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ABSTRACT
Given the high flexional properties of the French language,

transcribing French broadcast news (BN) is more challenging
than English BN. This is in part due to the large number of homo-
phones in the inflected forms. This paper describes advances in
automatic processing of broadcast news speech in French based
on recent improvements to the LIMSI English system. The main
differences between the English and French BN systems are:
a 200k vocabulary to overcome the lower lexical coverage in
French (including contextual pronunciations to model liaisons),
a case sensitive language model, and the use of a POS based
language model to lower the impact of homophonic gender and
number disagreement. The resulting system was evaluated in the
first French TECHNOLANGUE-ESTER ASR benchmark test. This
system achieved the lowest word error rate in this evaluation by
a significant margin. We also report on a 1xRT version of this
system.

1. INTRODUCTION

At LIMSI we started working on broadcast news (BN)
transcription in 1996 [4] and have since developed mod-
els and systems for 7 languages: Arabic, English, French,
German, Mandarin, Portuguese and Spanish [8]. Our ex-
perience is that with some reasonable amounts of data
we can get comparable results in these language (under
20% for unrestricted broadcast news data). We have re-
cently invested major effort in improving our BN tran-
scription system for American-English [11], i.e. bringing
the word error rate to around 10%. The main improve-
ments come from better decoding, acoustic and language
modeling, more effective adaptation, discriminative train-
ing, and better pronunciation models including pronun-
ciation probabilities. In this work on BN transcription
in French we found these general improvements to carry
over in a relatively straight-forward manner. However,
French speech recognition systems must address the rel-
atively high lexical variety of the French language which
results in large out-of-vocabulary (OOV) rates. Concern-
ing lexical coverage, the number of distinct words in
French must typically be double that of English in order to
obtain the same word coverage under comparable condi-
tions [6]. The inflectional morphology of German and its
highly generative process of compounding lead to even
lower lexical coverage for a given vocabulary size [9].
A large proportion of the observed lexical variety corre-

spond
the la
feren
ative
perfe
in En
of the
ous p
Frenc
der a
and t
often
transc
and g
data
dress
ple pr
such
the la
conti
of-sp

Th
TECH

transc

Fo
data
cise t
cludi
traini
89M
1991
large
to Ap
11/20
(370M
fourth
differ

Th
hours
tions
Cultu
unkn
ench Broadcast News?

n, V. Gendner, L. Lamel, H. Schwenk

http://www.limsi.fr/tlp)
say Cedex, FRANCE

s to homophones, which can be distinguished only
nguage model (LM) since there are no acoustic dif-
ces in how the words are pronounced. A compar-
study of French and English showed that, given a
ct phonemic transcription, about 20% of the words
glish newspaper texts are ambiguous, whereas 75%
words in French newspaper texts have an ambigu-

honemic transcription [6]. This difference between
h and English mainly stems from number and gen-
greement for nouns, adjectives and past participles,
he high number of different verb forms which are
homophones [6]. Many of the observed automatic
ription errors come from the homophonic number
ender agreement, as in the language model training
many agreements are not observed. In order to ad-
this problem we use a 200k word lexicon with multi-
onunciations to account for well-known phenomena
as liaison and mute-e; a larger text corpus to train
nguage models; and also investigated the use of a

nuous space language model [13] as well as a part-
eech (POS) based language model.
is updated system was evaluated in the
NOLANGUE-ESTER benchmark test for BN
ription systems in French [7].

2. LANGUAGE MODELS

r language modeling four different types of textual
were used. There are about 3.7M words of pre-
ranscriptions of BN acoustic data (1998-2003), in-
ng almost 1M words of transcriptions of the acoustic
ng distributed for the ESTER evaluation. In addition,
words of rapid transcriptions of BN data dating from
-2001 were used. These texts were completed with a
amount of newspaper and newswire data (from 1987
ril 2004, 507M words), WEB newswire data (from
03 to 04/2004, 23M words) and the newspaper texts

words) distributed for the ESTER evaluation. The
source is a list of about 200 journalist names from

ent French TV and radio sources
e test set of the ESTER evaluation consisted of 10
of radio broadcast news shows, taken from four sta-
occurring in the training data, one source (France
re) without any transcribed training data and one
own source. This test set was recorded from Octo-



ber to December 2004. Since the distributed development
data contained only data from the four known sources and
came from the period April to July 2003, we decided to
design a more difficult development set to build less sharp
but more robust language models. We added to the official
development set (containing 97k words), data from vari-
ous sources including French speaking African radio (19k
words), France Culture (20k words), and excerpts from a
variety of French TV and radio broadcasts (22k words).
The resulting LIMSI development set includes a total of
158k words.

