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Abstract—In the last years the speaker recognition field has
made extensive use of speaker adaptation techniques. Adaptation
allows speaker model parameters to be estimated using less speech
data than needed for maximum-likelihood (ML) training. The
maximum a posteriori (MAP) and maximum-likelihood linear
regression (MLLR) techniques have typically been used for
adaptation. Recently, MAP and MLLR adaptation have been
incorporated in the feature extraction stage of support vector
machine (SVM)-based speaker recognition systems. Two ap-
proaches to feature extraction use a SVM to classify either the
MAP-adapted Gaussian mean vector parameters (GSV-SVM)
or the MLLR transform coefficients (MLLR-SVM). In this
paper, we provide an experimental analysis of the GSV-SVM
and MLLR-SVM approaches. We largely focus on the latter by
exploring constrained and unconstrained transforms and different
choices of the acoustic model. A channel-compensated front-end
is used to prevent the MLLR transforms to adapt to channel
components in the speech data. Additional acoustic models were
trained using speaker adaptive training (SAT) to better estimate
the speaker MLLR transforms. We provide results on the NIST
2005 and 2006 Speaker Recognition Evaluation (SRE) data and
fusion results on the SRE 2006 data. The results show that using
the compensated front-end, SAT models and multiple regression
classes bring major performance improvements.

Index Terms—Constrained MLLR (CMLLR), Gaussian super-
vectors, Gaussian mixture model (GMM), maximum-likelihood
linear regression (MLLR), speaker recognition, support vector
machine (SVM).

I. INTRODUCTION

C URRENT state-of-the-art systems for text-independent
speaker recognition use cepstral coefficients as base

features. Although popular and successful, cepstral features
are not optimal for speaker recognition tasks, since they result
from the interaction of several information sources such as
the message, acoustic context, channel and speaker, the latter
factor exhibiting the lowest variability [1]. From this view,
the speaker information seems to be buried underneath other
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sources of variability. Modeling the undesired variability, e.g.,
channel or text-dependency, to remove its harmful factors has
been widely used to address this problem. Several channel and
session compensation techniques, e.g., Feature mapping (FM)
[2], Factor analysis (FA) [3] or nuisance attribute projection
(NAP) [4] have been successfully applied and are being used
in state-of-the-art systems. Session and channel mismatch have
also been addressed using score normalization techniques such
as T-norm or H-norm [5].

Adaptation techniques have long been used in speech recog-
nition to improve robustness with respect to speaker variability.
State-of-the-art large vocabulary continuous speech recognition
(LVCSR) systems use speaker-adapted models. The goal of
adaptation techniques is to turn speaker-independent models
into speaker-dependent ones using much less data than would
be needed for full speaker-dependent training. In speaker recog-
nition, speaker adaptation was first used in the GMM-UBM
paradigm [6], where a universal background model (UBM) is
trained on data from many speakers in an attempt to model
the whole set of observable speakers. The UBM is adapted to
each speaker via maximum a posteriori (MAP) estimation [7]
using the enrollment data. This allows a detailed model to be
trained when little data is available, which is often the case
when a large number of parameters are estimated. In recent
years, eigenchannel [8] and joint factor analysis (JFA) [9],
[10] MAP adaptation have given excellent results in scenarios
with large inter-session variability. These techniques use more
or less complex models to separate the speaker and channel
variabilities during adaptation.

Recently, two other successful approaches to speaker recog-
nition have used adaptation techniques to obtain features
that are classified using support vector machines (SVMs).
A first approach uses the mean vectors of a speaker-adapted
GMM, obtained via MAP adaptation of a UBM, as features. A
Gaussian supervector is formed by stacking all mean vectors
of this model and is classified using a SVM. We refer to this
approach as Gaussian supervectors or GSV-SVM [11]. In
a second approach, the hidden Markov models (HMM) of
an automatic speech recognition (ASR) system are adapted
using maximum-likelihood linear regression (MLLR) and the
transform coefficients used as features. MLLR transforms
a speaker-independent model into a speaker-dependent one,
capturing information that is specific to the speaker. The use
of MLLR transform coefficients as features has been addressed
in [12]–[14] and, when classified using a SVM, it is referred
to as MLLR-SVM. A purely acoustic variant using constrained
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MLLR (CMLLR) and a universal background model (UBM)
in a speaker adaptive training (SAT) [15] framework has been
presented in [16].

This paper presents an in-depth exploration of MAP
and MLLR adaptation in the context of GSV-SVM and
MLLR-SVM systems. Given the relevance of session compen-
sation in speaker recognition, two widely used compensation
techniques are considered, i.e., feature mapping at the cepstral
level and NAP at the SVM feature level. For the MLLR-SVM
systems, the type of transform (MLLR versus CMLLR), the
model (GMM versus phonemic HMM) and the front-end (ASR
versus SID cepstral normalizations) are studied. This last point
is specially meaningful in the context of the recent NIST
Speaker Recognition Evaluation (SRE) campaigns, focusing
on channel mismatch. Using a channel-compensated front-end
allows MLLR adaptation to focus on the speaker components
of cepstra rather than both speaker and channel components.

The remainder of the paper is organized as follows. Section II
reviews adaptation methods as well as speaker adaptive training.
Section III provides a quick overview of support vector ma-
chines for the speaker recognition tasks. Section IV presents
the evaluation protocols and task used in these experiments.
Section V describes the architectures developed for this work,
starting with the cepstral front-ends, then the LVCSR acoustic
models, and finally the configuration of the SVM-based systems
targeted in this study. In Section VI, the acoustic speaker recog-
nition systems used as an experimental baseline are described.
In Section VII, we present and discuss the results for GSV-SVM
and MLLR-SVM systems individually as well as the fusion re-
sults for the NIST 2005 and 2006 Speaker Recognition Evalua-
tions. Conclusions are given in Section VIII.

II. SPEAKER ADAPTATION

Speaker adaptation techniques seek to obtain a speaker-de-
pendent model given a speaker-independent model and some
speech data belonging to a specific speaker. The speaker-inde-
pendent model is typically trained using speech data from many
speakers. The adaptation procedure transforms the model pa-
rameters to optimize a certain criterion, e.g., maximizing poste-
rior probability or likelihood. This section presents three tech-
niques for Gaussian mean adaptation, namely MAP, i.e., stan-
dard Bayesian adaptation, and MLLR and constrained MLLR
under the maximum-likelihood criterion. The use of CMLLR in
SAT is described in the last part of the section.

