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Abstract

Large vocabulary continuous speech recognizers for En-
glish Broadcast News achieve today word error rates below
10%. An important factor for this succes is the availability of
large amounts of acoustic and language modeling training data.
In this paper the recognition of French Broadcast News and
English and Spanish parliament speeches is addressed, tasks
for which less resources are available. A neural network lan-
guage model is applied that takes better advantage of the lim-
ited amount of training data. This approach performs the esti-
mation of the probabilities in a continuous space, allowing by
this means smooth interpolations. Word error reduction of up
to 0.9% absolute are reported with respect to a carefully tuned
backoff language model trained on the same data.

1. Introduction
Language models play an important role in many applications
like character and speech recognition, translation and informa-
tion retrieval. The dominant approach, at least in large vocabu-
lary continuous speech recognition (LVCSR), are n-gram back-
off language models (LM). These models are usual trained on
huge amounts of data in state-of-the-art LVCSR for English
Broadcast News (BN) and conversational telephone speech
(CTS). For instance, most of the sites participating in the 2004
rich transcription evaluation used almost 2G words to build LM
for English BN [1]. These large amounts of language model
training data are usually not available for other major European
languages like German, French, Italian or Spanish. This may
be explained by the fact that less funding is available to collect
the resources, but in some countries copyright issues also com-
plicate the collection and transcription of large amounts of au-
dio data or the use of text resources. The same data sparseness
problems may arise when developing LVCSR for other tasks
than BN. In this paper the problem of transcribing parliament
speeches is addressed. Therefore LM techniques that perform
well with a limited amount of training data are interesting for
building LVCSR for these languages and tasks.

Usually, class language models are used when insufficient
data is available. In this paper we describe the application of
a new approach that uses a neural network to estimate the LM
posterior probabilities [2, 3]. The basic idea is to project the
word indices onto a continuous space and to use a probability
estimator operating on this space. Since the resulting probabil-
ity functions are smooth functions of the word representation,
better generalization to unknown n-grams can be expected. A
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l network can be used to simultaneously learn the projec-
f the words onto the continuous space and the n-gram
bility estimation. This is still a n-gram approach, but the
osterior probabilities are ”interpolated” for any possible
xt of length n-1 instead of backing-off to shorter con-

This approach has already been successfully used in a
nd BN large vocabulary speech recognizer for the English

age, achieving word error reductions of up to 0.5% abso-
4, 5, 6]. Here we will show that even better improvements
e obtained for the transcription of European parliament
hes in English and Spanish and the recognition of French
cast News. All the described system have been carefully
before the neural network LM is applied.

2. Architecture
rchitecture of the neural network n-gram LM is shown
ure 1. A standard fully-connected multi-layer percep-

is used. The inputs to the neural network are the in-
of the n−1 previous words in the vocabulary hj =

+1, ..., wj−2, wj−1 and the outputs are the posterior prob-
ies of all words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

N is the size of the vocabulary. The input uses the so-
1-of-n coding, i.e., the i-th word of the vocabulary is
by setting the i-th element of the vector to 1 and all the

elements to 0. The i-th line of the N × P dimensional
ction matrix corresponds to the continuous representation
i-th word.

et us denote ck these projections, dj the hidden layer ac-
s, oi the outputs, pi their softmax normalization, and mjk,
j and ki the hidden and output layer weights and the cor-
nding biases. Using matrix/vector notation the neural net-
performs the following operations:

dj = tanh (mjk ck + bj) (2)

oi = tanh (vij dj + ki) (3)

pi = eoi /

NX

k=1

eok (4)

alue of the output neuron pi corresponds directly to the
bility P (wj = i|hj). Training is performed with the stan-
back-propagation algorithm using cross-entropy as error
ion, and a weight decay regularization term. The targets
t to 1.0 for the next word in the training sentence and to
r all the other ones. It can be shown that the outputs of a
l network trained in this manner converge to the posterior
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Figure 1: Architecture of the neural network language model.
hj denotes the context wj−n+1, ..., wj−1. P is the size of one
projection and H and N is the size of the hidden and output
layer respectively. When shortlists are used the size of the out-
put layer is much smaller then the size of the vocabulary.

probabilities. Therefore, the neural network directly minimizes
the perplexity on the training data. Note also that the gradient
is back-propagated through the projection-layer, which means
that the neural network learns the projection of the words onto
the continuous space that is best for the probability estimation
task.