Two word lists were derived from the textual data de-
scribed above: a classical 65k list and a larger 200k list
in order to increase the lexical coverage. Both word lists
were optimized using the criterion described in [2] to se-
lect the vocabulary which minimizes the OOV rate on the
LIMSI development set.

Text normalization has a impact on both the OOV
rate and on the LM perplexity. Previous work [1] on
the French language showed that case sensitivity, may
marginally reduce the lexical coverage, but leads to more
performant LMs. Thus, despite the fact that the ESTER

scoring was case insensitive, we built case sensitive lan-
guage models.

The training data was split into 5 text subsets and 4-
gram back-off LMs were built for these sources using
the SRI Toolkit [12] with the modified Kneser-Ney dis-
counting method and then interpolated to get the final
LM. The text subsets and interpolation coefficients, the
latter determined by the EM algorithm, were chosen so
as to minimize the perplexity on the LIMSI development
set. Another set of n-gram back-off LMs were built using
only the text data distributed in the ESTER evaluation, and
a 200k word list was selected with the same restriction
(200k restricted), in order to measure the impact of the
additional data available at LIMSI. The OOV rates and the
perplexity values on the different development and evalu-
ation sets are given in Table 1.

Although the detailed transcriptions of the audio data
represent only a small fraction of the available data, they
have an interpolation coefficient of 0.43. This shows
clearly that these detailed audio transcriptions are the most
appropriate text source for the task. Given this, a contin-
uous space neural network LM [13] was trained on the
transcriptions, the neural network being used to simulta-
neously learn the projection of the words in a continuous
space and to estimate the n-gram probabilities. The neu-
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reduce ASR errors due to homophonic number and
r disagreement, a specific rescoring scheme is ap-
in the last decoding step. Given an ASR hypothesis,
ice of homophones is generated and rescored using
rphosyntactic class-based LM interpolated with the
ine word n-gram LM. The rescoring process is per-
d by weighting the edges only with the linguistic
and a consensus decoding step yields to the final hy-
sis.

3. PRONUNCIATIONS

nerating pronunciations for the 200k word list was
llenge since this work usually requires some man-
tervention. There are two major sets of words that
added when increasing the vocabulary from 65k to
words. The first set corresponds to various forms

rbs and does not pose any particular problem from
onunciation point of view, other than it being impor-
include alternate pronunciations for reduced forms.

econd set consists of mainly proper names, many of
are foreign names for which pronunciations are not

rly predicted by a grapheme-to-phoneme tool. Since
ronunciation of such foreign proper names depends
e speaker’s knowledge of the original language, we
tried to include multiple forms to represent both how
ve French and someone familiar with the language
speak the name.

e basic pronunciations are taken from the LIMSI

h lexicon, and make use of a 35-phone set (3 of
are used for silence, filler words, and breath noises).

orm pronunciations for the missing words are gen-
using a grapheme-to-phoneme conversion tool, and

ative pronunciations are added semi-automatically.
ost frequent inflected forms have been verified to

de more systematic pronunciations. In particular,
n consonants, which are handled by using contex-
ariants in the pronunciation dictionary, were added
terminants and to the frequent common nouns and
tives [3]. These variants are important to represent
itly in the lexicon, since a fixed HMM structure is
For French this is especially important to handle

a (mute-e) insertion and deletion, which can arise
different regional speaking styles as well as as from
tions. Another problematic situation arises when
mes are missing, as often occurs in casual speech.
65k 200k 200k restricted
%OOV 2g 3g 4g %OOV 2g 3g 4g %OOV 2g 3g 4g

Dev ESTER 0.76 121.6 74.2 64.8 0.29 120.0 72.9 63.9 0.30 120.0 74.6 65.9
Dev LIMSI 0.95 151.8 91.1 79.2 0.40 149.2 89.1 77.8 0.58 163.4 101.4 89.6
Eval ESTER 1.01 138.1 89.7 80.4 0.31 135.0 87.2 78.5 0.38 141.6 94.1 85.2

Table 1: OOV rates and perplexity values for the 65k and the 200k word lists; the 2g, 3g, and 4g perplexities were calculated considering
a theoretical word list of 1M words, in order to properly take into account the difference in the OOV rates.