A. Maximum a Posteriori

A Gaussian mixture model (GMM) for a random multivariate
variable can be formulated as

(1)

where is the weight for the th Gaussian, is the Gaussian
probability density function and and are the mean and
covariance matrix for Gaussian .

MAP estimation [6], [7] maximizes the a posteriori distribu-
tion of the adaptation data given the a priori model parameters

, that is, using the Bayes formula

(2)

where is the likelihood function of given the model
parameters and the prior distribution for the mean vectors are
assumed to be Gaussian.

The re-estimation formulas are derived using the expecta-
tion–maximization (EM) algorithm, which balances the new es-
timates on the adaptation data and the prior knowledge. Given
that mean vectors are placed at the most likely points of each
Gaussian component, an efficient way of changing the overall
statistical distribution is by shifting them. Thus, a simple form of
MAP adaptation is mean adaptation1 which moves the Gaussian
mean vectors according to

(3)

where is the adapted mean vector for the th Gaussian,
the expected mean feature vector for the adaptation data, its
prior mean vector, a random feature vector, and the adap-
tation factor

(4)

which weights the old and new estimates via the relevance
factor . Given a specific sequence of adaptation data

with , the effective
number of frames assigned to Gaussian , is estimated as

(5)

and as

(6)

where is the occupancy probability for the th Gaussian,
defined as

(7)

B. Maximum-Likelihood Linear Regression

MLLR [17], [18] adapts the observation probability of
a HMM in a parametric way, by finding a transform that
maximizes the likelihood of the adaptation data given the
transformed Gaussian parameters, i.e., . As opposed
to standard MAP adaptation which adapts only the observed
Gaussian components, MLLR adapts all of the components
in a set of Gaussians, a so-called regression class. In mean

1We present mean adaptation only since these parameters are commonly used
in speaker recognition. Please refer to [6] and [7] for the weight and covariance
re-estimation formulas.
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adaptation, Gaussian mean vectors of the model are adapted
using an affine transform with parameters and as

(8)

where is the adapted mean vector. Using the resulting mean-
adapted model, covariance matrices can be also adapted as

(9)

at the expense of estimating the additional linear transform .
and are, respectively, the non-adapted and adapted covariance
matrices for the adapted Gaussian. As in mean adaptation, co-
variance matrices are also adapted in the maximum-likelihood
sense using the EM algorithm. Details on the estimation proce-
dure and MLLR variants can be found in [18].

MLLR transforms are typically estimated across a set of
Gaussians, a regression class, that shares the same transfor-
mation parameters.2 Using the acoustic models of a LVCSR
system, it is relatively easy to define a fixed number of re-
gression classes based on the phonetic similarity of tri-phone
models. More sophisticated approaches use knowledge-based
or data-driven decision trees that dynamically determine the
number regression classes based on the observation probability
similarity and taking into account the amount of available
adaptation data per class [19]. Therefore, each of the regression
classes results in a separate MLLR transform that is used to
adapt a subset of the Gaussian parameters in the model.

C. Constrained MLLR

A main concern of MLLR adaptation is how to reliably esti-
mate the regression coefficients using the available training data.
It is common to simplify the regression model by using diagonal
or block-diagonal covariance matrices [18] thereby reducing the
number of parameters in the linear regression model or to share
the mean and variance transforms. CMLLR [20] as described in
this section falls into the latter category, using the same trans-
form for mean vector and covariance matrix adaptation. For an
arbitrary Gaussian component in a regression class, its parame-
ters are transformed as

(10)

(11)

where the linear transform is used for adaptation of both
and . A main difference from MLLR adaptation of the

Gaussian mean vectors is that, using the same number of
parameters, the covariance matrices are also adapted. The algo-
rithm used for MLLR adaptation can also be used to estimate
the CMLLR transforms. Sufficient statistics are computed
given the current estimates of and in the expectation step
and the likelihood function is maximized with respect to these
parameters in the maximization step.

When only one regression class is used, adaptation can be
performed in the model-space, as in (10), or alternatively in the

2Note that MLLR adaptation of a single Gaussian is equivalent to ML re-
training of the Gaussian.

Fig. 1. Block diagram of two iterations of SAT.

feature-space by transforming the features so that the likelihood
function with respect to the speaker-independent model is max-
imized. The feature-space transform is

(12)

where is the speaker-independent feature vector at time
and is the corresponding speaker-dependent feature vector.
This property is particularly useful in SAT, used in the feature
extraction scheme presented in [16] and described next.

D. Speaker Adaptive Training

A common use of feature-space CMLLR is SAT [15] which
seeks to jointly estimate a set of CMLLR transforms, one per
speaker, and a speaker-independent model in the transformed
feature space. Such a speaker-independent model captures the
overall feature distribution of a large number of speakers. Given
a set of B speakers and their corresponding adaptation cepstra

for , SAT optimizes the maximum likelihood
criterion on a per-speaker basis as

(13)

where the individual speaker-dependent transforms and the
model parameters are jointly
estimated. Such an optimization is commonly done in two steps
by, first, estimating the feature-space CMLLR transforms
that project the speaker-dependent features onto a speaker-inde-
pendent space and, second, retraining the speaker-independent
model using those features. This process, illustrated in Fig. 1,
can be iterated several times in an EM manner, obtaining a
speaker-independent model with lower inter-speaker variability,
at each iteration.

III. SUPPORT VECTOR MACHINES

The systems explored in this work use discriminative mod-
eling of speakers based on SVMs, introduced in speaker verifi-
cation a few years ago. Such classifiers are capable of success-
fully discriminating high-dimensional and sparse feature spaces
where other modeling approaches fail to generalize. SVMs [21]
are binary classifiers which use a weighted sum of kernel func-
tions as the discriminant function. For a set of input–output pairs
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of training samples with and for
positive and negative classes

(14)

where , and is an offset. In this expan-
sion, the support vectors , the training data points lying
on the separation margin, as well as are obtained so as to max-
imize the classification margin. The soft-margin variant further
minimizes the number of classification errors so that it can deal
with nonlinear separable data sets. The kernel function satisfies
the Mercer condition, i.e., must be positive semi-definite.
This condition implies that can be written as

(15)

which is a regular dot product on a possibly infinite vector space
mapped from the input space by the function .

