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Automatic speech recognition (ASR) is a critical component for CHIL services. For
example, it provides the input to higher-level technologies, such as summarization
and question answering, as discussed in Chapter 8. In the spirit of ubiquitous comput-
ing, the goal of ASR in CHIL is to achieve a high performance using far-field sensors
(networks of microphone arrays and distributed far-field microphones). However,
close-talking microphones are also of interest, as they are used to benchmark ASR
system development by providing a best-case acoustic channel scenario to compare
against.

Although ASR is a well-established technology, the CHIL scenario presents sig-
nificant challenges to state-of-the-art speech recognition systems. This is due to nu-
merous reasons, for example, the presence of speech from multiple speakers with
varying accents and frequent periods of overlapping speech, a high level of spon-
taneity with many hesitations and disfluencies, and a variety of interfering acoustic
events, such as knocks, door slams, steps, cough, laughter, and others. Note that the
problem of identifying such acoustic events has also been investigated in CHIL, and
it is discussed in Chapter 7. In addition, the linguistic content in CHIL scenarios,
that of technical seminars, constitutes another challenge, since there exists only a
relatively small amount of in-domain acoustic and language modeling data. The fo-
cus on handling far-field microphone speech exacerbates these issues, due to the low
signal-to-noise ratios and room reverberation.

Of course, these challenges also affect speech activity detection (SAD), speaker
identification (SID), and speaker diarization (SPKR) — also known as the “who
spoke when” — problems. These technologies jointly address the “what”, “when”,
and “who” of human interaction. In particular, SAD and SPKR constitute crucial
components of state-of-the-art ASR systems, and as such they are briefly discussed
in this chapter. In addition, they are relevant to other CHIL perceptual technologies,
for example, acoustic-based speaker localization and identification, which are dis-
cussed in more detail in Chapters 3 and 4, respectively.
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Progress of the ASR systems developed for the CHIL domain has been bench-
marked by yearly technology evaluations. During the first two years of CHIL, the
Consortium internally evaluated ASR with a first dry run held in June 2004, followed
by an “official” evaluation in January 2005. Following these two internal campaigns,
the CHIL sites involved in the ASR activity (IBM, LIMSI, and UKA-ISL) partic-
ipated in the Rich Transcription evaluations of 2006 and 2007 — RT06s [13] and
RTO7 [45]. These international evaluations were sponsored by NIST and attracted a
number of additional external participants.

The CHIL partner sites involved in ASR work have made steady progress in this
technology in the CHIL domain. For example, in the far-field ASR task, the best
system performance improved from a word error rate of over 68% in the 2004 dry
run to approximately 52% in the CHIL 2005 internal evaluation, and from 51% in
RT06s down to 44% in RTO7. These improvements were achieved in spite of the fact
that the recognition task became increasingly more challenging: Indeed, from 2005
to 2006, multiple recording sites involving speakers with a wider range of nonnative
accents were introduced into the test set. Furthermore, in both 2006 and 2007, the
degree of interactivity in the data was significantly increased.

This chapter documents progress in the challenging task of recognizing far-field
speech in the CHIL scenarios, and it highlights the main system components and
approaches followed by the three CHIL partners involved in this effort. Section 6.1
provides an overview of the ASR problem and its evaluation framework in CHIL, as
well as the data resources available for system development. A brief discussion of the
SAD and SPKR subsystems appears in Section 6.2. Section 6.3 describes the main
components of ASR systems with highlights of specific approaches investigated in
CHIL within each of these components. An example of an ASR system implemen-
tation is provided in Section 6.4, followed by a brief overview of ASR experimental
results in Section 6.5. Finally, the chapter concludes with a summary, a discussion of
open problems, and directions for future research (Section 6.6).

6.1 The ASR Framework in CHIL

Automatic speech recognition in CHIL constitutes a very challenging problem due
to the interactive scenario and environment as well as the lack of large corpora fully
matched to the CHIL specifics. In the next subsections, we briefly overview these
two factors by providing more details of the ASR evaluation framework in CHIL as
well as the available data resources utilized in training the ASR systems.

