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Abstract

This paper describes incorporating discriminative features

from a multi layer perceptron (MLP) into a state-of-the-art

Arabic broadcast data transcription system based on cepstral

features. The MLP features are based on a recently pro-

posed Bottle-Neck architecture with long-term warped LP-

TRAP speech representation at the input. It is shown that the

previously reported improvements on a development Arabic

transcription system carry through to a full system at a state-of-

the-art level. SAT, CMLLR and MLLR adaptation techniques

are shown to be useful for both MLP and combined features,

though to a lesser degree than for PLPs. Without adaptation,

MLP features obtain superior performance to cepstral features

in all test conditions, and with adaptation both feature sets give

comparable results. Combining the features, either by feature

concatenation or system hypotheses, gives significant gains.

Gains from MMI model training seem to be additive to the gain

coming from discriminative MLP features.

Index Terms: MLP, LP-TRAP, broadcast transcription, bottle-

neck, discriminative training

1. Introduction
One of the recent trends in speech-to-text systems is using dis-

criminative techniques with large corpora for more accurate

acoustic modeling. Maximum likelihood training of Gaussian

mixture HMMs is often being replaced by Maximum Mutual In-

formation (MMI) or Minimum Phone Error (MPE) criteria and

features are being modified by discriminatively trained trans-

forms such as feature-level MPE [1]. An area of growing in-

terest is incorporating the discriminative property in the feature

extraction by using discriminative classifiers such as MLPs. By

covering a wide temporal context MLP features can potentially

capture different speech properties than the widely used cepstral

features. In addition, MLPs can be trained to deliver estimates

of class posteriors which can be used as features for Gaussian

mixture acoustic model. Over the years, ICSI, SRI, UW and

other groups have developed mature techniques for extracting

probabilistic MLP features such as TRAPs, and have experi-

ence incorporating these MLP features in speech-to-text (STT)

systems [2, 3]. One of the important properties of MLP features

is their complementarity to cepstral features, it is thus desirable

to know how to best include both feature types in a system.

This paper presents recent research into how MLP features

can be efficiently incorporated in a state-of-the-art transcription

system for broadcast data utilizing cepstral features. In addi-
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tion to the more widely used 9 frames of PLP based features,

time-warped linear predictive TRAP features [4] are used. To

the best of our knowledge these latter features have yet to be

incorporated in a state-of-the-art system. Although it is difficult

to improve upon a competitive system, doing so can certainly

increase the uptake of such novel technologies in the commu-

nity. Since the MLP features used here differ from the better

known ones, it is of interest to explore suitable ways of com-

bining them with cepstral features. A four-layer Bottle-Neck

MLP architecture [5] is used to deliver two types of MLP fea-

tures differing in their input speech representations. Extending

our previous work on a development task [6], acoustic models

are trained on both PLP and MLP features as well as a combi-

nation of the two. This paper incorporates MLP features in an

Arabic STT system and examines how the MLP features com-

pare to cepstral ones, how both features combine, how the sys-

tem performance is dependent on the amount of training data,

and how the acoustic models utilizing MLP features can benefit

from discriminative training and from model adaptation. Ex-

periments are carried out with large training of a full system,

applying model adaptation techniques such as speaker adaptive

training (SAT), Constrained Maximum Likelihood Linear Re-

gression (CMLLR) and MLLR.

2. Task & System Overview

The speech recognizer was derived from the LIMSI Arabic

speech-to-text component system used in the AGILE partici-

pation in the GALE’07 evaluation. The transcription system

has two main parts, an audio partitioner and a word recog-

nizer [7]. The audio partitioner is based on an audio stream

mixture model, and serves to divide the continuous stream of

acoustic data into homogeneous segments, associating cluster,

gender and labels with each non-overlapping segment. The rec-

ognizer makes use of continuous density HMMs for acoustic

modeling and n-gram statistics for language modeling. Each

context-dependent phone model is a tied-state left-to-right CD-

HMM with Gaussian mixture observation densities where the

tied states are obtained.