IV. TASK AND EVALUATION

The speaker verification systems explored in this study were
evaluated using conversational telephone speech data following
the NIST 2005 and 2006 Speaker Recognition Evaluation
(SRE)3 protocols. A speaker verification system is asked to de-
cide whether speech from a given target speaker is present in a
particular speech segment. We used the SRE 2005 English-only
core-condition data for system development and the SRE 2006
English-only core-condition data for system evaluation. These
data consist of five-minute-long segments containing about
two minutes of speech per conversation side.4 A total of 646
(274 male/372 female) target speaker segments are available
for model training in SRE 2005 and 816 (354 male/462 female)
for SRE 2006. 2117 test speaker segments (907 male/1210
female) and 3735 (1606 male/2129 female) are available for
SRE 2005 and SRE 2006, respectively. The ratio of impostor to
true access trials is about ten in both cases and all trials involve
speakers with the same gender, known a priori.

The primary performance measure for the NIST speaker de-
tection task is the detection cost function (DCF) defined as the
weighted sum of the false alarm and miss error probabilities

. We also report the
minimal DCF (MDC) value obtained a posteriori for the best
possible detection threshold. Since this operating point favors
false alarms, we provide the equal error rate (EER) as an alter-
native performance measure. The detection error tradeoff (DET)
curves [22] are used to assess system behavior over the full
range of operating points. The DET curve is comparable to the
receiver operating characteristics (ROC) curve but uses a non-
linear axis, which results in a linear curve for a normal distribu-
tion, improving its readability.

3The NIST 2005 and 2006 SRE evaluation plans, http://www.nist.gov/
speech/tests/spk/.

4The core conditions involve the two conversation sides.

V. SYSTEM DESCRIPTION

The systems explored in this paper use the adaptation
methods described in Section II to extract base features that are
particularly relevant for SVM-based speaker recognition. All
of them use SVM classifiers, differing only in the base feature
vectors, and have the same postprocessing steps. The details of
the systems are given in the following sections.

A. Front-End

We use two different cepstral front-ends as a side effect of
using the previously trained models of the LVCSR system for
the MLLR and CMLLR transform computation:

• Speech Recognition (PLP12): This is the front-end used
by the previously trained LVCSR system. It uses 39 cep-
stral features with 12 MEL-PLP coefficients and the log-
energy along with their corresponding and coef-
ficients extracted every 10 ms using a 30-ms window on
the 0–3.8 kHz bandwidth. Mean and variance normaliza-
tion are applied to each segment of interest. When used in
the LVCSR-based systems, only the frames assigned to the
speech states of the acoustic models are used. When used
with the other systems, speech activity detection (SAD) is
performed based on the voicing features as produced by
the ESPS get_f05 pitch extraction algorithm.

• Speaker Recognition (PLP15N): This front-end uses fea-
ture-level channel compensation and feature Gaussianiza-
tion as is commonly done for speaker recognition. The con-
figuration was optimized for use in past NIST SRE evalua-
tions. We use 15 MEL-PLP coefficients along with their

, coefficients, and the and energies for a
total of 47 features. The features are extracted every 10
ms using a 30-ms window on the 0–3.8 kHz bandwidth.
For the LVCSR-based systems, only the frames assigned
to the speech states of the acoustic models are used. For
the other systems, the voiced frames are determined by the
ESPS get_f05 pitch extraction algorithm. We apply gender-
specific feature mapping [2] to compensate for channel
distortion using segments from the test speakers in pre-
vious NIST SRE test sets 1997 to 2002 (24 769 segments,
6 hours/gender) as training data. The resulting features
are Gaussianized using feature warping [23] with a 3-s
window.

B. LVCSR

We use several acoustic model setups to compute both the
phonetic alignment and to estimate the MLLR transforms. The
acoustic models and a pronunciation dictionary6 are used to
align the provided word-level transcripts with the audio data.
We explore three acoustic model configurations, two based on
the PLP12 and PLP15N front-ends and one trained using SAT:

• The PLP12 AM system is based on the LIMSI SWB
speech-to-text system [24]. It uses gender-independent
continuous density HMM with Gaussian mixtures for
acoustic modeling. The acoustic models are tied-state,

5KTH Software, http://www.speech.kth.se/software.
6We used the pronunciation dictionary of the LVCSR system [24] and manu-

ally added missing entries.
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context-dependent triphones, where the tied-states are
automatically found by means of a decision tree. A total
of about 6400 tied-states are used, with 32 Gaussians
per state. This system uses the PLP12 front-end, i.e., 39
cepstral features, and it was trained on Switchboard I
(4862 conversation sides), Switchboard II (2348 sides),
Callhome (240 sides) and Fisher (6127 sides) corpora, for
a total of 13577 conversation sides involving about 650
hours of data.

• The PLP15N AM system is the same as PLP12 AM except
that it uses the PLP15N front-end, with the speaker-recog-
nition-specific normalizations. Switching to the PLP15N
front-end required re-training the acoustic models. For this
purpose, exactly the same training data was used as for
PLP12 AM training. Since both front-ends result in time-
aligned cepstra, the alignments produced with the PLP12
AM for the training data were also used when training
the new PLP15N acoustic models. The PLP12 AM and
PLP15N AM are therefore directly comparable.

• For the PLP15N+SAT AM system, the PLP15N AM
acoustic models were used as seed models for one itera-
tion of SAT re-estimation [15]. We computed one CMLLR
transform per speaker using all of his/her speech data. The
acoustic models were retrained using the CMLLR-trans-
formed cepstra. In this case, we used a slightly different
clustering threshold optimized for these features. We
obtained a total of 6100 tied-states, a number comparable
to the 6400 states in the PLP12 AM and PLP15 AM.

C. SVM-Based Systems

The SVM-based systems differ in the strategies used to obtain
the base supervectors, one per speaker and per session. They
share the same postprocessing and SVM setup in order to ease
the comparison of the different features. The training data and
tuning parameters were set to maximize the SRE 2005 cross-
validation performance.