The complexity to calculate one probability with this basic
version of the neural network LM is quite high, mainly due to
the large output layer, and several improvements are necessary
to make the model tractable for LVCSR [7]:

1. Lattice rescoring: decoding is done with a standard
back-off LM and a lattice is generated. The neural net-
work LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to predict the
LM probabilities of a subset of the whole vocabulary.

3. Regrouping: all LM probability requests in one lattice
are collected and sorted. By these means all LM proba-
bility requests with the same context ht lead to only one
forward pass through the neural network.

4. Block mode: several examples are propagated at once
through the neural network, allowing the use of faster
matrix/matrix operations.

5. CPU optimization: machine specific libraries BLAS are
used for fast matrix and vector operations.

The idea behind shortlists is to use the neural network only
to predict the s most frequent words, s � |V |, reducing by
these means drastically the complexity. All words of the word
list are still considered at the input of the neural network. The
LM probabilities of words in the shortlist (P̂N ) are calculated
by the neural network and the LM probabilities of the remaining
words (P̂B) are obtained from a standard 4-gram back-off LM:

P̂ (wt|ht) =

¡
P̂N (wt|ht) · PS(ht) if wt ∈ shortlist
P̂B(wt|ht) else

(5)

PS(ht) =
X

w∈shortlist(ht)

P̂B(w|ht) (6)
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be considered that the neural network redistributes the
bility mass of all the words in the shortlist. This proba-
mass is precalculated and stored in the data structures of
ckoff LM. A back-off technique is used if the probability
for a requested input context is not directly available.
uring lattice rescoring LM probabilities with the same
xt ht are often requested several times on potentially dif-
t nodes in the lattice. Collecting and regrouping all these
prevents multiple forward passes since all LM predictions
e same context are immediately available at the output.
er improvements can be obtained by propagating several
ples at once though the network, also known as bunch
. In comparison to equation 2 and 3, this results in using
x/matrix instead of matrix/vector operations which can be
ssively optimized on current CPU architectures.
unch mode has also been implemented for training of

eural network. Training of a typical network with a hid-
yer with 500 nodes and a shortlist of length 2000 (about
illion parameters) take less than one hour for one epoch

gh four million examples on a standard PC. When more
ng data is available, a hidden layer of more than thousand

is necessary since more capacity is needed. Usually we
t train one such big network, but several smaller ones and
olate them together. More details can be found in [7].

Application to French Broadcast News
eural network LM has already been used for CTS and BN
nition in English [5, 6]. Here we apply the same technique
rench BN system. The following resources have been used
nguage modeling:

Transcriptions of the acoustic training data (4.0M words)

Commercial transcriptions (88.5M words)

Newspaper texts (508M words)

WEB data (13.6M words)

irst a LM was build for each corpus using modi-
neser-Ney smoothing as implemented in the SRI LM

it [8]. The individual LMs were then interpolated and
d together. An EM procedure was used to determine the
cients that minimize the perplexity on the development

Although the detailed transcriptions of the audio data
sent only a small fraction of the available data, they get
terpolation coefficient of 0.431. This shows clearly that
etailed audio transcriptions are the most appropriate text
es for the task and the neural network LM was first trained
e transcriptions only. In all cases, the neural network LM
rpolated with the reference backoff LM. In the following
ns we first describe the use of the neural network LM in
T system, and show then that it can also be used in a fast
system.

