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Abstract

In this paper, a data-driven word decompounding algorithm is
described and applied to a broadcast news corpus in Amharic.
The baseline algorithm has been enhanced in order to address
the problem of increased phonetic confusability arising from
word decompounding by incorporating phonetic properties and
some constraints on recognition units derived from prior forced
alignment experiments. Speech recognition experiments have
been carried out to validate the approach. Out of vocabulary
(OOV) words rates can be reduced by 30% to 40% and an
absolute Word Error Rate (WER) reduction of 0.4% has been
achieved. The algorithm is relatively language independent and
requires minimal adaptation to be applied to other languages.
Index Terms: automatic speech recognition, unsupervised
word decompounding, less-represented languages

1. Introduction

In some languages it is common to generate words by the
compounding of smaller units that are primarily lexical mor-
phemes (such as in German or Turkish) or mostly grammati-
cal morphemes (for example, Semitic languages such as Arabic
or Amharic). For automatic speech recognition (ASR), word
compounding poses at least two problems. The first concerns
lexical coverage, since high out-of-vocabulary (OOV) rates are
obtained even with quite large vocabularies (containing over
65k words). The second concerns language modeling, where it
can be difficult to have reliable n-gram estimates for infrequent
words. To address these issues, word decomposition has been
investigated in many studies and for various languages such as
German [1], Turkish, Finnish and Estonian [2], and Dutch [3].
High OOV rates and poor language model estimation are
also problems faced when developing technologies for less-
represented languages for which little data in an electronic form
are available. Most of the world’s languages suffer from poor
representation on the web, which is being used more and more
as the primary source for collecting data (principally texts) for
building ASR systems. This study reports on experiments car-
ried out with the Amharic language, the official language of
Ethiopia, since it is both a less-represented language and a lan-
guage in which grammatical compounding is frequent. In a pre-
vious study [4], improvements in WER were reported by de-
compounding words using Harris” algorithm [5] when building
a system with very limited amounts of audio training data (2h,
17k tokens). Further experiments carried out using more train-
ing data (35 hours, 240k tokens) achieved worse performances
when decompounding lexical units. This result has also been
reported by others, for example in [6, 7] and one hypothesis is
that phonetic confusability is increased when generating small
recognition units, and that these units are frequent and therefore
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highly probable in the language model. The work described
here reports on modifications made to the statistical word de-
composition paradigm to address the problem of phonetic con-
fusability.

The term “morph” is used in this article to name either
words or word splits, however the splits are not always true mor-
phemes in a linguistic sense.

2. Unsupervised word decompounding

Automatic word decompounding is investigated as a means to
help select recognition units in an almost language-independent
manner. This work is an extension of the Morfessor algorithm,
as implemented in the open source Perl program called "Mor-
fessor 1.0” from the Helsinki University of Technology [8].

2.1. Baseline Morfessor 1.0 algorithm

An overview of the basics of this algorithm is provided here, for
further information refer to [8]. The program has two purposes:
first, the training of a word segmentation model given a lexi-
con with optional frequency counts. Training uses a maximum
a posteriori (MAP) criterion based on several text properties.
Second, a previously learnt decomposition model can be used
to decompound a new word list. Words that are not in the model
can also be decomposed since the algorithm is Viterbi-like. This
search algorithm relies only on the morph frequencies.
During model training, the algorithm tries to iteratively
maximize the following estimate:
argmax P(L|corpus) = argmax P(corpus|L)P(L) (1)

where P(corpus|L) is the maximum likelihood estimate of
the corpus given a lexicon L, based on the word frequencies.
P(L) is the a priori probability of the lexicon L, i.e., the proba-
bility of getting M distinct morphs my1, ..., mas. In the baseline
algorithm, two properties are used to estimate P (L), these are
the word frequency f,,, and character sequence s,, probabilities
as shown in equation 2. The modifications affect the properties
used in equation 2.

P(L) = P(fm17-~-7me)P(Sm1a-~-75mM) @)

2.2. End-of-word probability

In the baseline Morfessor program, the character probabilities
P(sm) of equation 2 are static constants, calculated only once
during model initialization, as the simple ratio of the number
of occurrences of the character divided by the total number of
characters in the corpus. These are independent of word posi-
tion. To represent the word boundary, a space character is added
to each lexical entry. The end-of-word probability is the prob-
ability of the space character, and has the same value for all
words and morphs in the corpus.