6.1.1 ASR Evaluation Framework

The CHIL interactive seminars were held inside smart rooms equipped with numer-
ous acoustic and visual sensors. The former include a number of microphone arrays
located on the walls (typically, at least three T-shaped four-microphone arrays and at
least one linear 64-channel array) as well as a number of tabletop microphones. In
addition, most meeting participants wore headset microphones to capture individual
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speech in the close-talking condition. This setup was installed in five CHIL partner
sites and used to record data for the RT06s and RT07 speech technology evalua-
tion campaigns. It also represents a significantly more evolved setup than the initial
smart room design installed at the UKA-ISL site to provide data for the 2004 and
2005 CHIL internal evaluations. For example, in the 2004 dry-run evaluation, the
far-field audio signals were captured only by a 16-channel linear array and a single
tabletop microphone.

The above setup has been designed to allow data collection and ASR evaluation
with main emphasis on the use of unobtrusive far-field sensors that fade into the
background. These data form the basis of the multiple distant microphone (MDM)
condition, the designated primary condition in the RT06s and RT07 ASR technology
evaluations, where all tabletop microphones — typically ranging from three to five —
were utilized to yield a single transcript. Additional conditions are the single distant
microphone (SDM) one, where only one preselected tabletop microphone is used, as
well as a number of conditions that involve using the linear or T-shaped arrays [45].

An interesting contrasting condition is called the individual headset microphone
(IHM) condition, where the data recorded on the channels from the headsets worn
by all lecture participants are decoded, with the purpose of recognizing the wearer’s
speech. This represents a close-talking ASR task, and putting aside for a moment
the challenging task of robust cross-talk removal, it is designed to quantify the ASR
performance degradation due to the use of far-field sensors.

Because of the reduced sensory setup in the initial smart room, the conditions
were somewhat different in the 2004 and 2005 CHIL internal evaluations. In partic-
ular, only the lecturer’s speech was decoded in these evaluations, for both the close-
talking and far-field conditions. Furthermore, in 2004, only the 16-channel linear
array was used in the far field.

6.1.2 Data

A number of seminars and interactive lectures were collected in the five state-of-
the-art smart rooms of the CHIL Consortium. Nevertheless, the available amount
of CHIL data remains insufficient for training ASR systems, comprising less than
10 hours of speech. This issue was, of course, even more pronounced in the early
CHIL evaluations, since the data have been incrementally collected over the duration
of the project. To remedy this problem, additional publicly available corpora [31]
exhibiting similarities to the CHIL scenarios were utilized for system development.
These are the ICSI, ISL, and NIST meeting corpora [24, 7, 14], the additional non-
CHIL meeting data from prior RT evaluation runs (2004-2006), including a corpus
collected by NIST in 2007, data collected by the AMI Consortium [1], and the TED
corpus of lectures collected at the Eurospeech Conference in Berlin in 1993 [50,
30]. Most data sets contain close-talking (headset or lapel) and multiple far-field
microphone data, with the exception of TED that contains lapel data only. In total,
there are on the order of 250 hours of speech in the combined corpora.

The three CHIL sites used various parts of these sources in their acoustic model-
building process, as all these corpora exhibit certain undesirable variations from the
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CHIL data scenario and acoustic environment. In particular, since only a portion of
the TED corpus is transcribed, the remainder was exploited by some CHIL partners
(e.g., LIMSI) via unsupervised training [29]. It is also worth noting that in earlier
ASR systems developed for the CHIL internal runs in 2004 and 2005, some part-
ners also used other corpora, such as Broadcast News (LIMSI), or even proprietary
data sets such as the ViaVoice and MALACH project corpora (IBM), after applying
necessary model adaptation.

For language model training, transcripts from the CHIL data sets as well as the
above-mentioned meeting corpora were used. In addition, LIMSI generated a set of
cleaned texts from published conference proceedings; these are also very relevant to
the task due to the technical nature of CHIL lectures, which were employed in some
of the developed ASR systems. Furthermore, some sites used Web data, for example,
data available from the EARS program [31], and possibly additional sources such as
data from conversational telephone speech, e.g., the Fisher data [31].