Nuisance attribute projection (NAP) [4], [25] inter-session
variability compensation is applied to the base supervectors,
prior to normalization. NAP finds a linear transform that re-
moves the subspace exhibiting the largest inter-session vari-
ability in the feature space.7 The NAP transform is obtained
using NIST SRE 2004 training data, which is known to poten-
tially have a high inter-session variability.8 We set the session
subspace dimension to 50 which was experimentally found to
be almost optimal for all systems described in this paper.

The resulting supervectors are normalized by means of
min–max component scaling. Every feature is fit into the range

, where is the number of features of the
vector. This forces the SVM to deal with dot products with
a maximum magnitude of 1. The resulting mean value of the
features is expected to be 0, so any offset before normalization
is removed. Min–max statistics are collected from the impostor

7An orthonormal set of vectors spanning the maximal inter-session variability
subspace can be obtained from the eigenvectors � � �� � � � � � � � � �
corresponding to the largest eigenvalues of the inter-session covariance matrix.
Based on�, we use the projection matrix ���� to remove session variability
from a feature vector.

8Most of the 310 speakers have more than ten sessions per speaker involving
several channel conditions

speaker set described below. In preliminary experiments, this
method was found to outperform mean and variance normal-
ization as well as rank normalization for several SVM-based
acoustic systems.

The impostor speaker data consists of 2243 speech segments9

from the NIST SRE 2004 training data plus 4854 speech seg-
ments10 from the Switchboard I (SWB1) corpus, all in the Eng-
lish language with a minimum and an average effective dura-
tion of 10 seconds and 2 minutes11 respectively. Transcripts are
available for all of the segments. The SRE 2004 transcripts were
obtained automatically using the RT’03 BBN speech recogni-
tion system and they were provided by NIST for the SRE 2004
evaluation. The SWB1 data were manually transcribed (LDC
Corpus 93T4). All SVM-based systems share the same impostor
data, since transcripts are needed for some MLLR systems but
not for other acoustic systems.

The SVM classifier uses a linear kernel and it is trained using
gender-dependent impostor speaker data. We used the SVM-
Torch12 package developed at the IDIAP laboratory, without
score normalization as it resulted in a performance loss.13

D. GSV-SVM System

The Gaussian supervector (GSV) approach [11] uses the
mean vectors of a speaker-dependent GMM as features, where
these are obtained via standard MAP adaptation14 [7] of a
previously trained GMM-UBM estimated using speech data
from many speakers. Assuming Gaussian components in the
GMM, the mean vectors for
are arranged as

(16)

resulting in a Gaussian mean supervector of dimension ,
where is the number of Gaussians and the dimension of
the cepstral features. For a speaker of interest one vector is used
as the base supervector.

For the PLP15N features, we use two gender-dependent
UBMs with diagonal covariance matrices trained on about 120
hours of speech data per gender, the same impostor speaker
data that is used for SVM training, i.e., NIST SRE 2004 and
Switchboard I data. We use five iterations of maximum likeli-
hood training with 1% of the global variance as the variance
floor. The number of Gaussians used ranges from 64 up to 1024
depending on the configuration. To obtain the speaker-specific
models we use three iterations of standard MAP mean adapta-
tion with a relevance factor of 10.

9About 60 hours of speech, after speech activity detection.
10For a total of about 170 hours of speech excluding silence segments.
11For homogeneity with train and test data, which have an average duration

of 2 minutes as well.
12SVMTorch, a support vector machine for large-scale regression and classi-

fication problems http://www.idiap.ch/learning/SVMTorch.html.
13We found both gender-independent and gender-dependent T-norm to be

harmful for several SVM-based systems. We believe this might be related to
the highly skewed score distributions, far from a Gaussian shape, output by the
SVM. Scores gather around �1 roughly ranging from �0.8 to �1.1, which
seems to be due to the strong imbalance of the training data, i.e., 1 true speaker
against 7000 impostor speakers.

14eigenchannel [8] or joint factor analysis [9] are alternative methods which
can be used to obtain inter-session compensated supervectors.
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Given the high dimensionality of the supervectors used,
reaching tens of thousands of components for the best per-
forming configurations, the feature dimensionality can become
larger than the number of training samples. We use a soft-margin
SVM for classification since, in such degenerate situations,
it successfully avoids overfitting by balancing machine com-
plexity versus training performance.

We use the SVM configuration described in Section V-C.
The linear kernel is derived from an approximation of the Kull-
back–Leibler (KL) divergence, a measure of dissimilarity be-
tween the distributions given by the GMM of two speakers, de-
scribed in [25]. Given two models for segments and , the
distance can be expressed as

(17)

where we keep the notation used in (1). The covariance matrices
are the same for both segments since only the means are adapted.
This kernel satisfies Mercer’s condition since it is linear. A reg-
ular dot product using the normalized Gaussian supervectors

(18)

where , is the number of Gaussians and is the
dimension of the cepstral feature vectors, is equivalent to (17).

and for are the scalar mean and variance
parameters of the corresponding cepstral and Gaussian compo-
nents. We prefer this second form since the normalized super-
vectors can be post-processed arbitrarily, e.g., for inter-session
variability compensation.

E. MLLR-SVM Systems

The MLLR-SVM systems use the MLLR regression coeffi-
cients arranged in a vector form as the base supervectors and a
SVM as classifier. We use two MLLR-SVM variants in our ex-
periments, MLLR -SVM and MLLR -SVM where either the
acoustic models of a LVCSR system or a GMM-UBM are used
to align cepstra and compute MLLR transforms.

1) - : This system is based on the
MLLR-SVM system proposed in [12]. Given the orthographic
transcription of a speech segment, we use the acoustic models
of a LVCSR system described earlier in Section V-B and the
pronunciation dictionary to align the corresponding speech data
to the transcripts. This alignment is used to assign each frame
to a regression class, covering a part of the acoustic space. One
MLLR transform is computed per regression class using the
same acoustic models used for alignment. The coefficients of
transform are stacked as a supervector of the form

(19)
with and being the matrix and the offset,15 i.e., only mean
vectors are adapted, and the dimension of the cepstral feature

15Offset coefficients are always included as they directly compensate for con-
volutional distortion in the cepstral features.

vectors. The supervectors for all transforms are concatenated
together in one vector

(20)

assuming a total of regression classes. We use such a vector
as the base supervector for every speaker of interest.

