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Person identification is of paramount importance in security, surveillance, human-
computer interfaces, and smart spaces. All these applications attempt the recognition
of people based on audiovisual data. The way the systems collect these data divides
them into two categories:

e Near-field systems: Both the sensor and the person to be identified focus on each
other.

e Far-field systems: The sensors monitor an entire space in which the person ap-
pears, occasionally collecting useful data (face and/or speech) about that person.
Also, the person pays no attention to the sensors and is possibly unaware of their
existence.

Near-field person identification systems require the person’s attention. The per-
son is aware of the sensors’ location, approaches the sensors and offers the system
samples of his or hers face and voice. Such systems are obtrusive, but the audiovi-
sual streams thus collected have a high signal-to-noise ratio. The images depict faces
of high resolution, approximately frontal in pose and neutral in expression, while
the sound is almost free of the detrimental effects of the room’s acoustics: rever-
beration and attenuation. The typical application of such systems is access control,
where these systems are expected to offer close to perfect recognition rates. A typical
example of such system using near infrared face recognition can be found in [12]

Far-field person identification systems [15] employ audiovisual sensors scattered
in the space the person is expected to be in. The systems do not anticipate that the
person will acknowledge the existence of the sensors, nor behave in any way that
will facilitate the collection of noise-free audiovisual streams. Hence, far-field data
streams are corrupted with noise: The video streams contain faces viewed from ar-
bitrary angles, distances, under arbitrary illumination, and possibly, depending on
the environment of the deployment, with arbitrary expressions. Similarly, the sound
streams suffer from reverberations, large attenuations, and the coexistence of back-
ground sounds. The audiovisual environment changes dramatically as the person
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moves around the space. As a result, the faces collected are tiny (typically of 10
pixels between the eyes; see Fig. 4.1) and with gross variations in pose, expression,
and illumination. The speech samples are also attenuated, corrupted with all sorts
of background noises (occasionally entirely masked by them) and reverberations.
Nevertheless, far-field systems have three features that allow them to offer usable
recognition rates:

the use of multiple sensors (many cameras and microphones),
the abundance of training data that are audiovisual streams similar to those on
which the system is expected to operate,

e the possibly long periods of time that the systems can collect data on which they
are going to base their identity decision.
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Fig. 4.1. Histogram of the distances between the eyes of the faces to be recognized in typical
far-field scenarios. The faces are those of the CLEAR 2006 evaluation. Typical faces at three
different eye distances are also shown.

The goal of the far-field multimodal person identification systems built within the
CHIL Consortium is to equip smart spaces with a means of giving an identity to each
person working in the space. Contrary to the more usual verification problems, where
an identity claim is verified over hundreds of individuals, the CHIL systems perform
identification of the people present from a rather limited set of possible identities.
This is not a restriction in the intended application domain; the number of the people
called to work in a given smartspace is indeed limited.
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In order to measure progress in these two categories of video-to-video person
identification systems, it is important to utilize formal evaluation protocols. This is a
well-established procedure for near-field face recognition, but to the authors’ knowl-
edge, it is only through the CLEAR (2006 and 2007) person identification evalu-
ations [18, 19] and their predecessor Run-1 evaluations [8] initiated by the CHIL
project that a formal evaluation campaign focusing on far-field multimodal person
identification has been launched.

The following sections outline, the different approaches of the CHIL Consortium
for audio-only, video-only, and multimodal person identification systems, leading to
the lessons learned and progress made in the field of far-field multimodal person
identification over the course of the project.

4.1 Speaker Identification

All systems construct speaker models using Gaussian mixture models (GMM) of
some short-term speech features. The features are derived from speech frames us-
ing the Mel frequency cepstral coefficients (MFCC) [11, 1, 2, 17, 16, 7, 6], the
perceptually-weighted linear prediction coefficients (PLP) [17], or the frequency fil-
tering (FF) [14, 13] approaches. Postprocessing of the features like cepstral mean
normalization and feature warping are included in some systems [1, 2, 7, 6]. The
models for the different speakers are trained either using the available training speech
for each speaker independently, or by maximum a posteriori (MAP) adaptation of a
universal background model (UBM) [1, 2]. The latter allows much larger GMMs by
pooling all available speech and training a large UBM GMM.

During the recognition phase, a test segment is scored against all possible speak-
ers and the speaker model with the highest log-likelihood is chosen.

The systems explore different options of utilizing the multiple audio streams.
These fall into two categories: those that attempt to improve the quality of the signal
prior to constructing or testing models, utilizing some sort of beamforming [2, 13],
and those that attempt postdecision fusion of the classification outcomes derived
from each standalone microphone [13].

Beamforming is not the only option for preprocessing the signals. Since the
recordings are far-field and corrupted by all sorts of background noises, they can
be preprocessed by a speech activity detector (SAD) to isolate speech. Also, prin-
cipal components analysis (PCA) can be employed on the features prior to model
construction or testing, efficiently combining different feature extraction approaches.
The PCA transformation matrix can be derived globally from all speakers, or a per-
speaker approach can be followed [17].