Such sequential reductions, similar to contracted forms in
English are frequent in French. Other shortened pronun-
ciations are not reflected in writing: il y a (“there is”) is
often uttered as y a, and the word cette (“this”) may be
realized as /sEt/, /sEtx/(C.) or /st/(V).

The pronunciation probabilities are estimated from the
observed frequencies in the training data resulting from
forced alignment, with a smoothing to account for unob-
served pronunciations. The 200k word lexicon has 276k
pronunciations.

4. SEGMENTATION

The LIMSI segmentation and clustering is based on an
audio stream mixture model [5]. First, the non-speech
segments are detected and rejected using GMMs repre-
senting speech, speech over music, noisy speech, pure-
music and other background conditions. An iterative
maximum likelihood segmentation/clustering procedure
is then applied to the speech segments. The result of
the procedure is a sequence of non-overlapping segments
with their associated segment cluster labels. Each segment
cluster is assumed to represent one speaker in a particular
acoustic environment and is modeled by a GMM. The ob-
jective function is the GMM log-likelihood penalized by
the number of segments and the number of clusters, ap-
propriately weighted. Four sets of GMMs are then used to
identify telephone segments and the speaker gender. Seg-
ments longer than 30s are chopped into smaller pieces by
locating the most probable pause within 15s to 30s from
the previous cut.

This procedure and the associated models developed for
American English BN data has been used as is for all the
language we have worked on without any need for adap-
tation. We however found that the initial segmentation
based on GMM modeling speech, noise and music can
be slightly improved by adapting the models to the tar-
geted data. The main variability is coming from the mu-
sic segments and the speech over music which are clearly
source dependent. We therefore adapted this modeling us-
ing some music and segment segments from the various
sources. The overall gain in WER due to this adaptation
is in fact quite small (about 0.1%).

5. ACOUSTIC MODELS

The speech features consist of 39 cepstral parameters
derived from a Mel frequency spectrum estimated on the
0-8kHz band (or 0-3.8kHz for telephone data) every 10ms.
For each 30ms frame the Mel scale power spectrum is
computed, and the cubic root taken followed by an in-
verse Fourier transform. LPC-based cepstrum coefficients
are then computed. These cepstral coefficients are nor-
malized on a segment cluster basis using cepstral mean
removal and variance normalization. Each resulting cep-
stral coefficient for each cluster has a zero mean and unity
variance. The 39-component acoustic feature vector con-
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f 12 cepstrum coefficients and the log energy, along
the first and second order derivatives. This feature
r is linearly transformed (MLLT) to better fit the di-
l covariance Gaussians used for acoustic modeling.

e acoustic models were trained on about 190 hours
training data. Instead of using the manual seg-

ations in the reference transcriptions, the words were
ed with the automatically determined segments cre-
y the audio partitioner. This significantly simplifies

aining procedure and is coherent with the subsequent
ing.

r the final decoding pass, the acoustic models include
osition-dependent triphones with 12k tied states, ob-
using a divisive decision tree based clustering algo-

with the 35 phones. Two sets of MLLT-SAT gender-
dent acoustic models were built for each data type
band and telephone) using MAP adaptation of SI
models and MMI training.