The number of transforms used depends on the amount of
speech data available for adaptation. Using many classes results
in a finely represented phonetic space but less speech data is
available for each class-dependent transform. We force a full-
matrix16 transform regardless of the amount of adaptation data
assigned to the corresponding class. Three static regression-
class configurations involving only speech17 are used in these
experiments.

• One transform (1t), speech only.
• Two transforms (2t), vowels and consonants.
• Three transforms (3t):

— fricative and stop consonants;
— nasal consonants, semivowels and back vowels;
— front vowels.

The MLLR supervectors rapidly end up with thousands
of features18 that are classified using a SVM, as described in
Section V-C. The linear kernel reduces to computing a regular
dot product of the MLLR supervectors as

(21)

where and are the MLLR supervectors, as defined in
(20), corresponding to speech segments and .

2) - : A large-vocabulary ASR system needs
huge amounts of speech and text data, as well as substantial
computational resources for training. This makes the implemen-
tation of such a system not accessible to everyone. A simple and
cost-effective alternative is to replace the acoustic HMM by a
GMM-UBM, hence MLLR -SVM. The cepstra are now aligned
against a single HMM state with a global Gaussian mixture ob-
servation probability. The phonetic-class alignment is no longer
straightforward.19 However, a GMM-based system can be used
for any language since no transcripts or ASR hypotheses are
required. Another advantage of a GMM-based approach is that
any cepstral front-end with any kind of normalization, including
session and channel compensation, can be used. Multiple SAT
iterations can also be performed as CMLLR computation and
training are faster for a GMM than for the acoustic models of a
LVCSR system.

We use two gender-dependent GMM-UBM trained using
the impostor data, i.e., SRE 2004 and Switchboard I. These
are the same GMM-UBMs used by the GSV-SVM system. A
single MLLR transform is computed and the corresponding

16According to experiments that are not included in this paper, backing off to
a diagonal MLLR transform when lacking data for reliable estimation resulted
in increased error rates for the 2t and 3t classes.

17The non-speech class involving silence and breath is dropped as it is as-
sumed to carry no speaker information.

18For the PLP12 front-end, each MLLR transform has �� � ��� �� � ����

coefficients, 	
 � 	
 � 	
 � ���� for PLP15N. This dimension is multiplied
by the number of transforms.

19Explicit assignment of Gaussians has been used as an alternative in [26]
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supervector is normalized and classified as in the MLLR -SVM
system. We refer to this simplified approach as MLLR -SVM.

F. CMLLR-SVM Systems

The CMLLR-SVM systems follow the same strategy as
the MLLR-SVM systems. We also explore two variants
of the CMLLR-SVM approach depending on whether the
acoustic models of a LVCSR system or of a GMM-UBM
are used to compute the CMLLR transforms, resulting in the

-SVM and -SVM systems, respectively.
1) ������ ���� : This system uses the acoustic HMM

of an LVCSR system for alignment and to estimate the fea-
ture-space CMLLR transforms. We use one transform per
speaker segment corresponding to the speech class only, as is
often performed in LVCSR systems. In our experiments, this
also allows comparison with a purely acoustic approach based
on a GMM-UBM, which uses a single transform for the whole
model. We compute one feature-space transform per segment
given by the parameters which are inverted to
obtain the model-space transforms whose parameters
are actually used for classification. These latter parameters are
the features used in the -SVM system. Other than
using CMLLR transforms, all steps are the same as in the
MLLR -SVM system.

2) ������ ���� : The -SVM system estimates
a single feature-space CMLLR transform using a GMM-UBM.
In principle, this approach is thought to work together with
SAT, since the transforms used for model training and those
used for feature extraction become homogeneous, i.e., both use
CMLLR. A main difference of this approach with respect to
SAT as used in speech recognition is that we compute one fea-
ture-space CMLLR transform per speaker segment, resulting
in a speaker- and session-dependent transform. In the training
phase, these transforms remove both the inter-speaker and inter-
session variabilities in the GMM-UBM.

We use the gender-dependent GMM-UBMs used in the
GSV-SVM system, i.e., trained using SRE 2004 and Switch-
board I data. When using SAT, we perform one retraining
iteration only so that GMM-based and LVCSR-based systems
use the same number of iterations, which eases comparison
of the systems using SAT. For feature extraction purposes,
the feature-space CMLLR transforms are inverted as in

-SVM to obtain the model-space transform param-
eters. Further processing is the same as in the MLLR -SVM
system.

VI. BASELINE SYSTEMS

Although the main aim of this paper is to compare systems
using different adaptation methods, it is also interesting to test
their behavior in combination with other systems given that, cur-
rently, fusing systems integrating some degree of diversity is a
major source of system performance improvement. In this sec-
tion we describe the two acoustic state-of-the-art systems used
as baseline systems in these experiments either for individual or
fused system comparison.

A. PLP-SVM System

The PLP-SVM system is based on the generalized linear dis-
criminant sequence (GLDS) kernel [27] and uses PLP15N fea-
tures, explicit polynomial mapping and a SVM classifier. Cep-
stra are expanded by concatenating first, second- and third-order
monomial expansions forming as many supervectors as cepstral
vectors. These are normalized to have a unity variance within the
speech segment and finally averaged, obtaining 20 824 features
per speaker segment. This expansion can be seen as estimating
first, second- and third-order statistical moments of the cepstral
vectors. We use a kernel principal component analysis (KPCA)
[28] with a second-order polynomial kernel to extend the poly-
nomial features to orders higher than three20 while reducing the
dimensionality of the feature space. We used 2917 session in
the SRE 2004 data to train the KPCA transform. Taking all of
the eigenvectors, we obtain 2917 output features. These vec-
tors are kept as base features for the PLP-SVM following NAP
compensation, normalization and SVM classification as in all
SVM-based systems.

