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Abstract

Accent variability is an important factor in speech that can sig-
nificantly degrade automatic speech recognition performance.
We investigate the effect of multiple accents on an English
broadcast news recognition system. A multi-accented English
corpus is used for the task, including broadcast news segments
from 6 different geographic regions: US, Great Britain, Aus-
tralia, North Africa, Middle East and India. There is signifi-
cant performance degradation of a baseline system trained on
only US data when confronted with shows from other regions.
The results improve significantly when data from all the regions
are included for accent-independent acoustic model training.
Further improvements are achieved when MAP-adapted accent-
dependent models are used in conjunction with a GMM accent
classifier.

Index Terms: accented speech recognition, accent adaptation

1. Introduction

Speaker variability, such as gender, accent, age, speaking rate,
and phone realizations, is an important difficulty in automatic
speech recognition, affecting the performance as much as noise
and channel variability. Any deployed speech recognition sys-
tem should exhibit robustness in such variability in order to be
useful. Despite large progress in large vocabulary speech recog-
nition in the fields of noise and channel robustness, speaker
normalization for age and gender, and unsupervised speaker
adaptation that compensates for some of the speaker variability,
recognition accuracy has been observed to drastically degrade
when the accent of the speaker deviates from the standard ac-
cent in the training data, as in the case for non-native speakers
of the target language [1] or speakers with regional accent not
present in the acoustic training data [2].

Recent work has focused on the problem of recognizing di-
alectal or foreign accented data. The proposed methods vary
from simple collecting data in the target accent and training new
acoustic models, to various ways of adapting models trained on
unaccented speech to the new accent. Wang et al. [1] investi-
gated German-accented English speakers while Tomokiyo and
Waibel in [3] examined Japanese-accented English speakers for
two different tasks. In both cases, it was shown that training
on non-native speech data achieves the biggest gains in perfor-
mance on accented data. The simplest use of adaptation was
based on direct use of maximum likelihood linear regression
(MLLR) to adapt individually to each test speaker or to a class
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of accented speakers. In [4] standard MLLR was also used to
adapt a Mandarin system trained on speakers from the Beijing
area, to recognize Shanghainese-accented Mandarin speakers.

In the above work, a general method to deal with accent is
to adapt prior models to the new accent. When multiple accents
are present ([2, 5]), cross accent experiments show that per-
formance of accent-independent systems is significantly worse
than that of accent-dependent ones, thus the goal is to build
multiple models of smaller accent variances, and then use a
model selector for the adaptation. Prior accent identification
research also mostly focuses on the foreign (non-native) accent
problem. Teixeira et al. [6] proposed a Hidden Markov Model
(HMM) based system to identify English with 6 foreign accents.
A context independent HMM was used since the corpus con-
sisted mostly of isolated words, which is not usually the case in
tasks of interest. Hansen and Arslan [7] also built HMM to clas-
sify foreign accent of American English. They analyzed some
prosodic features impact on classification performance and con-
cluded that carefully selected prosodic features would improve
the classification accuracy. Instead of phoneme-based HMM,
Fung and Liu [8] used phoneme-class HMMs to differentiate
Cantonese English from native English. Berkling et al. [9]
added English syllable structure knowledge to help recognize
3 accented speaker groups of Australian English. Huang et al.
[5], Chen et al. [10] and Zheng et al. [2] addressed the problem
of identifying native multi-accented Mandarin using Gaussian
Mixture Models (GMMs) as accent classifiers.

In this paper, we examine the effect of accent variation in
English broadcast news data collected from various geograph-
ical regions, where English is spoken as an official language.
We first demonstrate the effect of unseen accents on previously
trained automatic speech recognition system. We then examine
two ways for compensating for accent variation. The first is to
train an accent-independent model on a large corpus collected
from all accents. This solution drastically improves the perfor-
mance of the system across all data, but still results in high Word
Error Rate (WER) for some accent subsets. To target further
performance improvements for individual accent subsets we ex-
plore the use of accent-dependent models. Similar to [6, 10], in
order to do accent classification, we train two GMMs for each
accent: one for male, the other for female, as gender is an im-
portant speaker variability factor. Given the test utterances, the
speakers’ gender and accent can be identified sequentially.

