decod-

ing pass over of the speech signal. This kind of decoder is very attractive
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for real-time applications. Multi-pass decoding is used to progressively add
knowledge sources in the decoding process and allows the the complexity of
the individual decoding passes to be reduced. For example, a first decod-
ing pass can use a 2-gram language model and simple acoustic models, and
later passes will make use of 3-gram and 4-gram language models with more
complex acoustic models. This multiple pass paradigm requires a proper in-
terface between passes in order to avoid losing information and engendering
search errors. Information is usually transmitted via word graphs, although
some systems use N-best hypotheses (a list of the most likely word sequences
with their respective scores). This approach is not well suited to real-time
applications since no hypothesis can be returned until the entire utterance
has been processed.

It can sometimes be difficult to add certain knowledge sources into the
decoding process especially when they do not fit in the Markovian framework
(i.e. short distance dependency modeling). For example, this is the case
when trying to use segmental information or to use grammatical information
for long term agreement. Such information can be more easily integrated in
multipass systems by rescoring the recognizer hypotheses after applying the
additional knowledge sources.

Mangu, Brill and Stolcke (2000) proposed the technigue of confusion net-
work decoding (also called consensus decoding) which minimizes an approxi-
mate WER as opposed to MAP decoding which minimizes the sentence error
rate (SER). This technique has since been adopted in most state-of-the-art
systems, resulting in lower WERSs and better confidence scores. Confidence
scores are a measure of the reliability of the recognition hypotheses, and give
an estimate of the word error rate. For example, an average confidence of 0.9
will correspond to a word error rate of 10% if deletions are ignored. Jiang
(2004) provides an overview of confidence measures for speech recognition,

commenting on the capacity and limitations of the techniques.

6 State-of-the-Art Performance

The last decade has seen large performance improvements in speech recog-
nition, particularly for large vocabulary, speaker-independent, continuous
speech. This progress has been substantially aided by the availability of large

speech and text corpora and by significant inreases in computer processing
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capabilities which have facilitated the implementation of more complex mod-
els and algorithms.? In this section we provide some illustrative results for
different LVCSR tasks, but make no attempt to be exhaustive.

The commonly used metric for speech recognition performance is the
“word error” rate (Chapter 22), which is a measure of the average number
of errors taking into account three error types with respect to a reference
transcription: substitutions (one word is replaced by another word), inser-

tions (a word is hypothesized that was not in the reference) and deletions
#subs+#ins+#del
# reference words ’
and is typically computed after a dynamic programming alignment of the

(a word is missed). The word error rate is defined as

reference and hypothesized transcriptions. Note that given this definition
the word error can be more than 100%.

Three types of tasks can be considered: small vocabulary tasks, such
as isolated command words, digits or digit strings; medium-size (1000-3000
words) vocabulary tasks such as are typically found in spoken dialog sys-
tems (Chapter 34); and large vocabulary tasks (typically 65k words). An-
other dimension is the speaking style which can be read, prepared, sponta-
neous or conversational. Very low error rates have been reported for small
vocabulary tasks, below 1% for digit strings, which has led to some com-
mercial products most notably in the telecommunications domain. Early
benchmark evaluations focused on read speech tasks: the state-of-the-art in
speaker-independent continuous speech recognition in 1992 is exemplified by
the Resource Management task (1000 word vocabulary, word-pair grammar,
4h acoustic training data) with a word error rate of 3%. In 1995, on read
newspaper texts (the Wall Street Journal task, 160h acoustic training data
and 400 M words of language model texts) word error rates around 8% were
obtained using a 65k word vocabulary. The word errors roughly doubled for
speech in the presence of noise, or on texts dictated by journalists. The ma-

turity of the technology led to the commercialization of speaker-dependent

3These advances can be clearly seen in the context of DARPA supported bench-
mark evaluations. This framework, known in the community as the DARPA evaluation
paradigm, has provided the training materials (transcribed audio and textual corpora
for training acoustic and language models), test data and a common evaluation frame-
work. The data have been generally been provided by the Linguistics Data Consortium
(LDC) and the evaluations organized by the National Institute of Standards and Technol-
ogy (NIST) in collaboration with representatives from the participating sites and other

government agencies.
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continuous speech dictation systems for which comparable benchmarks are
not publicly available.