6.2 ASR Preprocessing Steps

Two important preprocessing stages in all CHIL partners’ ASR systems are the
speech activity detection (SAD) and speaker diarization (SPKR) components. These
locate the speech segments that are processed by the ASR systems and attempt to
cluster homogeneous sections, which is crucial for efficient signal normalization and
speaker adaptation techniques. As mentioned in the introduction, these components
have been evaluated in separate CHIL internal and NIST-run evaluation campaigns.
Within the Consortium, they have attracted significant interest among the CHIL part-
ners in addition to the three sites involved in ASR system development.

6.2.1 Speech Activity Detection

Speech activity detection has long been an important topic as a front-end step to the
ASR process, having a positive impact on ASR systems in terms of both CPU usage
and ASR accuracy. This is due to the fact that the decoder is not required to operate
on nonspeech segments, thus reducing the processing effort and word insertion error
rate. In addition, SAD systems provide the segments used as input to the speaker
diarization component (see ahead). Robust performance of SAD is also important in
other technologies of interest in CHIL, such as acoustic speaker localization.

Not surprisingly, the SAD technology has been investigated by many CHIL part-
ners. At some stage during the CHIL project, AIT, FBK-irst, IBM, INRIA, LIMSI,
UKA-ISL, and UPC developed SAD systems for CHIL. For instance, all these part-
ners participated in the 2005 CHIL internal evaluation of the technology, a campaign
that followed the dry run conducted in the summer of 2004. More recently, the tech-
nology was evaluated stand alone in RT06s (AIT, FBK-irst, IBM, INRIA, LIMSI,
and UPC participated), and as a component of SPKR systems in RTO7 (IBM, LIMSI,
and UPC took part); both campaigns were organized by NIST. At the RT06s evalu-
ation, the best systems achieved very encouraging error rates of 4% and 8% for the
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conference and lecture subtasks, respectively, when calculated by the NIST diariza-
tion metric.

For SAD system development, CHIL partners followed various approaches that
differed in a number of factors, for example, in feature selection [Mel frequency cep-
strum coefficients (MFCCs), energy-based, combined acoustic and energy-based fea-
tures, etc.], the type of classifier used [Gaussian mixture model classifiers (GMMs),
support vector machines, linear discriminants, decision trees], the classes of interest
(IBM initially used three broad classes), and channel combination techniques (based
on signal-to-noise ratios, voting, etc.). Details can be found in a number of partner
site papers, for example, [35, 38, 22].

6.2.2 Speaker Diarization

Speaker diarization, also referred to as the “who spoke when” task, is the process of
partitioning an input audio stream into homogeneous segments according to speaker
identity. It is useful as an ASR preprocessing step because it facilitates unsupervised
adaptation of speech models to the data, which improves transcription quality. It
also constitutes an interesting task per se, since structuring the audio stream into
speaker turns improves the readability of automatic transcripts. A review of activities
in speaker diarization can be found in [51].

Historically, SPKR systems were evaluated by NIST on Broadcast News data in
English up to 2004; following that, the meeting domain became the main focus of
the RT evaluations. These included CHIL lecture seminars and multisite meetings
in the 2006 and 2007 evaluations [13, 45]. Similarly to ASR, a number of evalua-
tion conditions have been defined in these campaigns (e.g., MDM and SDM con-
ditions). Notice that in the adopted evaluation framework, the number of speakers
in the recording or their voice characteristics are not known a priori; therefore, they
must be determined automatically. Also, SPKR systems were evaluated as indepen-
dent components. Clearly, the use of other sources of knowledge, such as output of
multimodal person tracking and identification, could dramatically improve system
accuracy. Without such additional information, diarization of audio data recorded by
distant microphones remains a very challenging task, for the same reasons that apply
to the far-field ASR problem in CHIL, as discussed in the introduction.