Word recognition is performed in one or more passes,

where each decoding pass generates a word lattice with cross-

word, position-dependent, gender-independent acoustic mod-

els, followed by consensus decoding with 4-gram and pronun-

ciation probabilities [7, 8]. Unsupervised acoustic model adap-

tation is performed for each segment cluster using the CMLLR

and MLLR [9] techniques prior to the next decoding pass.

All of the available manually transcribed Arabic broadcast

news and broadcast conversation data distributed by the Lin-

guistic data consortium was used to train acoustic models. This

corpus contains over 1380 hours of raw data, with roughly 730
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ID Raw features (#) HMM features (#)

PLP PLP (13) PLP+∆+∆
2 (39)

MLP9xPLP 9x(PLP+∆+∆
2) (351) MLP (39)

MLPwLP wLP-TRAP (475) MLP (39)

Table 1: Naming conventions for MLP features and how the raw

input features relate to the features for HMM.

MLP train set bnat06 WER (%)

17 hrs 24.7

63 hrs 24.2

300 hrs 23.4

1200 hrs 22.2

PLP baseline 25.1

Table 2: Word error rates on the bnat06 data set as a function

of the amount of data use to train the MLP9xPLP. All the HMMs

are trained on 300 hours of speech. Single decoding pass with

a 4-gram LM, no adaptation, no MLLT, no MMIE.

hours of broadcast news and 550 hours of broadcast conversa-

tions. After removing non-speech portions (music, publicity)

and portions that fail forced alignment, there are about 1250

hours of data used for HMM training. We refer to this cor-

pus as the 1200 hour training set. These data were used to

train the baseline gender-independent acoustic models, with-

out maximum-likelihood linear transform (MLLT) or speaker-

adaptive training (SAT). The models cover 44k contexts with

11.5k tied states, and have 32 Gaussians per state.

Various language models were trained on corpora com-

prised of 11 million words of audio transcriptions and 1 billion

words of texts from a wide variety of sources. The recognition

word list contains either 200k or 290k non-vocalized, normal-

ized entries. The language models result from the interpola-

tion of models trained on subsets of the available data, with

the interpolation weights optimized on the combined GALE de-

velopment data from 2006 and 2007. The largest coefficients

are associated with the audio transcriptions, accounting for al-

most half the LM weight, even though these texts represent only

about 1% of the available data. This highlights the importance

of audio transcripts for language model training. Results are re-

ported using word-based language models and language mod-

els estimated on morphologically decomposed texts [10]. For

multipass decoding, lattices are rescored by a neural network

LM [11] interpolated with a 4-gram backoff LM. The pronun-

ciation lexicon is represented with 71 symbols, including 31

simple consonants, 30 geminate consonants, 3 long and 3 short

vowels, a generic vowel plus 3 pseudo phones for non-linguistic

events (breath, filler, silence).

Results are reported for several sets of test data used in the

GALE community, where each set contains about 3 hours of

broadcast news (bn) or broadcast conversation (bc) data. These

test sets are referred to in the GALE community as bnad06,

bnat06, bcad06, bcat06, eval06, dev07, eval07. The last three

test sets contain both bn and bc data. The out-of-vocabulary

rate with this word list is about 1%, and the devset perplexities

with a 4-gram language model are about 790 for dev06 and 430

for dev07.

3. Training MLP Features

Neural network feature extraction consists of two steps. The

first step is raw feature extraction which constitutes the input

to the MLP. Typically this vector covers a wide temporal con-

MLP train set MLP parameters WER(%)

63 hrs 1.4M 24.2

63 hrs 6.5M 24.4

1200 hrs 1.4M 22.2

1200 hrs 5.3M 21.9

Table 3: Influence of the MLP size on performance for two dif-

ferent quantities of data use to train the MLP9PLP. Results on

the bnat06 data. All the HMMs are trained on 300 hours of

speech. Single decoding pass with a 4-gram LM, no adapta-

tion, no MLLT, no MMIE.

text (100–500 ms) and therefore is highly dimensional. Second,

the raw features are processed by the MLP followed by a PCA

transform to yield the HMM features.