Over the last decade the research has focused on “found speech”, origi-
nating with the transcription of radio and television broadcasts and moving
to any audio found on the Internet (podcasts). This was a major step for
the community in that the test data is taken from a real task, as opposed
to consisting of data recorded for evaluation purposes. The transcription of
such varied presents new challenges as the signal is one continuous audio
stream that contains segments of different acoustic and linguistic natures.
Today well-trained transcription systems for broadcast data have been de-
veloped for at least 15 languages, achieving word error rates on the order of
under 20% on unrestricted broadcast news data. The performance on stu-
dio quality speech from announcers is often comparable to that obtained on
WS.J read speech data.

Word error rates of under 20% have been reported for the transcription
of conversational telephone speech (CTS) in English using the Switchboard
corpus, with substantially higher WERs (30-40%) on the multilinugal Call-
home (Spanish, Arabic, Mandarin, Japanese, German) data. A wide range
of word error rates have been reported for the speech recognition compo-
nents of a spoken dialog systems (Chapters 6, 7 and 34), ranging from under
5% for simple travel information tasks using close-talking microphones to
over 25% for telephone-based information retrieval systems. It is quite dif-
ficult to compare results across systems and tasks as different transcription
conventions and text normalizations are often used.

Speech-to-text systems historically produce a case insensitive, unpunctu-
ated output. Recently there have been a number of efforts to produce STT
outputs with correct case and punctuation, as well as conversion of num-
bers, dates, and acronymns to a standard written form. This is essentially
the reverse process of the text normalization steps described in Section 4.
Both linguistic and acoustic information (essentially pause and breath noise
cues) are used to add punctuation marks in the speech recognizer output.
An efficient method is to rescore word lattices that have been expanded to
permit punctuation marks after each word, sentences boundaries at each

pause, with a specialized case sensitive, punctuated language model.
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7 Discussion and Perspectives

Despite the numerous advances made over the last decade, speech recognition
is far from a solved problem. Current reseach topics aim to develop generic
recognition models and to use unannotated data for training purposes, in an
aim to reduce the reliance on manually annotated training corpora.

Much of the progress in LVCSR has been fostered by supporting infras-
tructure for data collection, annotation and evaluation. The Speech Group
at the National Institute of Standards and Technology (NIST) has been or-
ganizing benchmark evaluations for a range of human language technologies
(speech recognition, speaker and language recognition, spoken document re-
trieval, topic detection and tracking, automatic content extraction, spoken
term detection) for over 20 years, recently extended to also include related
multi-modal technologies *

While the performance of speech recognition technology has dramatically
improved for a number of ’dominant’ languages (English, Mandarin, Ara-
bic, French, Spanish, ...), generally speaking technologies for language and
speech processing are available only for a small proportion of the world’s
languages. By several estimations there are over 6000 spoken languages in
the world, but only about 15% of them are also written. Text corpora,
which can be useful for training the language models used by speech recog-
nizers, are becoming more and more readily available on the Internet. The
site http://www.omniglot.com lists about 800 languages that have a written
form.

It has often been observed that there is a large difference in recognition
performance for the same system between the best and worst speakers. Un-
supervised adaption techniques do not necessarily reduce this difference, in
fact, often they improve performance on good speakers more than on bad
ones. Interspeaker differences are not only at the acoustic level, but also the
phonological and word levels. Today’s modeling techniques are not able to
take into account speaker-specific lexical and phonological choices.