A number of CHIL partner sites developed SPKR systems (AIT [43], IBM [22,
20], LIMSI [59, 60], and UPC [34]). The following specific research directions were
addressed in these systems:

e Exploiting multiple distant microphone channels: Acoustic beamforming was
performed on the input channel after Wiener filtering, using a delay-and-sum
technique [34, 4]. Up to 20% relative gain was obtained by using the beam-
formed audio, compared to using a single channel on conference data, even if
the gain on lecture data was less significant [60]. Using the delays between the
acoustic channels as features appears also to be a very promising direction [39].

o Speech parameterization: Frequency filtering, which showed good results in the
CLEAR 2007 evaluation in the acoustic person identification task, was used as
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an alternative to the classical MFCC features [34]. Derivative parameters were
tested but did not seem of much benefit [60].

o Speech activity detection: SAD errors directly affect SPKR system performance.
Therefore, additional effort was placed toward improving SAD models, as dis-
cussed in a previous section. When the diarization task is considered standalone,
a different balance has to be chosen between missed speech and false-alarm
speech than when SAD is used as an ASR preprocessing step. An explored so-
lution was a purification of the acoustic segments using an automatic word-level
alignment in order to reduce the amount of silence or noise portions, which are
potentially harmful during clustering [20].

o Segmentation and clustering: An initial step provides an overestimated number
of clusters; each cluster is modeled with a Gaussian model (typically a single
Gaussian with a full covariance matrix or a GMM with diagonal covariance ma-
trices). Clusters are further grouped following a distance (Mahalanobis, likeli-
hood gain [20], a Bayesian information criterion (BIC) measure [34], cross log-
likelihood ratio [60]) until some threshold is reached.

Results in the RTO7 evaluation campaign demonstrate that the speaker diarization
problem is far from being solved in the CHIL scenarios. In particular, the best SPKR
system (developed by LIMSI) was benchmarked at a 26% diarization error rate for
the MDM condition. This is significantly worse than the diarization error typically
achieved in the Broadcast News task — about 10% [5].

6.3 Main ASR Techniques and Highlights

Although the three CHIL sites have developed their ASR systems independently of
each other, all systems contain a number of standard important components, which
are summarized in this section. In addition, in the spirit of collaboration through
competition in technology evaluation — the so-called co-opetition paradigm that has
been adopted in the CHIL project as a means to promote progress — CHIL partners
have shared certain components, such as the UKA-ISL beamforming algorithm for
far-field acoustic channel combination or the LIMSI proceedings text corpora for
language model training.

6.3.1 Feature Extraction

Acoustic modeling requires the speech waveform to be processed in such a way that
it produces a sequence of feature vectors with a relatively small dimensionality in or-
der to overcome the statistical modeling problem associated with high-dimensional
feature spaces, called the curse of dimensionality [6]. Feature extraction in ASR sys-
tems aims to preserve the information needed to determine the phonetic class, while
being invariant to other factors including speaker differences such as accent, emo-
tion, fundamental frequency, or speaking rate, as well as other distortions, for ex-
ample, background noise, channel distortion, reverberation, or room modes. Clearly,



6 Automatic Speech Recognition 49

this step is crucial to the ASR system, as any loss of useful information cannot be
recovered in later processing.

Over the years, many different speech feature extraction methods have been pro-
posed. The methods are distinguished by the extent to which they incorporate in-
formation about the human auditory processing and perception, robustness to dis-
tortions, and length of the observation window. Within the CHIL framework, differ-
ent state-of-the-art feature extraction methods have been investigated. For example,
ASR systems have utilized MFCCs [9] or perceptual linear prediction (PLP) [18]
features. Feature extraction in CHIL partner systems often involved additional pro-
cessing steps, for example, linear discriminant analysis (LDA) [17] or a maximum
likelihood linear transform (MLLT) [16]. Feature normalization steps, such as vari-
ance normalization and vocal tract length normalization (VTLN) [3] were also em-
ployed by some sites.

