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Abstract

Generative Gaussian back-end and discriminative logistic re-
gression are the most used approaches for language score fu-
sion and calibration. Combination of these two approaches can
significantly improve the performance. This paper proposes the
use of an adapted Gaussian back-end, where the mean of the
language-dependent Gaussian is adapted from the mean of a
language-specific background Gaussian via maximum a posteri-
ori estimation algorithm. Experiments are conducted using the
LRE-07 evaluation data. Compared to the conventional Gaus-
sian back-end approach for a closed set task, relative improve-
ments in the Cavg of 50%, 17% and 4.2% are obtained on the
30s, 10s and 3s conditions, respectively. Besides this, the esti-
mated scores are better calibrated. A combination with logistic
regression results in a system with the best calibrated scores.

Index Terms: Language recognition, Gaussian back-end,
Adaptation

1. Introduction
Language detection is a binary decision of whether the language
of a speech segment corresponds to a specific language from a
set of target languages. In any decision making task, producing
the correct decision is essential, but reporting the confidence
with which the decision is made is also important. The con-
fidence measure provides information about how reliable the
decision is. In real applications, useful systems need not only
be accurate in terms of classification, but also they need to be
well calibrated. When two systems have the same classification
performance, the more calibrated one should be used.

State-of-the-art language recognizers typically make use of
several acoustic and phonotactic sub-systems. Combining the
outputs of these sub-systems, generally improves the perfor-
mance. The combined system is more accurate and the esti-
mated scores are better calibrated. Score calibration consists
of mapping the original scores to a new ones that are reli-
able estimates of the true class probabilitites. Recently, sev-
eral score fusion and calibration techniques have been pro-
posed for language recognition task, including Gaussian back-
end [1] [2], logistic regression [3] [4], combination of these two
techniques [5] [6] [7], neural network [8] and support vectors
machine [9]. In this latter reference, a comparison study be-
tween most of these techniques can be found. A toolkit known
as the FoCal Multi-class toolkit1 that implements the first two
approaches is also available. More details about the topic of
score calibration for language recognition can be found in [4].

*This work was in part supported by OSEO under the Quaero pro-
gram.

1http://niko.brummer.googlepages.com/focalmulticlass

In previous work [10], a technique for open-set language
detection with Gaussian back-end was proposed. The mean of
the target-dependent Gaussian was adapted (using maximum a
posteriori adaptation) from the mean of a common Gaussian
Background model trained using data from target languages
only and used to represent the out-of-set languages. Compet-
itive results to the state-of-the art approaches were obtained,
although, the assumption was made that no data from out-of-set
(OOS) languages is available. This paper further investigates
this approach for the closed set task.

2. Language score fusion and calibration
Figure 1 shows a block diagram of the score fusion and cal-
ibration module. Experiments are conducted using the FoCal
Multi-class toolkit.
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Figure 1: A block diagram of the score fusion and calibration
module

The language recognition system makes use of the parallel
Phone Recognizer followed by Language Modeling (PPRLM)
approach [11]. Phonotactic scores estimated using each decoder
are first mean normalized. This step is done for each decoder
independently. The normalized scores are then stacked in a fea-
ture vector of dimension d = ND ∗ Nlm (number of decoders
times number of phonotactic language models).

2.1. Gaussian back-end approach

The set of feature vectors associated with a given target lan-
guage are used to train a language dependent multivariate nor-
mal distribution N(μ�,Σ�) (one Gaussian). In this work, all
Gaussians share a common full covariance matrix and form
what is called the Gaussian Back-end (GB). The decision func-
tion can be seen as an affine transform [3] expressed as fol-
lows [10]:

δ�(x) = (Σ
−1μ�)

tx− 1
2
μt
�Σ

−1μ� (1)

where μ� is the mean vector, and Σ is the common covariance
matrix. Because of this linearity, this technique is known as
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Linear Gaussian back-end. It transforms d general scores to
Nl multi-class log-likelihoods (Nl is the number of target lan-
guages). No explicit LDA is needed since this transformation
implicitly performs it. In this case, Gaussian back-end performs
both score fusion and calibration.