August 27-31, Antwerp, Belgium



Inspired by Harris’ algorithm [5], we propose replacing this
static probability by the probability Py defined in equation 3.
The probability that a word beginning WB is a morph is defined
as the ratio of the number of distinct letters L(WB) which can
follow WB over the total number of distinct letters L.

Py (WB) = L(WB)/L 3)

This definition favors short morphs, which is potentially in-
teresting for languages where the word compounding genera-
tion process results from the addition of prefixes and suffixes
that are grammatical morphemes such as pronouns, possessive
and demonstrative adjectives, prepositions and postpositions.
For languages in which the compounding is mainly lexical, the
morphs are generally longer. The original Harris’ algorithm is
more appropriate for such languages since it searches for a local
maximum of L(WB) [1].

3. Modified algorithm for ASR
3.1. Distinctive feature motivated property

All the properties used in the Morfessor program are based on
written language and do not incorporate any “oral” properties
that could be useful for ASR. Given the confusions observed in
prior studies [10], a phone-based feature was added to the P(L)
term of equation 2. This property aims to represent the phonetic
confusability between lexical units. It is theoretical and relies
on some distinctive features (DF) of the phones used in the lan-
guage of study. Equation 4 gives the definition for a morph my.
As a first approach, we chose to limit the computation to the
vowels and to the morphs that share the same consonantal root.
The distance Dpr(my) is the range [0, 1].

Jj=Np—1
Dpr(mg) = H Dpr(mi, mj) “4)
j=1
with 1=V, A
Dpr(mig,mj) = % Q)

=1
Ny, is the number of morphs that share the same consonan-
tal root, Ay j; is the number of different DFs in the [*" vowel of
morphs my, and m;, and C is the total number of distinct DFs.
To evaluate Ay, j;, one can use DF tables found in phonetics
literature, for example in [9]. The distinctive features used in
this study only concern vowel and are given in Table 2.

3.2. Phonetic confusion constraint

The DF property is theoretical and therefore does not account
for the phonological variation observed in real world speech,
such as in the choice of vowel alternatives. In [10] syllabo-
tactic alignments were studied in order to determine the most
frequent confusions at the syllable level. For each syllable, the
vowel that was most often substituted by the aligner was deter-
mined. These confusion pairs provide an additional means of
preventing phonetic confusion amongst units arising from the
decompounding.

During the decompounding process, word splits that differ
from other morphs by only one syllable are compared. If the
pair of syllables is among the most frequently confused pairs
found in the alignment study, the split is forbidden.

3.3. Summary of the different options

The different options investigated with the decompounding al-
gorithm are summarized in Table 1. The three configurations
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M, M H, M H DF are compared both with and without the con-
fusion constraint Cc.

Table 1: Decomposition options compared in this study.

Option Comment

BL Baseline word based system, no decompounding
M Baseline Morfessor 1.0

MH M + modified *Harris’

MHDF M H + distinctive features parameter

Cc + confusion constraint

4. Application to Amharic

The Ambharic language is an example of a less-represented lan-
guage, for which only small quantities of written texts are
available. There are some recent studies on speech recogni-
tion and speech processing for Amharic [11, 4], and a web
resource portal for Amharic corpora has also been created
(http://corpora.amharic.org/). Grapheme-to-phoneme conver-
sion is straightforward for this language. Ambharic has a CV
(consonant vowel) structure, with 85% of the syllables repre-
senting a CV sequence. One symbol represents the complex
sound /ts/V and the reminder represent CwV sequences (where
w is a semi-consonant). In this study, Cw has been considered
as a single phone. Given the CV structure of the Amharic lan-
guage, splits are allowed only after a vowel.

The distinctive features used with the 'DF’ option are
shown in Table 2. Based on vowel confusions reported in a
previous study [10], in this study /a/ is considered non-tense.

4.1. Audio and textual data

Compared to other languages for which models and systems
have been developed [12], the Amharic audio corpus is quite
small, containing a total of 247k words with 50k distinct lex-
emes. It is comprised of 37 hours of broadcast news data. The
data were transcribed by native Ethiopian speakers, and two
hours of data taken from the latest shows were reserved for de-
velopment test. Table 3 summarizes the characteristics of the
audio corpus in terms of the number of hours by source, the
number of distinct speakers, and the total number of words for
both the training and the development subsets.