In addition to the above, a novel feature extraction technique has been devel-
oped by UKA-ISL that is particularly robust to changes in fundamental frequency,
fo. This is important in the CHIL scenario, as public speeches have a higher vari-
ance in fj than do private conversations [19]. Additional advantages of the proposed
approach, based on a warped-minimum variance distortionless response spectral es-
timation [56], are an increase in resolution in low-frequency regions relative to the
traditionally used Mel filter banks, and the dissimilar modeling of spectral peaks and
valleys to improve noise robustness, given that noise is present mainly in low-energy
regions. To further increase the robustness to noise, a signal adaptive front end has
been proposed [52], that emphasizes classification of relevant characteristics, while
classification-irrelevant characteristics are alleviated according to the characteristics
of the input signal; for example, vowels and fricatives have different characteris-
tics and should therefore be treated differently. Experiments conducted by UKA-ISL
have demonstrated that the proposed front ends reduce the word error rate (WER)
on close-talking microphone data by up to 4% relative, and on distant speech by up
to 6% relative, as compared to the widely used MFCC features [58].

6.3.2 Feature Enhancement

Feature enhancement manipulates speech features in order to retrieve features that
are more similar to the ones observed in clean training data of the acoustic model.
Thus, the mismatch between the unknown, noisy environment and the clean training
data is reduced. Speech feature enhancement can be realized either as an independent
preprocessing step or on the features within the front end of the ASR system. In both
cases, it is not necessary to modify the decoding stage or acoustic models of the ASR
system.

Most popular feature enhancement techniques for speech recognition operate in
the frequency domain. Simple methods such as spectral subtraction are limited to
removing stationary noise, where the spectral noise floor is estimated on noise-only
regions. More advanced methods attempt to track either the clean speech or the noise
for later subtraction. First approaches in this direction used Kalman filters (KFs) [25],
which assume the relationship between the observations and the inner state to be
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linear and Gaussian, which does not hold in practice. To overcome this constraint,
variants to the KF, such as the extended KF, have been proposed.

Research in CHIL has focused on the enhancement of features in the logarith-
mic Mel-spectra domain by tracking the noise with a particle filter (a.k.a. sequen-
tial Monte Carlo method) [44, 48]. Feedback of the ASR system into the feature
enhancement process results in further improvements by establishing a coupling be-
tween the particle filter and the ASR system, which had been treated as independent
components in the past [11]. Experiments conducted by UKA-ISL using a novel fea-
ture enhancement technique that is able to jointly track and remove nonstationary
additive distortions and late reverberations have demonstrated that word accuracy
improvements on distant recordings by more than 20% relative are possible [54],
independent of whether the acoustic models of the speech recognition system are
adapted.

6.3.3 Acoustic Modeling

For acoustic modeling in CHIL, hidden Markov models (HMMs) were exclusively
used. Most sites estimated system parameters by the expectation maximization (EM)
algorithm (maximum-likelihood training) [10], followed by discriminative model
training using the maximum mutual information (MMI) [41] or the minimum phone
error (MPE) approach [42]. A number of adaptation techniques were also employed,
ranging from maximum a posteriori estimation (MAP) [15] to maximum-likelihood
linear regression (MLLR) [32], feature space MLLR (fMLLR), or speaker adap-
tive training (SAT) [2]. The above approaches require a multipass decoding strategy,
where a word hypothesis is used for unsupervised model adaptation prior to the next
decoding pass. Finally, some sites developed systems with slight variations to im-
prove final system performance through combination or cross-system adaptation.

An additional area of interest in acoustic modeling is that of pronunciation mod-
eling. The pronunciation dictionary is the link between the acoustic and language
models. All CHIL sites used phone representations in their systems, with about 40 to
50 phoneme-like units. Special phone symbols were also sometimes used to model
nonspeech events such as hesitation, cough, silence, etc. Each lexical entry of the
word dictionary can then be associated with one or more pronunciations to explic-
itly model frequent variants. It is common practice to include some acronyms, com-
pound words, or word sequences in order to capture some of the coarticulation in
spontaneous speech. These multiwords typically represent only a small part of the
vocabulary. Some of the CHIL sites (e.g., LIMSI) also explored explicitly including
pronunciation variants for nonnative accented speech; however, while the variants
better represented the foreign accents, the overall recognition performance did not
improve.