B. PLP-GMM System

The PLP-GMM system [29] is based on the GMM-UBM
paradigm [6] using hybrid-domain eigenchannel compensation
based on a factor analysis model of utterance variability [30].
The front-end is based on the PLP15N analysis bypassing fea-
ture mapping, since it showed a negative interaction with factor
analysis compensation. We use two gender-dependent UBMs
with 1536 mixtures each, trained on about 24 hours of speech
from SRE 2000 and SRE 2001 development and training data.
Covariance matrices are diagonal and a variance floor threshold
of 1% of the global variance is applied at each training iteration.
Speaker models are obtained using three iterations of eigen-
channel adaptation with the ALIZE toolkit [31], thus performing
model-domain session compensation for the target speaker seg-
ments. The channel factor-loading matrix was trained using the
SRE 2004 training data, the same data as used for NAP compen-
sation in the SVM-based systems, and a channel-space dimen-
sion of 40. Test segments are compensated in the feature-do-
main and scored using standard log-likelihood ratios, taking the
20 top-scoring Gaussians. We use gender-dependent T-norm [5]
for score normalization based on 250 male and 250 female seg-
ments taken from the SRE 2004 training data.

C. System Fusion

SVM-based systems obtain scores by projecting test segment
supervectors against the supervector obtained for the target
speaker during training. These scores should be in the range

, although the large number of impostor speaker seg-
ments used for training highly biases their distribution towards

1. The PLP-GMM system outputs log-likelihood-ratio scores,
i.e., a target model versus the UBM likelihood scores.

We use forward–backward scoring for all of the systems
[32], which aims at making the train and test phases symmetric.
The forward system uses a conventional approach where the
test speech is scored against the target speaker model. In the
backward system, we score the training speech against the test

20Explicit polynomial mapping is untractable for such orders.
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TABLE I
MDC AND EER OF GSV-SVM SYSTEMS ON THE SRE 2005 AND SRE 2006
EVALUATION DATA. COLUMN F SHOWS FORWARD SCORES AND COLUMN FB
SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH A WEIGHT OF

0.5. THE BEST SCORES IN EACH COLUMN ARE SHOWN IN BOLDFACE

speaker model. Therefore, we obtain two scores per system
and per trial. Each score is considered individually for system
fusion.

We use a logistic regression model21 for score fusion, which
outputs normalized log-likelihood-ratio scores. The SRE 2005
data was used for training the model and the SRE 2006 data was
used for test, so only performance for the latter are shown in the
results. Scores for empty segments were excluded from training.

VII. RESULTS

A. Individual Systems

We conducted two series of experiments, one to evaluate
MAP adaptation in the GSV-SVM systems and one to evaluate
MLLR adaptation in the MLLR-SVM systems, with a focus on
the latter. We give results for forward and forward–backward
fused systems on both the NIST SRE 2005 and SRE 2006 data.
Improvements are always relative unless otherwise stated.

1) GSV-SVM Systems: The GSV-SVM performance was
first assessed for several configurations differing in the number
of Gaussians used in the GMM speaker models. We tested
from 64 to 1024 Gaussians in exponential steps. The relevance
factor was set to 10, the same value obtained by optimization
on the PLP-GMM system. MDC and EER values for forward
and forward–backward averaged systems are shown in Table I.
Decreasing error rates can be observed as more Gaussians are
used in the speaker models up to 256 Gaussians, slightly lower
than the optimal number reported in other studies [33]. For 512
and more Gaussians performance drops again, probably due to
having to estimate too many parameters in the speaker models
for the amount of data actually used for adaptation. This trend
is seen for both SRE 2005 and SRE 2006 data.

Forward–backward system fusion brings improvements in all
cases, with gains dependent on the system and the evaluation
data. Overall, the relative gains are in the range of 3% to 15%
for MDC and 1.5% to 13% for EER, thus exhibiting a large
variability.

2) MLLR-SVM Systems: The MLLR-SVM systems allow ex-
ploration of a wide variety of adaptation schemes each with their
pros and cons. CMLLR performs mean and variance adapta-
tion at the cost of reduced adaptation capability. GMM do not

21We used the FoCal toolkit http://www.dsp.sun.ac.za/nbrummer/focal/
index.htm.

TABLE II
SYSTEM NAMING CONVENTION FOR CMLLR-SVM AND MLLR-SVM

SYSTEMS. COLUMNS SPECIFY SYSTEM ACRONYM, TYPE OF TRANSFORM

(CMLLR VERSUS MLLR), MODEL TYPE (GMM VERSUS HMM), FRONT-END

TYPE (PLP12 VERSUS PLP15N), SAT �
�

� OR STANDARD ML ��� MODEL

TRAINING, AND NUMBER OF TRANSFORMS (1 TO 3)

require transcripts to perform adaptation, but modeling is less
precise than LVCSR acoustic models. Using a channel-com-
pensated front-end allows MLLR adaptation to focus on mod-
eling only the speaker components but requires retraining of the
acoustic models. Several acoustic classes can be used for more
precise adaptation when enough speech data are available. In
these experiments, we explored front-end type, transform type,
model type and training technique and number of transforms
used for acoustic model adaptation. Given the large number of
different configurations, acronyms are introduced to ease fur-
ther discussion. The naming conventions designate systems by
capital letters indicating the type of MLLR transform (CMLLR
or MLLR), model type (GMM or HMM) and the number of
cepstral coefficients in the front-end (12 for PLP12 or 15 for
PLP15N). For the MLLR systems using HMM, the number
of transforms is also specified. Eventually, if speaker adaptive
training is used, the SAT term is added too. Table II shows the
system names along with their respective configurations.

As shown in [16], convergence of the SAT re-estimation
process in a CMLLR/GMM system is fast. One or two SAT
iterations already provide a significant gain while keeping the
computational cost at a reasonable level. For this reason, we
use one SAT iteration in these experiments. This allows a fair
comparison with the PLP15N+SAT acoustic models of the
LVCSR system which used one iteration to keep computational
resources at a reasonable level.

Table III compares results for several CMLLR-SVM systems
with different front-ends and models, including SAT. The abso-
lute MDC and EER are higher for the SRE 2005 data compared
to the SRE 2006 data, suggesting structural differences in the
two databases, e.g., the proportion of native speakers. This dif-
ference could be partly explained by the use of mostly native
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Fig. 2. DET curves for the CMLLR systems on the SRE 2006 evaluation data: varying the front-end (left) and model (right).