Todays systems often also provide additional information which is use-
ful for structuring audio data. In addition to the linguistic message, the
speech signal encodes information about the characteristics of the speaker,

the acoustic environment, the recording conditions and the transmission

“See http://www.nist.gov/speech /tests.
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channel. Acoustic metadata can be extracted from the audio to provide
a description including the language(s) spoken, the speaker(s), accent(s),
acoustic background conditions, the speaker’s emotional state etc. Such in-
formation can be used to improve speech recognition performance, and to
provide an enriched text output for downstream processing. The automatic
transcription can also be used to provide information about the linguistic
content of the data (topic, named entities, speech style, ...). By associating
each word and sentence with a specific audio segment, an automatic tran-
scription can allow access to any arbitrary portion of an audio document. If
combined with other meta-data (language, speaker, entities, topics) access
via other attributes can be facilitated.

A wide range of potential applications can be envisioned based on au-
tomatic annotation of broadcast data, particularly in light of the recent ex-
plosion of such media, which required automated processing for indexation
and retrieval (Chapters 29, 30 and 32), and question-answering. Important
future research will address keeping vocabulary up-to-date, language model
adaptation, automatic topic detection and labeling, and enriched transcrip-
tions providing annotations for speaker turns, language, acoustic conditions,
etc. Another challenging problem is recognizing spontaneous speech data col-
lected with far-field microphones (such as meetings and interviews), which
have difficult acoustic conditions (reverberation, background noise) and often

have overlapping speech from different speakers.

Further Reading and Relevant Resources

An excellent reference is “Corpus Based Methods in Language and Speech
Processing,” edited by Young and Bloothooft (1997). This book provides an
overview of currently used statistically based techniques, their basic princi-
ples and problems. A theoretical presentation of the fundamentals of the
subject is given in the book “Statistical Methods for Speech Recognition” by
Jelinek (1994). A general introductory tutorial on HMMs can be found in
Rabiner and Juang (1986). “Pattern Recognition in Speech and Language
Processing”by Chou and Juang (2003) and and “Multilingual Speech Pro-
cessing” by Schultz and Kirchhoff (2006), provide more advanced reading.
For general speech processing reference, the classical book Digital Process-

ing of Speech Signals (Rabiner and Shafer, Prentice Hall, 1978) remains

20



relevant. A comprehensive discussion on signal representation can be found

in Chapter 1.3 of the Survey of the State of the Art in Human Language

Technology (http://www.cslu.ogi.edu/HLTsurvey) The most recent work in

speech recognition can be found in the proceedings of major conferences

(IEEE ICASSP, ISCA Interspeech) and workshops (most notably DARPA,

ISCA ITRWs, IEEE ASRU), as well as the journals on Speech Communi-

cation and Computer Speech and Language. In the latter journal a special

issue in October 1998 was devoted to Evaluation in Language and Speech

technology.

Several web sites of interest are:

European Language Resources Association (ELRA) http://www.icp.inpg.fr/ELRA /home.html

European Speech Communication Association (ESCA) http://www.esca-speech.org

Linguistic Data Consortium (LDC) http://www.ldc.upenn.edu/

NIST Spoken Natural Language Processing http://www.itl.nist.gov/div894,/894.01

Survey of the State of the Art in Human Language Technology
http://www.cslu.ogi.edu/HLTsurvey

Languages of the world http://www.omniglot.com

OLAC: Open Language Archives Community http://www.language-archives.org
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8 Glossary

Acoustic model: a model describing the probabilistic behavior of the en-
coding of the linguistic information in a speech signal

Acoustic parameterization: selection of acoustic features which are used
to reduce model complexity without losing relevant linguistic information
Allophones: the collection of different realizations of a given phoneme, such
as the aspirated /t/ in “type”, the flapped /t/ in “butter”, or final unreleased
/t/ in “hot”

Back-off: mechanism for smoothing the estimates of the probabilities of
rare events by relying on less specific models

Context-dependent model; a model which takes into account the neigh-
boring phones

Frame or Parameter vector: set of acoustic parameters associated with
a windowed portion of the signal

Language model: model used to estimate the probability of word sequences
Lexicon: list of words known by the recognizer, each word associated with
one or more pronunciations

Phone: commonly used elementary units which generally correspond to
phonemes, but may also correspond to allophones

Recording channel: means by which the audio signal is recorded (direct
microphone, telephone, radio, etc

Speech recognition: transcription of the speech signal into a sequence of

words
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