6.3.4 Language Modeling

For language modeling, different n-gram language models (LM), with n = 3 or 4,
have been employed by the CHIL sites. These LMs were typically developed sep-
arately for various data sources and were subsequently linearly interpolated to give
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rise to a single model. Most often, CHIL and other meeting corpora were employed
for this task. In addition, sometimes text from scientific proceedings (close to the
CHIL lecture subjects) or data mined from the Web were also used. Based on these
LMs, typical perplexities of the CHIL test data ranged in the order of 105 to 140. In
terms of vocabulary size, CHIL sites used anywhere from 20k to 60k vocabularies,
achieving out-of-vocabulary (OOV) rates in the order of 0.5 to 2.0%.

The use of a connectionist LM [47], shown to be performant when LM training
data are limited, was explored at LIMSI. The basic idea is to project the word in-
dices onto a continuous space and to use a probability estimator operating on this
space. Since the resulting probability densities are continuous functions of the word
representation, better generalization to unknown n-grams can be expected. A neural
network LM was trained on the transcriptions of the audio data and proceedings texts
and interpolated with a standard back-off LM. A significant word error reduction of
1.6% absolute was obtained when rescoring word lattices in under 0.3 xRT.

An important part relevant to the language modeling work is the determination
of the recognition vocabulary. The recognizer word list is usually determined by
combining all the distinct words in the available audio transcriptions with the most
frequent words in the relevant text sources. It is common practice to require a min-
imum number of word observations to be included in the word list. This ensures
that the word occurs often enough to warrant modeling and also reduces the num-
ber of “false words” arising from typographical errors. Some text preprocessing is
generally carried out to ensure conformity of the various text sources, removing un-
desirable data (email, addresses, mathematical formulas and symbols, figures, ta-
bles, references), formatting characters, and ill-formed lines. Acronyms, numbers,
and compound words are also processed to ensure consistency and to approximate
spoken language. The word list is typically selected so as to minimize the OOV rate
on a set of development data. It was recently proposed to select the most probable
words by linear interpolation of the unigram language models obtained from indi-
vidual data sources.

6.3.5 Multiple Microphone Processing

The use of multiple microphones is an important component of far-field ASR in
CHIL, as the sound pick-up quality might vary at different spatial locations and di-
rections. An appropriate selection or combination of the different microphones can
improve the recognition accuracy. The degree of success depends on the quality and
variance of information provided by the microphones and the combination method
used.

Speech recognition channel combination techniques can be broadly classified
into signal and word-based combination methods. Signal combination algorithms,
such as blind source separation and beamforming techniques, exploit the spatial
diversity resulting from the fact that the desired and interfering signal sources are
located at different points in space. This diversity can be taken advantage of by
suppressing signals coming from directions other than the desired source direction.
Those approaches assume that the speaker’s position (time delay of arrival between
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different microphones) can be reliably estimated, and it might employ knowledge
about the microphone positions relative to each other. Correct speaker localization is
crucial for optimal recognition accuracy [57]. Due to the reduction of multiple chan-
nels into one channel, the decoding time is not significantly changed, compared to
that of a single-microphone approach.

In contrast to signal combination, word based-combination techniques, such as
ROVER [12] and confusion network combination (CNC) [36], fuse information from
the recognition output of different systems that can be represented as a one-best,
n-best, or lattice word sequence, augmented by confidence scores. Word-based ap-
proaches assume that the transcription of different microphone channels leads to dif-
ferent word hypotheses. Their advantage is that no spatial information of the speaker
or microphones is required. However, since each microphone channel is decoded in-
dependently, these approaches are computationally expensive. A hybrid approach,
where the beamformed channel is augmented by additional channels and combined
with CNC, has been shown to lead to additional improvements over either of the
other approaches [55].

Due to the broad variance of the different microphone channels, it may not be
optimal to blindly consider all channels for combination (e.g., if a microphone is
directly placed near a sound source). It may instead be preferable to measure the
quality of the different microphones and select only “good” channels. A traditional
measure to achieve such selection is the signal-to-noise ratio (SNR). More reliable
measures consider the properties of the human auditory system and/or operate on the
features of the recognition system. One promising approach in this direction is based
on class separability [53], which shows significant improvements over SNR-based
channel selection methods.

Employing multiple microphones has been shown to improve word accuracy by
up to 10% absolute, which compensates for approximately one third of the reduction
in WER observed when moving a single microphone from the mouth region of the
speaker (close talk) into the room.