4.2 Face Identification

The face identification systems extract the faces from the video streams, aided by
face labels. Only in the Run-1 evaluations were the faces automatically detected [8].
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The face labels provide a face bounding box and eye coordinates every 200 ms. Some
systems use only the marked faces [8], while others attempt to interpolate between
the labels [17]. The labels are quite frequent in the CLEAR 2007 data set. That is
not the case in the CLEAR 2006 data set, where face bounding boxes are provided
every 1 sec [19]. For this data set, faces can be collected from the nonlabeled frames
using a face detector in the neighborhood of the provided labels. Experiments with
a boosted cascade of simple classifiers (Viola-Jones detector) [20] have shown en-
hanced performance over the simple linear interpolation [15].

The systems geometrically normalize the extracted faces, based either on the
eyes [15, 16, 8] or on the face bounding box [15, 17, 7]. In the latter case, the faces
are just scaled to some standard size. Some of the systems battle face registration
errors by generating additional images, either by perturbing the assumed eye posi-
tions around the marked ones [8], or by modifying the face bounding box labels by
moving the center of the bounding box by 1 pixel and changing the width or height
by £2 pixels [7]. Geometric normalization is followed by further processing, aim-
ing at intensity normalization. One approach is to normalize the integer values of
the Iuminance to a mean of 128-mean and a standard deviation of 40 (luminance
normalization) [17]. Other, more aggressive approaches like histogram equalization
and edginess have been used in the past but have been abandoned as they degrade
performance in the case of pose or expression variations [15, §].

The processed faces obtained from the CLEAR 2007 data set lie on a highly
non-linear manifold, making recognition difficult. This is shown in Fig. 4.2, where
the first two PCA dimensions of the gallery faces for two different individuals are
depicted. In this case, the manifold shows faces from person 1 ranging from left
profile to frontal and finally to right profile, as the first PCA coefficient varies from
-1,500 to +1,500. The same holds for person 2, only in this case there are not many
frontal faces to occupy the range around the zero value of the first PCA coefficient.
Hence, the first PCA coefficient is for pose and not person discrimination. Person 1 is
discriminated from person 2 mainly by the second PCA coefficient, at the threshold
value of 500, although there are many outliers from both people, since their projec-
tions fall into each Other’s vicinity.

Different features are extracted by the different systems. They are all classified
using a nearest-neighbor classifier, although the distance from class centers has been
used by some systems in the past [15, 16, 8]. Obviously from Fig. 4.2, this is not a
good choice, since the projected faces of a class are quite spread out and many times
form disjoint clusters.

One approach performs block-based discrete cosine transform (DCT) to non-
overlapping blocks of size 8 x8 pixels [5, 4, 7, 9]. The obtained DCT coefficients are
then ordered according to the zigzag scan pattern. The first coefficient is discarded
for illumination normalization and the remaining first 10 coefficients in each block
are selected in order to create compact local feature vectors. Furthermore, robustness
against illumination variations is increased by normalizing the local feature vectors
to unit norm. The global feature vector is generated by concatenating the local feature
vectors.
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Fig. 4.2. 2D face manifold for people 1 and 2 of the CLEAR 2007 data set and representative
faces centered on their respective projections. The faces of the two people lie on arcs, with the
first PCA coefficient characterizing the pose and not the person. The projected faces of person
1 are depicted with black dots, while those of person 2 with blue stars. The characteristic faces
belonging to person 2 are enclosed by a blue polygon.

Alternatively, PCA can be used to obtain features in a face subspace [15, 17,
16, 8]. The distance employed in the classifier is a modification of the weighted Eu-
clidean, with the weights of each dimension depending on the neighborhood of the
particular gallery point. The closest neighbors (using Euclidean distance) to the given
gallery point are used to estimate the scatter matrix of gallery points in the vicinity
of that gallery point [17]. The gallery point-dependent weights are the eigenvalues of
that scatter matrix. Although this estimation of point-dependent weights is computa-
tionally expensive, it is performed once at system training and the weights for each
of the projected gallery images are stored to be used in the recognition phase.

Linear discriminant analysis (LDA) has also been used in the past [15, 16, 8],
without much success, as the face manifolds obtained under unconstrained condi-
tions are nonseparable in a linear way (see the example of Fig. 4.2). Subclass LDA
can address this problem [17]. Hierarchical clustering trees are used to automatically
generate subclasses corresponding to face clusters belonging to the same class, by
pruning the tree at some distance value.

Gaussian modeling of intrapersonal variations is also used to evaluate the prob-
ability that the difference of a gallery face from a probe face is indeed intraper-
sonal [17]. Forming all difference images is not computationally feasible; hence, a
selection of the faces to be used is performed by grouping the gallery images of
any person using hierarchical clustering trees. The trees are constructed using the
projected gallery images onto a PCA subspace. For every person, some projected
images are selected as the median of every cluster obtained by the trees. The intrap-
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ersonal differences are formed and modeled at the reduced dimension of the PCA
subspace.