This paper is organized as follows. In Section 2, we de-
scribe the multi-accent corpus used for this task. The de-
scription of the baseline system and training/testing proce-
dures used for our experimental setup is presented in Section
3, where the baseline accent-unaware system is compared to
an accent-independent system. In Section 4 we investigate the
performance of our GMM accent classifier, and report accent-
dependent recognition results. Section 5 concludes with sum-
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UsS AU GB NA ME IN All-nonUS
Training shows 667 461 225 72 34 26 818
Training hours 316 33 554 27.7 8.2 9.4 133.7
Training words | 3.7M | 383K | 660K | 320K | 93K | 115K 1.57M
Test shows 10 4 3 1 1 1 10
Test minutes 172 12 48 15 13 15 103
Test words 29433 | 2173 | 5971 | 2515 | 2005 | 2532 15196
Test speakers 202 19 45 15 15 15 109

Table 1: Multi-Accented English Broadcast News data corpus used in this work. (US): United States, (AU): Australia, (GB): Great

Britain, (NA): North Africa, (ME): Middle East, (IN): India.

mary of our work and discussions on possible future extensions.

2. Data

We used a corpus of broadcast news shows from 6 different En-
glish speaking regions. The data distribution for the training and
test accent subsets is shown in Table 1, which includes the num-
ber of shows, hours, words and speakers (only for test data) for
each subset. The size of the testsets was selected based on the
amount of training data available for each accent. In the train-
ing data, there was about 70% male speech in all accent sub-
sets, except GB and NA, where the two genders were equally
distributed. For all test sets, there was between 40-70% male
speech, except in NA where it was more than 90% male.

The US part of the training data is broadcast data available
by the Linguistic Data Consortium (LDC) (Hub4 and TDT cor-
pora). The rest of the data (including the US portion of the test
set) was collected in several projects and transcribed by partners
in them. The audio comes from a variety of news sources (ABC,
Skynews, BBC F24 Euronews, ITV1 etc.) and was mostly col-
lected via satellite with some downloaded from the web. In
particular, all of the Indian data comes from the web.

3. Baseline system

The speech transcription system uses the same basic modeling
and decoding strategy as in the LiMSI English broadcast news
system [11].

The acoustic features are derived from a PLP-like [12]
acoustic parameterization, which has been used in the LiMSI
systems since 1996. The speech features consist of 42-
dimensional feature vector. The first 39 features consist of 12
cepstrum coefficients and the log energy, along with the first
and second order derivatives, derived from a Mel frequency
spectrum estimated on the 0-8kHz band every 10ms. These
cepstral coefficients are normalized on a segment cluster basis
using cepstral mean removal and variance normalization. A 3-
dimensional pitch feature vector (the pitch and delta and delta-
delta pitch) is appended to the above cepstral parameters. The
pitch contour is derived using the ESPS with the CU interpola-
tion (-D option) and the running average.

Each phone model is a tied-state left-to-right, 3-state con-
tinuous density HMM with 32 gaussian components. The si-
lence model uses 2048 gaussians. The triphone contexts to be
modeled are selected based on their frequencies in the train-
ing data, with a backoff by merging contexts for infrequent tri-
phones. We use a total of about 360k gaussians (17K phone
contexts with 11600 tied states). The acoustic models are
gender-dependent, speaker-adapted and trained with the Max-
imum Mutual Information Estimation (MMIE) criteria.
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The language model (LM) training corpus is comprised of
1.2 billion words of texts from various LDC corpora (English
Gigaword, BN transcriptions, commercial transcripts), news ar-
ticles downloaded from the web, and internal transcriptions.
The LMs are interpolated backoff n-gram models estimated
on subsets of the available training texts. A 65k recognition
word list, which includes several thousand compound words
and acronyms, was selected by interpolation of unigram lan-
guage models, each trained on a subset of the language mod-
eling training texts so as to minimize the out-of-vocabulary
(OOV) rate on a set of development data.

The transcription system has two main components, an au-
dio partitioner and a word recognizer. Data partitioning is based
on an audio stream mixture model [13], and serves to divide
the continuous stream of acoustic data into homogeneous seg-
ments, associating cluster, gender and labels with each non-
overlapping segment. For each speech segment, the word rec-
ognizer determines the sequence of words, associating start and
end times and an optional confidence measure with each word.