Reference 7xRT system

rench BN system is based on techniques developed for
nglish BN system. The acoustic model uses tied-state
on-dependent triphones trained on about 190 hours of BN
Decoding is done in three passes including acoustic model
ation (CMLLR and MLLR), pronunciation probabilities
onsensus decoding (see [9] for more details). In our pre-
experiences on English BN and CTS a 65k vocabulary

he other coefficients are 0.14 for the commercial transcripts, 0.35
newspaper texts and 0.08 for the WEB data.
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Figure 2: Coverage and perplexity on the dev data of the neural
network LM in function of the size of the shortlist for French
BN. The neural network LM is trained on 4M words only.

was used and the shortlist was of size 2000. This resulted in a
coverage of about 90%, i.e. nine out of ten LM requests were
processed by the neural network. The French BN system uses
a word list of 200k and consequently larger shortlist sizes were
investigated. Figure 2 shows the coverage and the perplexity of
the neural network LM on the development data in function of
the shortlist size. It can be clearly seen that a shortlist of length
2000 is insufficient for this task (the coverage is only 72%) and
that better results can be obtained with larger output layers.

However, the curves flatten out with increasing size and a
shortlist of length of 12k was used in most of the experiments.
In this case the perplexity decreases from 74.2 to 71.4. Figure 3
shows the results when rescoring the lattices with the neural
network LM. The coverage, i.e. the number of LM requests in
the lattice done by the neural network LM, increases from 72%
(length = 2k) to 88% (length = 16k). With 12k shortlists the
word error decreases from 10.74% to 10.51% at an additional
decoding time of 0.11xRT. Longer short lists do not lead to fur-
ther word error reductions.
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Figure 3: Coverage and word error on the dev data when rescor-
ing lattices with the neural network LM in function of the size
of the shortlist for French BN. The neural network LM is trained
on 4M words only.

In a second set of experiments the neural network LM was
trained on more data by adding about 16M words of commer-
cial transcriptions, giving a total of 21M words. In this case four
neural networks were trained on the data and then interpolated
together. This results in faster training an gives usually bet-
ter results than training one neural network with a large hidden
layer [7]. Table 1 summarizes the performances of the different
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Backoff LM Neural LM
LM data 614M 4M 21M

erplexity dev 74.2 71.4 71.2
ord error dev 10.74% 10.51% 10.40%

eval 12.45% 12.18% 12.03%
addtl. runtime - 0.11xRT 0.45xRT

Table 1: Results for the French 7xRT BN system.

age models. Although there is only a small change in per-
y when the neural network LM trained on more data, an
onal word error reduction of 0.11% is achieved.

is also interesting to note the good generalization behav-
the neural network LM. Network selection and tuning of
rameters have been done on the development data, but the
error reduction obtained on the evaluation data (-0.42%),
as never used during developement, is even better than the
btained on the development data itself (-0.34%).

Fast 1xRT system

ing a real time Broadcast News system is a challenging
ince the time constraint makes it very difficult to use all
chniques that help to get low word error rates. It is for
ce difficult to do several decoding passes with acoustic
l adaptation. The system used here uses only one decod-
ass (see [9] for more details). The neural network LM for
ystem was trained on the same data than the 7xRT sys-
Due to the real time requirements a short list size of 8k

s was used (the complexity of the neural network LM in-
es linearly with the shortlist length) and the hidden layer
f size 500. This resulted in an additional time of 0.05xRT
core the lattices. The coverage when rescoring lattices

the neural network LM is 85.2%. Table 2 summarizes the
s of this system.

backoff LM Neural LM
LM data 614M 4M 21M

Perplexity dev 70.2 67.7 68.3
ord error dev 14.24% 14.02% 13.88%

eval 17.08% 16.85% 16.78%
addtl. runtime - 0.05xRT 0.05xRT

Table 2: Results for the French 1xRT BN system.

espite the smaller networks the same word error reduction
ith the 7xRT French BN system was observed.