2.2. Adapted Gaussian Back-end approach

In this work, only the adaptation of the mean will be considered.
The adaptation of the covariance matrix was found to be not ef-
fective, although, the decision function is no longer linear. The
general form of the adaptation can be expressed as follows [13]:

μ̂� = α�μ� + (1− α�)μ̄ (2)

where μ� and μ̂� are the mean of language dependent Gaus-
sian before and after adaptation, and μ̄ is the mean of the Gaus-
sian background model. The effectiveness of this adaptation
depends on several factors, such as the representation of the
background model, the choice of the adaptation factor and the
optimization procedure.

The adaptation factor α� is usually chosen to be common
for all classes (languages). This is a sub-optimal selection, as
the available development data is not well balanced between
different languages. For example, in our development data, the
number of speech segment with 30s is equal to 2485 for English
and only 43 for Thai. In this work, the factor α� is defined as
follows:

α� =
n�

n� + ρ
(3)

where n� is the number of examples for the target language �
and ρ is the relevant factor to be optimized. This definition
makes α� language dependent and more finely optimized.

In previous work, a common Gaussian trained using data
from all target languages was used as background model for
adaptation. In this work, a language-specific background model
was used. The mean of this model is estimated using data from
the non-target languages only. To avoid the mean to be biased
to languages with big amount of development data, the mean μ̄�

of the target-specific background model is estimated as follows:

μ̄� =
1

Nl − 1
X

LT , q �=�

μq (4)

where LT is the set of target languages. Using this definition,
performances was consistently better for all test conditions.

The optimization of the factor ρ was performed using a
stratified k-fold cross-validation with k equal 5, to make sure
that each fold contains the same proportion of class labels as
in the original data. Therefore, for each class (target language)
there was 20% of the original data in each fold. The selected
value of the parameter ρ is the one that minimizes the average
cross-entropy referred to as multi-class Cllr [4]. For a given
fold k, the multi-class Cllr measure is defined as follows:

Ck
llr = − 1

Ns log2

X
LT

1

n�k

n�kX
s=1

log2 Ps (5)

where Ns is the total number of test segment, n�k is the number
of test segments for the target language � in the fold k and Ps

is the posterior probability of the true class of trial s defined
using softmax as follows:

Ps =
exp(p(s|c(s))P
LT
exp(p(s|�)) (6)

where p(s|�) is the likelihood of the trial s given the language �,
and c(s) is the true class (language) of trial s. It is worth men-
tioning here that minimizing the Cllr helps estimating better
calibrated scores, but it does not necessary make the classifier
more accurate2

2.3. Combination with multi-class logistic regression

If the amount of development data is big enough, language log
likelihoods at the outputs of the Gaussian back-end can be fur-
ther calibrated using a discriminative multi-class Logistic Re-
gression (MLR) [5] [6] [7]. As implemented in the FoCal
toolkit, the calibration transformation includes one scale param-
eter (a positive scalar β) and NL-dimension translation vector
�γ. These parameters are optimized according to the multi-class
Cllr (5). The final language log likelihood is estimated as fol-
lows:

log p̂(s|�) = β log p(s|�) + γ� (7)

where log p(s|�) is the language log likelihood estimated by the
language-dependent Gaussian.

In case of conventional Gaussian back-end, language log
likelihoods are first converted to a log likelihood ratio (LLR) by
normalizing each language likelihood with respect to the other
likelihoods. This normalization leads to some improvements, in
particular when phonotactic scores are mean normalized. How-
ever, we found that this normalization is not effective and might
degrade the performance with the adapted Gaussian back-end.
In this case, language log likelihoods are used as they are as in-
puts to the logistic regression. Results reported in this work are
based on these findings.

3. Experimental set-up
3.1. Data description and pre-processing

Table 1 specifies the databases from which training data (used
to generate phonotactic language models) and development data
(used to train the fusion and calibration module) are selected.
These data sets were defined by MIT Lincoln Labs when devel-
oping their NIST LRE 2007 system [5].

TRAIN DATA DEV.DATA FOR EVAL. DATA

FOR LM FUSION MODULE

LRE-96 train+dev lid96e1,lid03e1
NIST LRE07 train lid05e1, lid07d1 lid07e1
Callhome, Mixer Callhome 14 languages

Fisher Fisher, Mixer

Table 1: Databases used to select training and development
data. Evaluation performed on the NIST LRE-07 evaluation
data set (lid07e1).

Performaces are evaluated using the NIST LRE-073 evalu-
ation data sets. The task of interest is the closed set language
detection. There are 14 target languages, and about 2155 test
segments for each duration conditions. Speech segments were
mainly extracted from the Fisher, Mixer, Callfriend and OGI
corpora.