TABLE III
MDC AND EER OF CMLLR-SVM SYSTEMS ON THE SRE 2005 AND SRE 2006
EVALUATION DATA. COLUMN F SHOWS FORWARD SCORES AND COLUMN FB

SHOWS AVERAGED FORWARD AND BACKWARD SCORES WITH A WEIGHT OF 0.5

English speaker data for training, resulting in a significant pho-
netic mismatch between train and test data.

The choice of the front-end has a large influence in perfor-
mance, probably because of the specific speaker recognition
normalizations,22 namely feature mapping and feature warping,
used for the PLP15N features.23 Systems using PLP15N fea-
tures outperform their PLP12-based counterparts. Using for-
ward scoring, a relative gain of around 10%–14% in MDC, and
up to 13% in EER are obtained for the GMM-based systems
(CG15 versus CG12, CG15 SAT versus CG12 SAT) and from
11% to 20% in MDC or EER using LVCSR acoustic models
(CH15 versus CH12). Forward–backward scoring, which makes
scores less dependent on the target speaker24 was found to im-
prove performance by 5%–20% in MDC and 3%–18% in EER.
Overall, the MDC gains are slightly higher for SRE 2006 while
the EER reductions are larger for SRE 2005. Fig. 2 (left) shows
DET curves for systems using PLP12 and PLP15N front-ends

22Note that all experiments use NAP inter-session compensation so, regarding
the channel, the results actually show the interaction of channel mapping and
NAP together. We found that NAP always brought a performance gain.

23Although the number of coefficients and the use of the log-energy coeffi-
cient also changes from PLP12 to PLP15N front-ends.

24Forward–backward scoring can be thought of as a rough form of per-trial
T-norm using the test speaker as the only cohort speaker.

on the SRE 2006 data. A consistent improvement is seen for al-
most all operating points for both the GMM-based and HMM-
based systems.

Concerning the type of model used to compute CMLLR
transforms, an HMM is clearly advantageous with the PLP15N
features, this is not the case with the PLP12 features. For the
former, we observe relative gains of 8%–20% in MDC or EER
for the forward systems and 6%–20% for the forward–back-
ward fused systems (CH15 versus CG15). The DET curves in
Fig. 2 (left) show rather consistent gains for these systems for
most of the operating points. Gains are in general slightly lower
for the PLP15 SAT acoustic models, reaching 13% but also as
small as 1%. Using the PLP12 acoustic models results in very
small improvements, with GMM-based systems eventually
outperforming HMM-based systems. This can be seen in the
left part of Fig. 2 (left) around the MDC, shown with the circle.

Using SAT models turns out to be slightly beneficial for
GMM-based systems, but performance decreases for the
HMM-based systems. Forward systems using GMM (CG15
SAT versus CG15) show relative improvements of over 3% in
MDC and 1%–8% in EER. Gains are slightly larger for the
forward–backward systems on the SRE 2005 data but no gain
is observed on the SRE 2006 data. As for the HMM-based sys-
tems, the results suggest that there is a bad interaction of using
the CMLLR transforms together with SAT, as this approach
always leads to performance loss for both the forward and the
forward–backward scored systems.

As for the MLLR-based systems, we assessed the effects of
the front-end, model, number of transforms and SAT. Table IV
shows results for the most relevant experiments. We discuss the
most important points in the following.

The use of the PLP15N front-end, with specific speaker
recognition normalizations, results in large performance
improvements over PLP12, using mean and variance normal-
ization. Relative gains of around 25% MDC and EER were
obtained for most of the experiments (MH15 versus MH12),
with both forward and forward–backward scoring. These gains
seem to be independent of the number of transforms used.
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Fig. 3. DET curves for the MLLR systems on the SRE 2006 evaluation data: per-model curves using two transforms (left) and per-class curves using the PLP15N
front-end and SAT models (right).

TABLE IV
MDC AND EER OF MLLR-SVM SYSTEMS ON THE SRE 2005 AND

SRE 2006 EVALUATION DATA. COLUMN F CORRESPONDS TO FORWARD

SCORES ONLY. COLUMN FB SHOWS AVERAGED FORWARD AND

BACKWARD SCORES WITH A WEIGHT OF 0.5

Although the PLP12 and PLP15N front-ends also differ in the
number of PLP coefficients, we believe that most of the gain
is obtained by using feature mapping and feature warping.25

Fig. 3 (right) shows DET curves for the MH12 2t and MH15
2t systems on the SRE 2006 data. The improvement obtained
using the PLP15N front-end is consistent in the low false-alarm
probability region covering the MDC and the EER operating
points.

Using the acoustic models of the LVCSR system instead of a
GMM-UBM improves system performance significantly, even
though we restricted here to only one transform. The gains for
systems using the PLP12 features are half those of the systems
using the PLP15N features, keeping in mind that GMM-based
and HMM-based systems differ in the speech activity detection
used, i.e., voicing level versus alignment, and the SAT approach

25We observed in past experiments that using 12 to 16 PLP coefficients with
feature mapping and warping resulted in similar performance, although 15 was
found to be optimal.

used, i.e., per-session SAT versus per-speaker SAT respectively.
PLP12 experiments (MH12 versus MG12) show overall rela-
tive gains of 10% in MDC and EER regardless of the scoring
approach and evaluation corpus. PLP15N systems using HMM
(MH15 versus MG15, MH15 SAT versus MG15 SAT) show
enormous gains compared to those using a GMM, in the range
of 28% to 37% both in MDC or EER. These results are stable re-
gardless of the scoring approach and the use of SAT. They high-
light the importance of precisely modeling speech in a text-inde-
pendent speaker recognition task. Its combination with speaker-
specific acoustic-level normalizations seems specially fruitful.
Their interaction with NAP or the number of coefficients has
not been explored in these experiments.

SAT models bring significant gains compared to regular
ML training and are additive to those obtained using PLP15N
features. GMM-based systems using SAT and PLP12 features
(MG12 SAT versus MG12) obtain relative improvements of
around 15% in MDC and EER with even larger gains, in the
range 17%–28% in MDC and EER when PLP15N features
(MG15 SAT versus MG15) are used. Systems using CMLLR
transforms (CG12 SAT and CG15 SAT) obtain similar gains.
Note, however, that these systems outperform MLLR coun-
terparts when standard maximum likelihood training is used
for GMM (CG12 versus MG12, CG15 versus MG15). For
HMM-based systems, SAT results in large performance gains
too, in the range of 15%–26% in MDC and 9%–28% in EER
on both the SRE 2005 and SRE 2006 data. Considering the
cumulative gain from systems using PLP12 acoustic models to
those using PLP15N SAT acoustic models, improvements over
40% are achieved. Fig. 3 (left) shows DET curves for PLP12,
PLP15 and PLP15 SAT acoustic models for systems using 2
transforms on the SRE 2006 data. The cumulative improvement
is constant for a wide range of operating points.