Raw features: Two different sets of raw features are used

which cover different temporal contexts: 9 frames of PLPs

(9xPLP) and time-warped linear predictive TRAP (wLP-

TRAP) [4]. The 9xPLP set is based on the PLP features from

the baseline system which are mean and variance normalized

per speaker. The raw features are formed by 9 neighboring

frames of PLPs (12 coefficients plus energy, with derivatives

∆ and ∆
2), centered at the current frame. The feature vector

has 9 × 39 = 351 values and covers a 150 ms window. The

wLP-TRAP raw features are obtained by warping the temporal

axis in the LP-TRAP feature calculation. Linear prediction is

used to model the Hilbert envelopes of 500 ms long energy tra-

jectories in auditory-like frequency sub-bands [12]. 25 LPC co-

efficients in 19 frequency bands form the raw features, yielding

19 × 25 = 475 values which cover a 500 ms window. wLP-

TRAPs are not derived from the same sub-band energies sam-

pled at 100Hz rate as PLPs so they have a potential of producing

more complementary features to PLPs than 9-PLPs or TRAPs,

which is an advantage for feature combination. The adopted

naming conventions are given in Table 1 along with how the

raw features relate to the features for HMM.

MLP architecture: The MLP architecture is based on a four

layer bottle-neck network with an input layer, two hidden lay-

ers and an output layer. The input layer distributes the raw fea-

tures in the second layer, which is large in order to provide the

necessary modeling power. The third layer is small, its size is

equal to the required number of features, which in this work was

fixed to 39 for easy comparison with PLP features. The output

layer computes the estimates of the target class posteriors. The

classes are context independent phone states obtained from a

HMM automatic alignment which were shown to outperform

phone targets [5]. There are 69 three-state phones and 3 units

with all states merged (silence, filler, breath) resulting in 210

target classes. The outputs of the small hidden layer neurons

(prior to a sigmoid function) are decorrelated by a PCA trans-

form and used as final features. Note that this MLP structure

allows the feature vector size to be arbitrarily chosen, indepen-

dent of the number of MLP targets.

MLP training data: The MLP features were trained on what

we call the 1200 hour train set. Since the MLP features make

use of a temporal context up to 500ms, the frames coming from

250ms segment boundaries are not used for training (except for

providing a context), thus the available MLP train data account

for 1168 hours. It is known that more data and/or more pa-

rameters in the MLP help, but at certain point the gain is not

worth the effort. Table 2 gives the word error rate as a func-

tion of the amount of MLP training data for a MLP with a fixed

number (1.4 million) of parameters with 9xPLP raw features.

The HMMs were always trained on the 300 hour training set
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MLP train set 63 hrs 300 hrs

MLP9PLP 24.2 23.4

MLPwLP 25.8 23.5

PLP+MLP9PLP 22.7 22.5

PLP+MLPwLP 21.7 21.3

Table 4: Performance on the bnat06 data set of two types of

MLP features, stand-alone or concatenated with PLP as a func-

tion of the amount of data used to train the MLP. All the HMMs

are trained on 300 hours of speech. Single decoding pass with

a 4-gram LM, no adaptation, no MLLT, no MMIE.

and evaluated on bnat06 dev data. The MLP performance is

seen to improve with the additional data, and no saturation is

observed. The WER of the baseline PLP system (single pass

decoding with speaker-independent models, no SAT, no MLLT,

no MMIE and no adaptation) trained on the 300 hour train set

is 25.1%.

Training process: Training a MLP on over thousand hours of

speech required two modifications to the training process per-

formed by QuickNet software. First, the storage space require-

ments of the raw features were reduced by almost a factor of

four by using linear quantization of 32 bit float values to 8

bits, with no impact on performance. Once the MLP is trained,

output features are created using non-compressed raw features.

Second, to reduce the computation time of MLP training, a sim-

plified training scheme is adopted from [2]. Instead of iterating

all training data 7 to 12 times through the MLP as determined by

cross-validation performance, a fixed number of 6 epochs with

fixed learning rates is used. In addition, the data are randomized

and split in three non-overlapping subsets of 13%, 26%, and

52% of frames. First three epochs are trained on 13% of data,

two subsequent epochs use 26% of the data, the last epoch uses

52% of the data, and the remaining data is used for monitoring

the performance. This reduces the training time by a factor of

5.4 with a minor impact on performance (in fact, simulations on

the 300 hrs set even improve from 24.4% to 24.2% WER on the

bnat06 data for 9xPLP raw features, with unadapted models).