. Application to Parliament Speeches

uropean project TC-STAR is concerned with speech to
h translation of European parliament speeches. The main
is on the translation directions European English to Span-
d vice versa. In this paper we describe the efforts un-
en to build language models for the speech recognition
s for these languages. In both cases, the main source

nguage model training are the transcripts of the acoustic
ng data (about 350k words) and the official translations of
ment speeches as distributed by the European Community
t 33M words per language). These parallel texts are by the
lso used for the statistical translation engines.



4.1. European English system

The speech recognizer for the English parliament speeches has a
similar architecture than the French BN system. The incorpora-
tion of the neural network LM was again done by rescoring the
final lattices. The 4-gram backoff LM and the neural network
LM were trained on in-domain data only: 40h of transcribed
audio data and 32M words of English parliament speeches for
language model training. In these experiments, the neural net-
work was trained on the same amount of data than the backoff
LM, using a shortlist of 2000 words. The coverage is 81.4% on
the development data and 83.7% when rescoring lattices. The
vocabulary has 42k words, resulting in an OOV rate on the de-
velopment data of 0.41%. The results are summarized in table 3.

Backoff LM Neural LM
LM data 32M 32M

Perpl dev 99.7 87.8
Werr dev 12.13% 11.26%

eval 12.04% 11.04%
addtl. time - 0.08xRT

Table 3: Recognition of English parliament speeches.

A perplexity reduction of 12% relative was obtained
(99.7 → 87.8) and the word error rate improved by as much as
0.87% absolute (12.13 → 11.26%). The additional processing
time needed to rescore the lattices is less than 0.1xRT. Again,
the neural network LM shows a very good generalization be-
havior: with 1.0% absoulte the word error reduction obtained
on the evaluation data is higher than the one on the develop-
ment data.

4.2. Spanish system

The speech recognizer for the Spanish parliament speeches has
the same structure than the English system. The only data used
for the language model are the transcriptions of the audio data
and the translated parliament speeches (33.5M words in total).
A 64k vocabulary was used and the OOV rate on the develop-
ment data is 0.60%. A shortlist of 2000 words was used, giving
a coverage of 82.0% on the development data and 80.0% when
rescoring lattices. Table 4 summarizes the results. The neural
network LM achieves an improvement in perplexity of 10% rel-
ative and a word error reduction of 0.59% absolute. This gain
is smaller than with the neural network LM for the English sys-
tem. This may be explained by the smaller coverage during
lattice rescoring and by the fact that the lattices themselves are
smaller: for Spanish they have 307 arcs and 550 links in av-
erage, while there are 357 arcs and 698 links for the English
system.

Backoff LM Neural LM
LM data 33.5M 33.5M

Perplexity dev 81.0 71.8
Word error dev 10.64% 10.05%

eval 11.55% 11.07%
addtl. runtime - 0.07xRT

Table 4: Results for Spanish parliament speeches.
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5. Conclusion
paper addressed language modeling for large vocabulary
h recognition with limited amounts of in-domain language
ling data. The main idea is to perform the estimation of
M probabilities in a continuous space, allowing by these
s “smooth interpolations” in order take better advantage
available training data. A neural network is used to learn

taneously these projections and the probability estimation.
gnition is done by rescoring lattices after the last decoding

hich takes usually less than 0.1xRT.
he approach has been applied to three tasks: the recogni-
f French Broadcast News and the transcriptions of English
rench speeches of the European Parliament. All system
less than 10xRT and achieve word error rates in the range
% with a backoff LM. This could be reduced by up to
absolute using the neural network LM. The approach has
een applied to a fast 1xRT French BN system, achieving
error reductions of 0.4% at an additional decoding cost of
RT. In all cases the neural network LM showed good gen-
ation behavior: the word error reduction achieved on the
ation data was often higher than the one obtained on the
opment data.
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