6.4 An ASR System Example

Following the overview of the main approaches used in CHIL for ASR, we proceed
with a more detailed description of the ASR systems developed by one of the three
CHIL partners, IBM.

The IBM ASR systems for CHIL have progressed significantly over the duration
of the project. In particular, during the first two project-internal evaluations (2004 and
2005), the IBM team focused on combining in-house available ASR systems, appro-
priately adapted to the available CHIL data [8]. However, it soon became apparent
that this approach yielded a poor performance in the CHIL task; as a result, new sys-
tems trained exclusively on meeting-like corpora were developed for the RT06s and
RTO7 evaluations [23, 21]. The new approach was based on developing a small num-
ber of parallel far-field ASR systems (typically three or four) with minor variations
in their acoustic modeling, and combining them using ROVER (for the close-talking
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condition, a single system was developed). Additional work has been carried out for
language modeling in order to create larger and richer LMs, suitable for the CHIL
tasks. More details follow.

6.4.1 Acoustic Modeling

For acoustic modeling, first a speaker-independent (SI) model is trained, based on
40-dimensional acoustic features generated by an LDA projection of nine consecu-
tive frames of 13-dimensional perceptual linear prediction (PLP) features, extracted
at 100 Hz. The features are mean-normalized on a per-speaker basis. The SI model
uses continuous-density, left-to-right HMMs with Gaussian mixture emission dis-
tributions and uniform transition probabilities. In addition, the model uses a global
semi-tied covariance linear transformation [46], updated at every EM training stage.
The system uses 45 phones; namely, 41 speech phones, one silence phone, and three
noise phones. The final HMMs have 6k context-dependent tied states and 200k Gaus-
sians. Since only a small part of the training data is from CHIL, MAP-adaptation of
the SI model was deemed necessary to improve performance on CHIL data.

The SI features are further normalized with a voicing model (VTLN) with no
variance normalization. The most likely frequency warping is estimated among 21
candidate warping factors ranging from 0.8 to 1.2. A VTLN model is subsequently
trained on features in the VTLN warped space. The resulting HMMs have 10k tied
states and 320k Gaussians. Following VTLN, a SAT system is trained on features
in a linearly transformed feature space resulting from applying speaker-dependent
fMLLR transforms to the VTLN-normalized features. Following SAT, feature space
minimum phone error (fMPE) transforms are estimated [40], followed by MPE train-
ing [42] and MAP-MPE on the available amount of CHIL-only data [23, 21].

Following the above training procedure, two systems are built, one with the
VTLN step present, and one with VITLN removed. Based on the latter, two addi-
tional SAT systems are built using a randomized decision-tree approach [49].

In contrast to the far field, only one system has been developed for the close-
talking condition. This is identical in both RT06s and RT07 evaluations and is a
Sk-state, 240k Gaussian mixture HMM system with both VTLN and variance nor-
malization present [23].

6.4.2 Language Modeling

Five separate four-gram LMs were built. The first four were also used in the IBM
RTO06s system and were based on CHIL data (0.15M words), non-CHIL meetings
(2.7M), scientific conference proceedings (37M), and Fisher data (3M words) [31].
A novel fifth LM used 525M words of Web data available from the EARS program
[31]. For decoding, two interpolated LMs were used based on these five models. A
reduced-size model was pruned to about 5M n-grams and was employed for static
decoding, whereas a larger 152M n-gram model was used in conjunction with an
on-the-fly dynamic graph expansion decoding. A 37k-word vocabulary was used.
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6.4.3 Recognition Process

After speech segmentation and speaker clustering, a final system output was obtained
in three decoding passes for each microphone: (a) an initial SI pass using MAP-
adapted SI models to decode; (b) employing output from (a), warp factors using the
voicing model and fMLLR transforms are estimated for each cluster using the SAT
model. The VTLN features after applying the fMLLR transforms are subjected to
the fMPE transform, and a new transcript is obtained by decoding, using the MAP-
adapted MPE model and the fMPE features. (c) The output transcripts from step (b)
are used in a cross-system fashion to estimate MLLR transforms on the MPE model.
The adapted MPE model together with the large LM is used for final decoding with
a dynamic graph expansion decoder.