6. DECODING

coding is performed in three passes, where each pass
ates a word lattice which is expanded with a 4-gram
Then the posterior probabilities of the lattice edges
timated using the forward-backward algorithm and
gram lattice is converted to a confusion network with
rior probabilities by iteratively merging lattice ver-
and splitting lattice edges until a linear graph is ob-
. This last step gives comparable results to the edge
ring algorithm proposed in [10]. The words with the
st posterior in each confusion set are hypothesized.
r the first and second passes the lattice rescoring step
e using a standard 4-gram language model, while in
ird pass rescoring is done with the neural network
l and the POS language model. Also to speedup the
pass the search space for each audio segment to be
ed is restricted to the a word graph derived from
ttice generated in the second pass. This results in
oding speed of about 7.5xRT (0.1xRT for the seg-
ation, 1.2xRT for the first pass, 4.6xRT for the sec-
ass, and 1.6xRT for the third pass). Unsupervised
tic model adaptation is carried out for each speaker
en the decoding passes making use of the hypothe-

f the previous pass. This done by means of a con-
ed MLLR adaptation followed by a unconstrained
R. For the regular MLLR adaptation, two regres-
lasses (speech and non-speech) are used in the sec-
ass, whereas a data driven clustering with a variable
er of classes is used in the third pass.
eal-time version of the decoding procedure has also
implemented. For this condition the decoding is re-

to two passes with very tight pruning thresholds
cially for the first pass) and with fast Gaussian com-
ion based on Gaussian short lists. The 1xRT time
t is divided as follows: 0.08xRT for segmentation,
RT for the first decoding step, and 0.78xRT for the



Audio Texts Vocab. LM RT WER
all all 65k 4g 11.0
(90+ all 200k 4g 10.7
100) all 200k 4g, NN 10.4

all 200k 4g, POS 10.5
all 200k 4g, NN, POS 7.5 10.3

90h all 200k 4g, NN, POS 7.5 10.8
90h restrict 200kr 4g, NN, POS 7.5 11.6
all all 65k 4g, NN, POS 1.1 13.7

Table 2: Word error rates for different training configurations:
acoustic training data (all vs 90h ESTER data), word lists (65k,
200k and 200k restricted), LM training data (all vs. ESTER
texts), and language modeling (4g word LM (4g), with neural
LM (4g,NN), and with class LM rescoring (4g,NN,POS))

second decoding step. The compute platform is an Intel
Pentium 4 extreme (3.2GHz, 4GB RAM) running Fedora
Core 2 with hyperthreading.

7. EXPERIMENTAL RESULTS

The experimental results on the ESTER development
data are given in Table 2. It can be seen by comparing
the first two rows of the table that the gain obtained with
the 200k language model relative to the 65k LM is quite
limited. The absolute error rate reduction is 0.3% which
is less than the OOV rate reduction of about 0.5% when
going from 65k to 200k. A larger reduction could have
been expected given that an OOV word usually generates
1.5 to 2 errors. Adding the neural network language model
reduces the word error rate from 10.7% to 10.4%, whereas
the POS language model reduces the word error rate by
about 0.2% from the same baseline. Using both the NN
and POS LMs reduces the word error to 10.3%. Given
the small gain obtained with the 200k language model,
the 65k LM was used for the 1xRT system which has a
WER of 13.7% on the same development data (last line in
Table 2).

The WER increases to 10.8% when using only 90h of
acoustic training data, i.e. by removing the 100h of data
from 1994 to 1999. The loss is limited certainly because
this data is not very representative of the sources used in
the ESTER evaluation. Using only the restricted text con-
dition to train the language model further increases the
word error to 11.6%.

On the 10 hours of the ESTER evaluation data, the full
200k system obtained a word error rate of 11.9%, achiev-
ing the lowest word error rate in this evaluation by a sig-
nificant margin.

8. CONCLUSIONS

This paper has described recent improvements in pro-
cessing broadcast news speech in French. Advances made
in our English broadcast news system [11] have been in-
corporated in the system and were found to give com-
parable improvements. To address the relatively high
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l variety and homophone rate in the French lan-
, a 200k word back-off n-gram case-sensitive lan-
model is used, as well as a continuous space lan-
model and a part-of-speech language model are

in a final rescoring pass. A significant effort was
ed to extending the pronunciation lexicon from 65k
0k words and to add alternative contextual pronunci-
s to more systematically model liaisons and mute-e.
esulting word error rate on the ESTER development
is 10.3%, which is in the same range as results ob-

on English despite the high flexional properties of
ench language and the large number of homophones.
system was also evaluated in the first French ESTER

benchmark test.
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