All these modifications lead to about one week training time on

the 1200 hour train set using one four-threaded computer, and

the wLP-TRAP raw training features occupy 200GB of space.

MLP size: To get the most benefit from the larger amount of

training data may require using a more complex model. An

experiment was carried out by enlarging the first hidden layer

in the MLP in order to raise the number of free parameters, as

shown in Table 3. For the small 63 hour train set, the larger MLP

degraded performance, while for the full 1168 hours it brought

a 1.6% relative improvement. However, such a gain was not

judged to be worth the almost 4 times longer MLP training time,

so further experiments used the smaller MLP.

4. Using MLP Features

This section presents contrastive results starting with the base-

line system, and going to more complex models and decoding

strategies typically used in state-of-the-art systems.

Table 4 compares performances of the MLP features when

used stand-alone and when concatenated with PLP features at

the input to the HMM system as a function of the amount of

data used to train the MLP. Note that the concatenated vector

has 78 features, whereas the stand-alone vector has 39 features.

HMMs were all trained on the 300 hour data set. For all feature

sets there is a significant WER reduction when the MLP training

data is increased from 63 to 300 hours. The results with the two

bnat06 WER (%)

Features 300h 300h/1200h 1200h

PLP 22.7 21.8

MLP9xPLP 21.8 21.3 20.3

MLPwLP 21.9 21.3 20.7

PLP + MLP9xPLP - 20.4 19.9

PLP+MLPwLP 20.1 19.7 19.2

Table 5: Performance of PLP and MLP features, and feature

concatenation with a single decoding pass. The amount of data

used to train the MLP/HMM are given in the column headers.

Single decoding pass with an improved 290k 4-gram LM, im-

proved pronunciation modeling, gender-dependent models, no

adaptation, no MMIE, with MLLT for PLP.

bnat06 WER (%)

Features PLP MLPwLP PLP + MLPwLP

No adaptation 21.8 20.7 19.2

SAT+CMLLR+MLLR 19.0 18.9 17.8

Table 6: Performance on bnat06 with the improved 290k 4-

gram LM for PLP and MLPwLP features, and feature concate-

nation without and with adaptation. gender-dependent models,

no MMIE, and with MLLT for PLP. Both the MLP and HMM

are trained on 1200 hours of data.

types of MLP features stand-alone are comparable when 300

hours are used to train the MLPs. HMMs trained with both MLP

features outperform the PLP baseline (25.1%). Concatenating

the PLP features with the MLP ones gives the best performance

(the last two entries), however the improvement from training

the MLP on more data is less than for the systems using only

MLP features (the top two table entries). The best results are

obtained with the HMM trained on the PLP+MLPwLP features.

The results presented in Table 5 use a system that has an

improved 290k 4-gram LM, improved pronunciation modeling

and gender-dependent models. The PLP-based system also has

MLLT. The table further explores performance as a function of

the amount of data used to train the MLP. In the first column

both the MLP and HMM are trained on 300 hours. In the sec-

ond column, the same MLP is used but the HMMs are trained

on 1200 hours. Finally in the third column both the MLP and

HMM are trained on 1200 hours. Again, the two MLP features

are seen to provide comparable performance, with a slight ad-

vantage for the MLP9xPLP features with the larger HMM train-

ing. As already observed with HMMs trained on 300 hours of

data (see Table 4), the best results are obtained with the concate-

nated features PLP+MLPwLP. This feature set gives an absolute

gain of 1.2-1.6% over any other of the features.

Table 6 compares three feature sets with the 290k 4-

gram LM, the improved pronunciation modeling, and gender-

dependent acoustic models. The first entry corresponds to a sin-

gle unadapted decoding, and the second to a two-pass decoding

using the standard techniques of SAT training, and CMLLR and

MLLR adaptation. These results show that without adaptation

the MLPwLP and concatenated PLP+MLPwLP features clearly

outperform the PLP ones. However, with CMLLR and MLLR

adaptation, only the concatenated features perform significantly

better than the PLP.