In the far field, where multiple ASR systems have been developed, ROVER over
these systems is applied for obtaining the SDM condition output. For the MDM
condition, ROVER is first applied over all available tabletop microphones, followed
by ROVER over the available four systems.

6.5 Experimental Results

The work described in Section 6.4 has resulted in significant progress over the du-
ration of the CHIL project. For example, in the far-field condition, the initial IBM
approach yielded 64.5% and 70.8% WER in the 2004 and 2005 CHIL-internal eval-
uations, respectively. In contrast, performance improved significantly in RT06s and
RTO7, reaching 50.1% and 44.3% WER, respectively, for the IBM MDM systems.
In the close-talking task, under manual segmentation, system improvement has been
less dramatic: In 2004, a 35.1% WER was achieved by the IBM system, whereas in
2005, a 36.9% WER was recorded. The new system development for the RT eval-
uation runs improved performance to 27.1% in 2006 and 31.7% in 2007. The latter
represented a slight degradation, due to the more challenging nature of the 2007
data, and the lack of time for retraining the close-talking acoustic model in the IBM
system.

In addition to IBM, ASR systems developed by LIMSI and UKA-ISL also
achieved significant milestones over the duration of the CHIL project. For exam-
ple, LIMSI achieved the lowest WERSs in the 2005 CHIL-internal evaluation for both
close-talking and far-field conditions, whether the UKA-ISL ASR system yielded a
26.7% WER in the IHM (close-talking) condition at the RT06 evaluation.

Overall, as mentioned at the beginning of this chapter, the CHIL Consortium con-
sistently improved ASR technology over the duration of the project. This is clearly
depicted in Fig. 6.1, where the lowest WER of all developed and evaluated far-field
ASR systems is depicted over the four technology evaluations. This progress is es-
pecially noteworthy due to the fact that the ASR task has become increasingly more
challenging over time. In particular, between 2005 and 2006, the number of record-
ing sites increased from one to five, and the task modified to cover ASR for all
seminar participants. Furthermore, between 2006 and 2007, the seminar interactivity
increased significantly, with more focus placed on meeting-like, interactive seminars.
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Fig. 6.1. Far-field ASR performance over the duration of the CHIL project.

6.6 Conclusions and Discussion

This chapter has presented an overview of the progress achieved in the automatic
transcription of CHIL meetings over the past three and half years. Over this period,
ASR technology developed by IBM, LIMSI, and UKA-ISL was evaluated four times,
twice in internal consortium benchmarks, and twice in the Rich Transcription inter-
national campaigns, overseen by NIST. The latter also attracted significant interest
by external parties. In these evaluations, the CHIL partner sites demonstrated signifi-
cant improvements in ASR system accuracy over time and competitive performance
compared to non-CHIL site systems.

Nevertheless, ASR word error rates remain high, particularly in the far-field task
for the CHIL scenarios. The continued accuracy improvements indicate that further
improvements are to be expected, driven by better acoustic and language modeling as
well as further data availability. Future research will also address the modeling of dis-
fluencies in spontaneous speech and pronunciation modeling for nonnative speech.
In particular, better addressing the channel combination problem and concentration
on advanced noise-removal techniques should benefit system performance.

Future challenges will focus on blind dereverberation, which is still a very diffi-
cult task, and the development of systems able to separate target speech from inter-
ference speech [26], the so-called cocktail party effect. This describes the ability of
humans to listen to a single talker among a mixture of conversations.

It is also expected that in the future, visual speech information could be robustly
extracted from the participants in CHIL interactive seminars and lectures, employ-
ing appropriately managed, active pan-tilt-zoom cameras in the CHIL smart rooms.
Such information can then be fused with acoustic speech input to better address the
CHIL ASR problem and its components, including speech activity detection, speaker
diarization, and source separation. CHIL partners IBM and UKA-ISL have already
expended a significant effort in this area and have focused on two problems of par-
ticular interest in the CHIL scenarios: the issue of visual feature extraction from
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nonfrontal views [33, 28] and the problem of robust audiovisual speech integration

[37, 27].
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