Word recognition in this work was performed in a single
real-time decoding pass, generating a word lattice with cross-
word, position-dependent, gender-dependent acoustic models,
followed by consensus decoding [14] with 4-gram and pronun-
ciation probabilities. Unsupervised acoustic model adaptation
is performed for each segment cluster using the CMLLR and
MLLR [15] techniques prior to decoding.

The first line in Table 2 shows the Word Error Rate (WER)
performance of a previously available broadcast news system,
trained on US broadcast news data as described in [16], on
the different datasets used in this work. The acoustic training
data used for that system included 180 hours of LDC Broadcast
News data and 450 hours of LDC TDT4 data with light super-
vised transcriptions. We see that for all accents the results are
much worse than for US, and in some cases the WER is more
than 3 times higher.

In the second line of the same table we see the results with
an accent independent acoustic model. In order to maintain
a more balanced ratio between US and other accents, only a
portion of the original US data was used along with the multi-
accented training corpus. The amount of hours from each accent
used for training is shown Table 1. The acoustic model size (to-
tal number of gaussians) remained the same. We see a reduction
of WER to about half, for the datasets from AU, GB and NA and
a significant reduction for ME and IN. We observe that even on
the US-portion of the testset the WER is slightly improved, due
to the increased variability in the training data, even though the
total amount of training data hours did not increase.



UsS AU GB NA ME IN Sum Ave
US-only baseline 15.32 | 21.86 | 24.63 | 33.00 | 43.77 | 55.45 | 21.44 | 41.43
Accent independent | 1434 | 11.92 | 12.84 | 1590 | 26.47 | 39.28 | 16.07 | 20.12
US-adapt 13.95 | 15.75 | 16.17 | 22.88 | 31.41 | 46.35 | 17.46 | 24.42
AU-adapt 17.20 | 11.91 | 13.80 | 19.79 | 32.22 | 45.86 | 18.93 | 23.46
GB-adapt 17.47 | 12.89 | 11.98 | 16.65 | 29.58 | 42.11 | 18.41 | 21.78
NA-adapt 16.49 | 13.21 | 12.60 | 16.46 | 27.33 | 40.52 | 17.66 | 21.10
ME-adapt 16.05 | 12.43 | 13.66 | 19.34 | 25.19 | 39.89 | 17.50 | 21.09
IN-adapt 16.13 | 14.27 | 14.01 | 19.85 | 27.97 | 34.28 | 17.53 | 21.08

Accent-aware [

13.95 [ 11.91 [ 11.98 | 1646 | 25.19 | 34.28 | 1539 | 18.96

Table 2: WER results using different acoustic models for recognition. Results are reported on each of the 6 regional subsets: United
States (US), Australia (AU), Great Britain (GB), North Africa (NA), Middle East (ME), India (IN). The Sum result corresponds to
the overall WER on the whole testset, while the Ave result is the average WER when each subset is weighted equally. The first part
compares the baseline (US-only trained) model with the newly trained accent independent model. For the second part accent-dependent
(MAP adapted) acoustic models are used. The final Accent-aware result is obtained by using for each show the accent-adapted model

corresponding to the known show’s region of origin.

4. Accent-dependent recognition
4.1. Accent Adaptation

As seen in Table 2, the accent independent system still has
quite a high WER for two of the accents, ME and IN, which
are least represented in the training data. In order to obtain
models better matched for each accent we used MAP adap-
tation to adapt the accent independent acoustic model to the
data available for each accent. We used the algorithm in [17]
to adapt the gender-independent accent-independent maximum-
likelhood trained models to the gender-specific and accent-
specific training subsets, in order to obtain gender and accent
dependent HMMs. The weight for the adaptation data was set
to 10 - we tried other weights but the results didn’t change
much. We also experimented with doing the adaptation in two
steps, first adapt to gender and then to accent, and also with do-
ing gender-independent adaptation, but the joint accent+gender
adaptation strategy gave the best overall results. Following
MAP adaptation, we performed one iteration of MMIE train-
ing (as was the case with the accent-independent model), using
the original lattices from all accents and genders. We exper-
imented with MMIE training using accent-dependent data for
each accent-adapted model, but the results were worse. Overall
the improvements we got from MMIE after MAP were small
(varying between 1-6% relative for different subsets). We did
not try using MAP adaptation on top of MMIE trained models,
using MMIE-MAP as in [18], but this approach could also be
explored in the future.