In addition to the transcriptions of the audio data, about 4.6
million words of newspaper and web texts have been used for
language model training. Over 340k distinct words are found in
these texts.

4.2. Decompounding the training texts

When building a recognition lexicon from training texts, we ap-
ply a frequency cut-off to get rid of misspelled words and ar-
tifacts. The basic idea in this study consists of building a de-
compounding model for a reference lexicon, and then using this

Table 2: Distinctive features used with the algorithm.
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Table 3: Characteristics of the audio corpus (number of hours,
speakers, and total number of words for each audio source).

Source Training  Development
Deutsche welle  24h 6mn 1h 20mn
Radio Medhin 11h 8mn 37mn

# speakers 200 15
#words 233k 14k

model to decompose all words in the corpus without any fre-
quency cut-off. A new reference lexicon is then built applying
a frequency cut-off. The OOV rate may decrease since OOV
words may have been decompounded. The number of lexical
tokens in the training text corpus is also increased with this
method.

An initial 133k word-based lexicon was selected, com-
prised of the 50k distinct words in the training data transcrip-
tions and all words occurring at least three times in the news-
paper and web texts. The out-of-vocabulary rate of the devel-
opment corpus with this word list is 7%, which is quite high
compared to the OOV rates obtained for well-represented lan-
guages which are typically around 1-2%.

Table 4 shows the number of morph types for the different
decompounding options listed in Table 1. Since a morph may
exist both as a word and as an affix, the explicit use of this infor-
mation is investigated by adding a ’+’ sign to prefixes found by
the algorithm in order to ensure the possibility of recombining
morphs back into entire words. Since the word and affix entries
corresponding to the morph will have the same pronunciations
in the recognition lexicon, the choice between forms is made
by the language model. The third column gives the number
of types when no explicit distinction is made between words
and affixes (i.e., no ’+ sign is added during decomposition).
The difference between the second and the third columns is the
number of morphs that also are words. The Harris option (H)
gives the smallest lexicon with about 90k units. When prefixes
are explicitly marked (as shown in the second column, ’+’), the
reduction in lexical size is only about 5% with the confusion
constraint (Cc) and 30% without it, illustrating that most affixes
are also words.

Table 4: Number of morph types in the lexicons with and with-
out '+’ for different decompounding options.

Options # Morph Types '+’ | # Morph Types
BL 0 133384
M 95937 70267
M Cc 128239 109694
MH 90740 65421
MH Cc 126105 107123
M H DF 94198 69038
M H DF Cc 128404 110320

Figure 1 shows the number of types (top) and tokens (bot-
tom) as a function of their length in phones, for the different de-
compounding options. The BL curve (in black) is the baseline
curve, where words are not decompounded. The other curves,
for which words were decompounded and prefixes marked with
a '+ sign, show a noticeable shift to smaller word lengths.
The curves with and without the *Cc’ option form two distinct
groups. The *Cc’ curves (drawn with °x’) have substantially
more distinct morphs types for lengths of 4 to 12 phones com-
pared to the 'non Cc’ curves (drawn with *+’). The frequency
weighted curves (tokens) are very similar with the exception
of the 2-phones morphs. With the *Cc’ option, these units are
less frequent than without it. Since these small units are more
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error-prone than longer units, reducing their frequency with the
phonetic constraint ’Cc’ is promising.
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Figure 1: Number of word types (top) and word tokens (bottom)
in the training data as a function of the number of phones for
different decomposition options.

4.3. OOV rates

Table 5 gives the log-likelihood and the type and token OOV
rates measured on the development corpus (14.2k words). The
language models are Kneser-Ney smoothed four-gram models,
and result from the interpolation of two component LMs: one
estimated on the web/newspaper texts and the other on the man-
ual transcripts of the audio data. The interpolation coefficient
was optimized for each LM by measuring the perplexity on the
dev transcripts. Different LMs were built for each set of de-
compounding options. Since some of the words which are not
in the baseline vocabulary are decomposed, the OOV rates are
reduced. The relative reduction in OOV rate ranges from 30%
to 40% depending on the options. The log-likelihoods are all
seen to be smaller than the word-based ones. However, com-
paring the option sets with and without the phonetic constraint,
it can be noted that the use of the confusion constraint increases
the likelihood.