The number of MLLR transforms has a considerable impact
on system performance. There is an overall trend for lower error
rates as more classes are used in the system. Since each MLLR
transform specializes in one acoustic space split, data are better
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Fig. 4. DET curves for individual systems on the SRE 2006 evaluation data (left) and fused systems (right).

fit to the linear regression model, affecting performance corre-
spondingly. However, the results show that using three trans-
forms is not always beneficial.26 The amount of data used to
estimate each transform plays an important role for the segment
lengths we deal with: the more classes the less data are available
per class. Along these lines, the PLP12 and PLP15N features
result in 1560 and 2256 regression coefficients per transform,
respectively. About 30% more parameters must be estimated
for the latter. We note, for instance, that the diagonal MLLR
back-off rates dramatically rose using the PLP15N features, al-
though we forced full MLLR matrices in all of the presented ex-
periments. Fig. 3 (right) shows DET curves for the MH15 SAT
systems using from one to three transforms. Going from one to
two transforms brings a consistent improvement along almost
the entire operating range, while going from two to three trans-
forms does not improve the performance anywhere.

B. System Fusion

The best performing GSV-SVM, CMLLR-SVM and
MLLR-SVM systems, i.e., GSV-SVM 256 g, CH15, and
MH15 2t SAT, were selected from Tables I, III, and IV for com-
bination with two other standard cepstral systems, PLP-GMM
and PLP-SVM, previously described in Section V-C. Table V
shows individual system results for the SRE 2005 and SRE
2006 data and fusion results for SRE 2006 only. The SRE 2005
data was used to train the fusion model and excluded from the
evaluation.

The GSV-SVM 256 g system is the best performing of
the non-MLLR-based individual systems. The MH15 2t SAT
system outperforms the rest of the individual system overall,
with relative gains of at least 15% in MDC. In EER terms, the
gains are more variable, from 2% to 20%, with GSV-SVM
eventually outperforming MH15 2t SAT. A large difference
in performance is observed for the PLP-GMM system using

26The choice of the classes may have an effect on performance as well. Con-
sonants and vowels are used in 2t systems based on a priori phonetic criteria
whereas semiautomatic clustering is used for 3t systems.

TABLE V
MDC AND EER OF INDIVIDUAL AND FUSED SYSTEMS ON THE

SRE 2005 AND SRE 2006 EVALUATION DATA. COLUMN F SHOWS

FORWARD SCORES AND COLUMN FB SHOWS AVERAGED FORWARD

AND BACKWARD SCORES WITH A WEIGHT OF 0.5

forward and forward–backward scoring, the latter improving
around 20% in MDC and EER. DET curves of all the individual
systems on the SRE 2006 data are shown in Fig. 4 (left).
Performance of the CH15 system lies far away from the rest of
the individual systems, while MH15 2t SAT outperforms all the
systems in the low false-alarm rate region. Similar performance
is obtained for the GSV-SVM and MH15 2t SAT systems for
operating points around the EER.

As for fusion, the baseline system the combination of the
PLP-GMM and PLP-SVM systems. In global terms, adding any
one of the three MLLR-based systems to the baseline improves
performance. The GSV-SVM 256 g system and the CH15 one
bring slight improvements to the baseline, while fusing the base-
line with the MH15 2t SAT system brings a relative gain of over
23% in MDC and EER regardless of the scoring approach. This
suggests that Gaussian supervectors are somewhat redundant
with respect to the baseline system, given that the PLP-GMM
already uses the GMM and the PLP-SVM uses the SVM. On
the CMLLR side, although the CH15 system is much less per-
formant than GSV-SVM, the fusion of the baseline with any of
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these systems results in similar improvements. This can be inter-
preted as the CMLLR transforms providing complementary in-
formation. The combination of the baseline with the GSV-SVM
256 g and CH15 systems brings small gains, especially in EER,
while including the MH15 2t SAT system dominates perfor-
mance, once again obtaining relative gains over 20%. This effect
is clearly shown in Fig. 4 (right) where fusing all the individual
systems performance leads to only a slight improvement of per-
formance.

VIII. CONCLUSION

We studied two approaches to feature extraction for speaker
recognition based on two speaker adaptation techniques,
namely Gaussian supervectors using MAP adaptation and
MLLR transforms. Our experiments showed that 1) an ap-
proach using MLLR transform features classified using a
SVM is an actual alternative to current state-of-the-art acoustic
systems. Using features optimized for speaker recognition, the
MLLR-SVM systems outperformed all other acoustic systems
at the MDC operating point, including a likelihood-ratio-based
GMM-UBM system using hybrid factor analysis inter-session
compensation and a system using Gaussian supervector features
and SVM classification. The channel-compensated front-end
seems to prevent the transform coefficients from capturing
the channel variability. Speaker adaptive training and multiple
regression classes were found to improve performance for the
most advanced adaptation schemes. 2) For the most simple
setups, systems based on CMLLR were found to outperform
those based on MLLR, with speaker-recognition features and
SAT bringing large improvements. 3) The use of phonemic
HMM instead of a GMM for adaptation results in interesting
gains in performance. However, these gains should be balanced
against the increase of training complexity and resources. 4)
The GSV-SVM system outperforms both the PLP-GMM and
PLP-SVM systems, showing the effectiveness of including
both GMM and SVM classification into one system. 5) Fusion
improvements are dominated by the baseline and MLLR-SVM
system performances. The GSV-SVM and CMLLR-SVM
systems bring about the same improvement after fusion while
obtaining very different performance individually. This sug-
gests that MLLR transform coefficients involve information
that is complementary to that of GMM mean vectors. Including
the GSV-SVM system in a fusion already using GMM and
MLLR transform coefficients does not bring any further gain.
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