Standard 12 PLP coefficients with energy are extracted ev-
ery 10 ms, with a 30 ms window. Cepstral mean removal and

2In general, a better calibrated classifier is a more accurate classifier.
3http://www.nist.gov/speech/tests/lang/2007/
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variance normalization are applied to each segment. These fea-
tures are augmented by their first and second derivatives, result-
ing in a 39 dimensional feature vector. Speech activity detec-
tion was carried out using Gaussian mixture models to segment
the audio signal into speech/non-speech regions. Two Gaussian
mixtures, one for speech and one for non-speech with 2048 and
512 mixtures, respectively, were used.

3.2. System description

The PPRLM system uses 3 context-dependent phone decoders
for English, French and Spanish. Each model covers about 3000
phone contexts, with 3000 tied states and a mixture of 32 Gaus-
sians per state. Constrained MLLR adaptation was performed
to improve phone lattice decoding. Back-off 4-gram phonotac-
tic models are generated from phone lattices with Witten-Bell
discounting using the SRILM toolkit.4 Multiple phonotactic
models per decoder are generated for languages with several
data sources [12]. More details about this system and its perfor-
mance can be found in [7, 10].

3.3. Detection score estimation

The detection decision is made based on the detection log like-
lihood ratio (llr) defined as follows:

llr(s|�) = log
"

Ptar.p(s|�)P
LT , q �=� Pnon−tar.p(s|q)

#
(8)

where p(s|�) is the likelihood of the test trial s given the lan-
guage �. It can be the outputs of the Gaussian backend or
the multi-class logistic regression (MLR). The target language
prior Ptar is equal to 0.5. The Pnon−tar is equal to:

Pnon−tar = (1− Ptar)/(L− 1) (9)

The llrs are then compared to the theoretical threshold Δ = 0
to make a decision. Results are reported in terms of Cavg as
defined by NIST5 and the multi-class Cllr as defined in (5).

4. Experimental results and discussion
4.1. Using Gaussian back-end only

In our system, there are 26 phonotactic models and 3 decoders,
therefore, the dimension of the feature vector is equal to 78.
Table 2 reports the results in terms of Cavg and multi-class Cllr

on the 30s, 10s and 3s conditions for the two Gaussian back-
end approaches.

Results show that the proposed approach outperforms the
conventional approach, in particular for long test segments. In
terms of Cavg , the relative improvement on the 30s, 10s and
3s conditions, is 50%, 17% and 4.2%, respectively. For the
30s segments this is a considerable gain. The same trend can
be observed for the Cllr measure, which means that with adap-
tation not only detection results are improved but the detection
scores are better calibrated. In examining the false acceptance
and false rejection errors produced by the two approaches, both
kinds of errors are reduced except for the 3s condition where
there is a small increase in false acceptances. More importantly
the false rejections are reduced more than the false acceptances.

This improvement can be explained as follows: The adap-
tation by (2) consists of shifting the target class mean towards

4http://www.speech.sri.com/projects/srilm/
5http://www.nist.gov/speech/tests/lang/2007/LRE07EvalPlan-

v8b.pdf

Dur. GAUSSIAN BACK-END Cavg[%] Cllr

APPROACH

30s
CONVENTIONAL 2.7 0.553

ADAPTED (ρ = 19.5) 1.3 0.245

10s
CONVENTIONAL 7.0 1.030

ADAPTED (ρ = 17.5) 5.8 0.839

3s
CONVENTIONAL 16.8 2.092

ADAPTED (ρ = 30) 16.2 1.975

Table 2: Performances of the conventional and adapted Gaus-
sian back-end on the lid07e1 data set and for different duration
conditions.

the non-target class mean (here grouped and represented by one
Gaussian). The amount of this shift is determined by the pa-
rameter α�. In the feature space (score vectors), this results
in an increase in the region shared between the two classes. In-
creasing the confusion region is critical and can degrade the per-
formance if the class parameters are badly estimated. Because
this is not usually the case, it turns out to be beneficial. This
adaptation can also be seen as adding some information about
the non-target language characteristics into the target language
Gaussian.