5. ASR experiments

This section reports recognition results obtained with systems
trained for each of the decomposition option configurations.
The baseline system is the word-based system. The speech
recognizers all have two decoding passes, with unsupervised
acoustic model adaptation after the first pass [13]. Specific
acoustic models were built for each option set. All acoustic
model sets cover about 10.5k distinct intra-word contexts (3



Table 5: Likelihood and OOV rates on the dev text. The dev text
is comprised of 14.2k tokens and 5.8k types.

Options lh OO0V Types | OOV Tokens
BL -38768 15.7 6.9
M -41651 10.6 43
M Cc -41126 10.6 4.6
MH -41733 10.6 42
MH Cc -41408 10.5 4.5
M H DF -41675 10.6 42
MHDF Cc | -41384 10.6 4.5

states per model), with a total of about 8.5k tied states (32 Gaus-
sians/state).

Table 6 gives the word error rates for the different ASR sys-
tems, estimated after recombining prefixes and roots back into
full words. The full-word baseline system has a WER of 24.0%.
The three systems M, M H and M H DFE, which do not use the
confusion constraint Cc, perform slightly worse than the base-
line system. On the contrary, the three Cc systems all give small
gains. The worst performance is obtained by the Harris Morfes-
sor algorithm M H, which is the algorithm that split the largest
number of words. Nevertheless, the Harris modification seems
useful since it produces smaller lexicons than with Morfessor
1.0 and a gain is obtained by adding the Cc option (0.2% abso-
Iute with M H Cc compared to M). Concerning the DF option,
there is a 0.7% absolute reduction between the M H DF sys-
tem and its corresponding Cc version. The best performance
is obtained with the DF motivated system (M H DF Cc) which
achieves a 0.4% absolute improvement compared to the base-
line. The confusion constraints between lexical units appears
to be useful for identifying recognition units when used in con-
junction with word decompounding.

All but 7% of the 971 OOV tokens are decomposed into
morphs that are in the recognition dictionary. After recogni-
tion 14% of the 902 potentially recognizable decomposed words
are recovered (after recomposition). However the difference in
WERs of the M and the M H DF Cc systems is about half this
number, primarily due to confusion errors of small morphs in-
troduced by the decomposition.

Table 6: Word Error Rates for the different ASR systems.

Algorithm Options | # Morphs | WER (%)
BL 133384 24.0
M 95937 24.1
M Cc 128239 23.9
MH 90740 24.5
MH Cc 126105 23.7
M H DF 94198 24.3
M H DF Cc 128404 23.6

6. Discussion

In this paper, we have described an unsupervised data-driven
word decompounding algorithm, which extends the Morfes-
sor algorithm to to better suit speech recognition. The pro-
posed modifications have been validated in recognition experi-
ments, where OOV and WER reductions have been obtained on
a less-represented language in which grammatical morphemes
are glued to roots.

This algorithm splits words into smaller units in an itera-
tive manner by maximizing a MAP estimate of a lexicon given
a word list with frequency counts. The end-of-word probabil-
ity computation has been modified to allow more splits. A new
phonetic-based parameter, motivated by distinctive features and
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phonetic confusion constraints based on previous audio align-
ments has been incorporated. We compared systems built with
different option sets and the best system incorporates all op-
tions. For this system, in comparison to the word-based system,
the lexicon size is slightly reduced, and an absolute gain of 0.4%
in WER has been achieved. Without the confusion constraints,
all systems obtained slightly worse performances than the base-
line. For these systems, small units (2 phones long) are very
frequent and very error-prone.

The DF parameter is a phonetically motivated parameter. It
has been introduced only for vowels and further investigation
should be carried out with consonants. In the current imple-
mentation, the different terms in the MAP estimate are summed,
however it may be useful to weight these terms in order to opti-
mize each contribution. We plan to test the algorithm on another
language similar to Amharic, Arabic for instance, as well as on
a language in which the word compounding generation process
is lexical, such as German or Turkish for example.
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