The last set of experimental results were produced with

a more complete system, including gender-dependent SAT,

MMIE acoustic models (with MLLT for PLP) trained on 1200
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AM LM bnat06 bnad06 bcat06 bcad06 eval06 dev07 eval07

PLP word 16.7 15.5 22.8 20.4 19.3 12.4 13.7

MLPwLP word 16.8 15.7 22.7 20.5 20.1 12.7 14.3

PLP+MLPwLP word 15.4 14.3 21.1 18.6 18.4 11.6 13.0

PLP ⊕ PLP+MLPwLP word 15.0 13.8 20.7 18.3 17.7 11.2 12.4

PLP morph. 16.7 15.3 23.2 20.6 19.4 12.2 13.8

PLP+MLPwLP morph. 15.7 14.3 21.9 19.2 18.6 11.6 12.9

4-way rover both 14.5 13.2 20.2 17.9 17.1 10.6 11.9

Table 7: WER on various GALE data sets with broadcast news (bn) or broadcast conversation (bc) data. The eval06, dev07, eval07

sets contain both bn and bc data. The acoustic models are gender-dependent SA, MMI trained PLP and MLP models (also with MLLT

for PLP) trained on 1200h of manually transcribed data, with word duration models. Multiple pass decoding with CMLLR and MLLR

adaptation, a 290k 4-gram NN LM, and improved pronunciation models. Results in line 4 and 7 are obtained with 2-way and 4-way

ROVER combinations.

hours of manually transcribed data, with word duration mod-

els. It uses a multiple pass decoding strategy with CMLLR

and MLLR adaptation, a word- or morph-based 290k 4-gram

neural network (NN) language model, and improved pronun-

ciation models. What we refer to as the NN LM results from

the interpolation of a connectionist language model with a stan-

dard 4-gram backoff LM. Table 7 gives the word error rates

for three acoustic models (PLP, MLPwLP and PLP+MLPwLP for

seven GALE test sets, with two NN LMs (word based and with

morphological decomposition), as well as some combinations

using ROVER [13]. It can be seen that the PLP and MLPwLP

based systems give comparable results, with small differences

across test sets. Based on the combination experiments reported

in [6], we selected a 2-way ROVER combining the PLP and the

PLP+MLPwLP based systems, which gives an average gain of al-

most 0.5%. The results with the morphologically decomposed

LM [10] are seen to be comparable to those with the word-

based LM. A 4-way ROVER combination gives an additional

0.4% gain over the 2-way ROVER.

Although the performance of the PLP system has been im-

proved from the baseline of 25.1% to 16.7% on the bnat06

data set (a relative WER reduction of 33%), the combined

PLP+MLPwLP based system obtains a lower WER for all test

sets, with an average gain of 1.2% absolute. There is a gain

(over 4% absolute) with ROVER combination of the PLP and

PLP+MLPwLP based systems, even though the PLP features are

in there twice. We attribute this to the observation that unsu-

pervised model adaptation is more effective for the PLP-based

system than the MLP-based one.

5. Summary

This paper has explored incorporating novel MLP features, de-

rived using the bottle-neck MLP architecture, in a state-of-the-

art Arabic broadcast data transcription system. In particular the

influence on performance of the amount of data used to train

the MLP, the number of free parameters used when training the

MLP, and the amount of data used for HMM training was as-

sessed. Experiments were carried out on the Gale Arabic broad-

cast news task using multiple development data sets. When used

without adaption, the MLP features have better performance

than standard PLP features. However, once SAT training and

CMLLR/MLLR adaptation are used, both feature types have

comparable performance. Feature concatenation appears to be

the most efficient combination method, providing the best gain

at the lowest decoding cost. In general, it seems best to com-

bine features based on different time spans as they provide high

complementarity. Since the PLP based system improves more

than the MLP based with unsupervised adaptation, an additional

gain is obtained by combining a PLP based system with one

based on the concatenated features and with ROVER combina-

tion using different language models. It also seems that gains

from MMI model training are additive to the gain coming from

discriminative MLP features.
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