Indeed, we have observed that when target segments are
correctly detected (classified), most of the time, the target score
is relatively high compared to the best non-target score. (i,e;
both feature vectors are far from the decision surface). In this
case, the language likelihood will be slightly modified without
affecting the original decision. However when a target segment
is missed and accepted as another language (non-target), the dif-
ference in the two scores is rather small. Therefore, perturbing
slightly target and non-target scores can lead to a change in the
decision.

Comparing different background model representations and
their means estimation, we found that when a common back-
ground model is used, or the mean of language-specific back-
ground models are estimated according to the statistical for-
mula, the Cavg on the 30s, 10s and 3s conditions is equal to
1.4%, 5.9% and 16.3%, respectively. However, when a com-
mon adaptation factor α is used, the Cavg is equal to 1.5%,
5.8% and 16.5% on the above conditions, respectively. Al-
though, differences are not significant, the proposed choices
systematically give better results.

4.2. Combination with logistic regression

It should be recalled that in case of the conventional GB, lan-
guage log likelihoods are first converted to log likelihood ratios
which are used as inputs to the logistic regression, while this
conversion found to harm performance in case of the adapted
GB. Table 3 reports the results of the two Gaussian back-end
approaches combined with multi-class logistic regression. The
value of the scale parameter in (7) is also reported. The follow-
ing observations can be drawn:

First, further score calibration with logistic regression is
more beneficial to the conventional GB approach than with the
adapted GB approach. The scale factor β is always lower with
the conventional GB approach than with the adapted GB, indi-
cating that language log likelihoods estimated with the conven-
tional GB are somewhat over-confident [4]. Second, in com-
paring the results of the two combined approaches to those ob-
tained with the adapted GB only (Table 2), we observe that there
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DUR. GB+MLR APPROACH Cavg Cllr

30s
CONVENTIONAL (β = 0.4) 1.3 0.206

ADAPTED (β = 0.6) 1.3 0.199

10s
CONVENTIONAL (β = 0.5) 5.5 0.759

ADAPTED (β = 0.8) 5.5 0.754

3s
CONVENTIONAL (β = 0.6) 16.3 1.932

ADAPTED (β = 0.9) 16.2 1.940

Table 3: Performance of the conventional and adapted Gaus-
sian backend combined with multi-class logistic regression.

is no significant differences between the two approaches, al-
though scores estimated by the combined approaches are better
calibrated. Third, the language scores estimated by the com-
bined adapted GB+MLR approach are at least as well calibrated
as the combined conventional GB+MLR approach. As a result,
the performance in terms of Cavg obtained with the former ap-
proach is equivalent or better than the latter one.

4.3. Effect of the size of dev data

The performance of the fusion and calibration modules improve
as the amount of dev data increases. For the adapted GB ap-
proach, the dev data is used for training the background model
and for adaptation. Combination with MLR improves the per-
formance if the amount of dev data is large enough. To study
the effect of the amount of dev data on the Cavg measure, four
data sets are created from the original dev data. Figure 2 plots
the variations of Cavg as a function of the amount of dev data
on the 30s condition.
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C
av

g

development data set

Conventional GB
Conventional GB + MLR

Adapted GB
Adapted GB + MLR

Figure 2: Variations of Cavg as a function of the amount of dev
data for the 30s condition, Data1=lid96e1+lid07d1, Data2 =
Data1+lid03e1, Data3 = Data2+lid05e1, Data4 = all dev data

It can be observed that when the amount of dev data is
small, the adapted GB approach alone outperforms significantly
the other approaches. As the amount of dev data increases, the
difference in Cavg gets reduced, but the adapted GB still per-
forms as well as the best approach. If only previous evaluation
data sets (Data3) provided by NIST are used for development,
then the adapted GB alone performs the best.

5. Conclusion
This paper proposed and analysed the use of the adapted Gaus-
sian back-end for language score fusion and calibration. Com-

pared to the conventional Gaussian back-end, significant im-
provements in the Cavg measure were obtained for a closed-
set task and for all duration conditions (up to 50% relative on
the 30s condition). Similar trends were observed in the multi-
class Cllr measure, indicating that decision scores were also
better calibrated. Combination with multi-class logistic regres-
sion was also investigated. This combination found to be more
beneficial for the conventional back-end approach. With the
proposed approach, the combination gave performances at least
equivalent to the previous approach with both Cavg and Cllr

measures. The proposed adapted Gaussian back-end is found to
be more effective than the traditional methods when the amount
of development data is small, which is usually the case.
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