The fusion of the decisions obtained from all camera views within the testing
period is performed using the weighted-sum rule [15, 17, 16, 7, 8, 6]. The weights
are calculated using various metrics based on the distance of the best and second-
best matches. Some systems also fuse decisions from different feature extraction
methods [15, 17, 16], as each of these is best suited for different types of impairments
in the face images.

4.3 Multimodal Person Identification

All multimodal person identification systems perform postdecision fusion. The weighted-
sum rule is again utilized, with the individual modality confidences being used for
the calculation of the weights.

The individual modality confidences are calculated based on the observation that
the difference of the confidences between the closest and second-closest matches is
generally smaller in the case of a false classification than in the case of a correct
classification. A method named the cumulative ratio of correct matches (CRCM),
which uses a nonparametric model of the distribution of the correct matches with
respect to the confidence differences between the best two matches, is used. This
way, the classification results with a greater confidence difference between the two
best matches receive higher weights [5, 4, 7, 9]. Alternatively, the ratio between the
closest and the second-closest matches [15, 17, 16], or a histogram equalization of
the monomodal confidence scores [10, 3], can be utilized.

4.4 Lessons Learned

As seen in the previous sections, the unimodal person identification systems evolved
in the CHIL Consortium have explored different options regarding their three parts:
data extraction and preprocessing, feature extraction, and classification. Following
many experiments and four evaluations (two internal to CHIL and two evaluations
conducted with the CLEAR workshops 2006 and 2007, which were open to the sci-
entific community; see also Chapter 15), many lessons have been learned.

The following can be concluded regarding audio person recognition:

e Speech extraction and preprocessing: The experiments on the use of SAD to pre-
process the audio for speech extraction are not conclusive; most systems just
extract features from the whole audio duration. The preprocessing of the mul-
tiple microphone channels to produce a single, hopefully cleaner, audio signal
using beamforming degrades performance. Postdecision fusion of the recogni-
tion outcomes from the different channels is the way to utilize the multiple audio
sources.
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o Feature extraction: The FF features are very promising. The standalone PLP fea-
tures, or those obtained by the combination of PLP and MFCC into a single fea-
ture vector using PCA, are better than standalone MFCC. Feature postprocessing
is counterproductive in the context of the CHIL seminars, where the speaker is
generally recorded in a stable acoustic context.

o C(lassifier: All systems employ a Bayesian classifier based on the GMMs of
the features. The use of a UBM with MAP adaptation is better than estimating
speaker-specific models directly. Training the UBM by pooling all the training
data outperforms using other training data or a direct MLE training of the target
models.

The conclusions for face recognition are as follows:

e Face extraction and normalization: It is better to extract faces from only the la-
beled frames, without any interpolation. Selecting just the frontal faces (using
the provided labels) is detrimental to performance. There are not enough experi-
ments with the different geometric normalization approaches to be conclusive.

e Feature extraction: The feature extraction methods can be compared only un-
der the same face extraction and normalization methods. This makes comparison
very difficult. The best system employs local appearance-based face recognition
using DCT. Experiments using the same face extraction and normalization meth-
ods led to the following ranking of feature extraction methods:

— Intrapersonal modeling (Bayesian) > Subclass LDA > PCA > LDA
— LDA with Kernel PCA combination > Kernel PCA > LDA > PCA

o (lassifier: Since CLEAR 2006,we have known that the nearest-neighbor classi-
fier, albeit slower, greatly outperforms the distance from the class centers one.
Also, there is lot to gain by exploiting the optimum distance metric for each fea-
ture extraction method. While some systems only used Manhattan or Euclidean
distance metrics, experiments have shown performance gain when using modifi-
cations of the Mahalanobis distance metric for PCA-based methods, or the cosine
for LDA-based methods.

Finally, regarding multimodal systems, the one with the best audio subsystem
always outperforms the rest. The results show that multimodal fusion provides an
improvement in the recognition rate over the unimodal systems in all train/test con-
ditions.

Recognition performance greatly increased in the last two years of the project,
where results are somewhat comparable. In CLEAR 2006, the task involved 26 peo-
ple and the segments had been selected so that speech was present in them, paying no
attention to the faces. In CLEAR 2007, the people to be recognized increased to 28
and the choice of the segments was more balanced across the two modalities. In both
evaluations, two training conditions (15 and 30 seconds) and four testing conditions
(1, 5, 10, and 20 seconds) were selected. The best performance obtained in the two
evaluations is summarized in Fig. 4.3.
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Fig. 4.3. Performance evolution of the person identification systems in the CLEAR 2006 and
2007 evaluations. Two out of the eight conditions are shown per evaluation; the shortest train-
ing and testing (15 and 1 seconds, respectively) and the longest training and testing (30 and
20 seconds, respectively).

The most impressive performance boost has been achieved in face identification.
Significant improvements have also been achieved in speaker and multimodal iden-
tification for the short training and testing segments.
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