The results of the accent-dependent models for each test
subset are shown in the second part of Table 2. We notice that,
compared to the accent-independent result, there is a signifi-
cant improvement in performance for ME and IN data when
accent-matched models are used, a small improvement for US
and GB, no change for AU, while the performance actually gets
worse for the NA data. The accent aware result in the final line
of the table is obtained by selecting for each show the accent-
dependent model corresponding to the known region of origin
for the show.

4.2. Accent Identification

A GMM based classifier was used to perform accent identi-
fication. We first trained a global GMM with 2048 gaussian
mixtures from all training data. Then this GMM was MAP-
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adapted to the gender specific data for each accent, to get gen-
der+accent dependent GMM models. Accent identification was
performed after the speech and gender partitioning step of the
speech recognition system. The likelihood for each speech seg-
ment was computed using all accent GMMS for the identified
gender. The decision for the accent was made either across
each speaker-cluster or across each show (whole news file). We
found that making the decision based on the average score for
each accent-GMM across all speech segments of the speaker-
cluster or show, was giving slightly better results than using the
overall likelihood score (summing over all speech segments).
This strategy gave higher classification accuracy both on train-
ing and test data. The testset results for confusion segments
and precision/recall presented in Table 3 are given for decisions
based on average per segment scores, with the decision made
for each speaker cluster. When the decision was made for each
show, we had 100% classification accuracy both on the test and
training data.

4.3. Word Recognition with Automatic Accent ID

In Table 4 we present the WER results when recognizing each
speech segment with the identified accent-dependent model.
Since we achieve 100% show classification accuracy the results
with show-accent-ID are the same as with the accent-aware re-
sult in Table 2. We observe that for US and GB, the speaker
level accent id leads to worse results, while for the other accents
it gives about the same performance.

5. Discussion

In this work we investigated the effect of accent variation in En-
glish broadcast news data collected from various geographical
regions. We found a drastic performance degradation when a
system trained on a single accent (US-only) was used to recog-
nize data from other regions. An accent-independent acoustic
model, trained on a mixture of data from all accents, achieves a
good performance overall on all data. Using GMM-based show-
level accent identification we were able to achieve further im-
provements.

Even though show-level accent-ID achieves good results on
average across shows, there is indication that results can be
further improved. For example, on the NA dataset the result
of the accent-aware system is worse than that with the accent



UsS AU GB NA | ME | IN Precision | Recall
US | 7361 | 425 24 586 | 562 | 981 0.93 0.72
AU 87 564 55 26 0 0 0.42 0.77
GB 472 170 | 1376 | 497 | 34 | 129 0.80 0.52
NA 56 0 0 805 0 0 0.42 0.93
ME 24 0 138 31 | 487 | 95 0.45 0.63
IN 2 0 0 0 0 859 0.41 0.99

Table 3: Classification confusions (in seconds) and % precision and recall for speaker-cluster accent classification. The true labels for
each speaker is unknown, so we use as target the accent of the show origin.

UsS AU GB NA ME IN Sum Ave
speaker-accent-ID | 14.71 | 11.23 | 13.10 | 16.46 | 2534 | 34.28 | 16.01 | 19.18
Show-accent-ID 1395 | 1191 | 11.98 | 16.46 | 25.19 | 34.28 | 15.39 | 18.96

Table 4: WER results for the different subsets of the testset, using the accent-dependent (MAP adapted) acoustic models after speaker-

level and show-lever accent ID

independent model, which may indicate mixed accent data in
that dataset. The use of finer granularity for accent-ID (e.g.
speaker-level) has the potential of capturing speaker accent vari-
ation within a show. It is possible that a more accurate ac-
cent classifier has to be used in order to see improvements with
speaker level accent-ID. Future work involves exploring the use
of phonotactic-based classifiers that are commonly used for lan-
guage ID tasks. Accent classifiers can be used to automatically
group the training data as well, and models can be adapted on
subsets of training data that can span across geographic regions.
Furthermore, automatic clustering of training data across accent
regions can exploit accent similarities to improve the results of
one accent using data from another.

Finally, this work explores only one approach, acoustic
model adaptation, to compensate for accent variation. Future
work with this data will examine also the use of pronunciation
and LM adaptation, in combination with different approaches
for acoustic model adaptation, for a more robust system perfor-
mance across different English Broadcast News sources.
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