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Abstract. This paper describes recent research carried out in the context of the
FP6 Integrated Proje@HiL in developing a system to automatically transcribe
lectures and presentations. Widely available corpora were used to train both the
acoustic and language models, since only a small amou@#nf data was avail-

able for system development. Acoustic model training made use of the transcribed
portion of the TED corpus of Eurospeech recordings, as well as the ICSI, ISL,
and NIST meeting corpora. For language model training, text materials were ex-
tracted from a variety of on-line conference proceedings. Experimental results are
reported for close-talking and far-field microphones on development and evalua-
tion data.

1 Introduction

One of the CHIL services is to provide on-line and off-line support for lecture situa-
tions. For on-line services, the lecture must be transcribed and annotated in close to
real time, while the lecture is happening. Such an interactive application would allow
latecomers to catch up on what was already presented earlier in the talk, by either read-
ing the transcript or an automatically created summary. If someone needs to step out of
the lecture for a few minutes, the service would allow the person to scan the missing
portion. Many possible off-line applications can also be envisioned that would bene-
fit from automatic transcription, annotation, indexing and retrieval. These technologies
could be used to archive all public presentations (conferences, workshops, lectures and
seminars) for future viewing and selected access. Automatic techniques can provide a
wealth of annotations, enabling users to search the audio data to find talks on specific
topics or by certain speakers. Given the large number of parallel oral sessions at most
major conferences, such services could allow attendees to interactively access talks they
were unable to attend. At LIMSI our focus is on developing a lecture and seminar tran-
scription system for off-line applications.

The speech recognizer for CHIL has been developed from the LIMSI Broadcast
News transcription system for American English [6]. Since only a small amount of
CHIL data was available for system development widely available corpora were used
to train both the acoustic and the language models. Acoustic model training made use
of the transcribed portion of the TED corpus of Eurospeech recordings, the ICSI, ISL,
and NIST meeting corpora, and a few CHIL seminars. For language model training,
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in addition to the transcriptions of the audio data, text materials were extracted from a
variety of on-line conference proceedings. The LIMSI CHIL speech recognizer used in
the January 2005 evaluation is described in [8, 10]. In the remainder of this paper the
2006 speech recognizer is described, highlighting differences from the 2005 system and
development results are provided.

2 Recognizer Overview

The speech recognizer uses the same core technology and is built using the same train-
ing utilities as thel. iImsI Broadcast News Transcription system described in [6]. The
transcription system has two main components, an audio partitioner and a word recog-
nizer. Data partitioning is based on an audio stream mixture model [6], and serves to
divide the continuous stream of acoustic data into homogeneous segments, associating
cluster, gender and labels with each non-overlapping segment. This year the data parti-
tioner was adapted to better deal with the farfield microphone data [17]. For each speech
segment, the word recognizer determines the sequence of words, associating start and
end times and an optional confidence measure with each word. The word recognizer
makes use of continuous density HMMs with Gaussian mixture for acoustic model-
ing and n-gram statistics estimated on large text corpora for language modeling. Each
context-dependent phone model is a tied-state left-to-right CD-HMM with Gaussian
mixture observation densities where the tied states are obtained via a decision tree.

The language models (LMs) are interpolated backoff n-gram models estimated on
subsets of the available training texts. The word list was selected from the audio tran-
scripts and the proceedings texts so as to minimize the out-of-vocabulary (OOV) rate on
a set of development data. The 2006 word list is case-sensitive and contains 58k words,
and several thousand compound words and acronyms. (The 2005 word list had 35k
words, and both the word list and language models were case-insensitive). Pronuncia-
tions for several thousand words were added td tives1 American English dictionary.

Many of the additional words were compound words formed by concatenating pronun-
ciations from existing words, inflected forms and spelled or spoken acronyms.

Word recognition is performed in multiple decoding passes, where each pass gen-
erates a word lattice which is expanded with a 4-gram LM. The posterior probabilities
of the lattice edges are estimated using the forward-backward algorithm. The 4-gram
lattices are converted to a confusion network with posterior probabilities by iteratively
merging lattice vertices and splitting lattices edges until a linear graph is obtained. This
procedure gives comparable results to the edge clustering algorithm proposed in [13].
The words with the highest posterior in each confusion set are hypothesized. The final
decoding pass makes use of a connectionist language model interpolated with a 4-gram
model.

3 Training Corpora

Although multi-site data collection is ongoing, only a limited number of transcribed
seminars were available for speech recognizer training since priority was given to se-
lection of the evaluation test data. Therefore one of the problems was to locate appro-



Table 1. Summary of audio data sources.

Source Microphone Type Amount
TED lapel 39 lectures  9.3h
ISL lapel 18 meetings 10.3h

ICSI head mounted 75 meetings 60h
NIST head mounted 19 meetings 17.2h
ICSI tabletop 75 meetings 70N
CHIL head mounted 17 seminars 6.2h

Table 2. Summary of additional CHIL audio data sources used in 2006. s1 and s2 correspond to
different segments from the same seminar.

CHIL _ctm_2003-10-28[s1,s2], CHILctm_2003-11-11[s1,s2], CHILctm_2003-11-18[s1,s2]
CHIL _ctm_2003-11-25A [s1,s2], CHILctm_2003-11-25B_[s1,s2],

CHIL _ctm_2003-12-16A [s1,s2], CHILctm_2003-12-16B _[s1,s2],

CHIL ¢tm_200411111100, CHILctm 200411111400, CHIL ctm 200411111545,
CHIL _ctm_200411121030, CHILctm 200411121400, ISL.20040614ctm
ISL_20040616¢tm, ISL_20040621ctm, ISL.20040721ctm, ISL.2004083Qctm

priate audio and textual resources with which to develop the recognizer models. Of
the publicly available corpora, the most closely related audio data are the TED record-
ings of presentations at tHeurospeecttonference in Berlin 1993 [9]. The majority

of presentations are made by non-native speakers of English. Although there are 188
speeches (about 50 hours) of audio recordings, transcriptions are only available for 39
lectures [1]. Other related data sources are the ISL, ICSI and NIST meeting corpora
which contain audio recordings made with multiple microphones of a variety of meet-
ings (3-10 participants) on different topics [3, 5, 7]. The amount of data per corpus is
summarized in Table 1. The first four corpora were used in training the 2005 system,
and the last two entries are new in the 2006 system. Using a single microphone channel
per speaker for the data from all four sources (distributed by the LDC), a total about 97
hours of audio training data were available in 2005 and an additional 76 hours of data
were used in 2006. As can be seen, in the 2005 system only close-talking microphone
data were used for acoustic model training, whereas some distant microphone channels
were used in 2006.

Since one of the aims in CHIL is speech recognition of farfield data, and the pri-
mary RTO06s task being the multiple distant microphone condition, in the 2006 system
farfield data were also used in training. To this end a selection of the farfield data in the
ICSI corpus were used. Since for the ISCI data there are a varying number of channels,
for each of the speakers, a single farfield channel was selected as being the most appro-
priate for that speaker. The microphone channel was chosen as that having the highest
likelihood during forced alignment on a subset of data for each speaker. During train-
ing these data were pooled with the close-talking microphone data. The CHIL seminars
included in this year’s training are listed in Table 2.



Table 3. Summary of audio transcripts.

TED presentations: 71k words
NIST meetings: 156k words

ISL meetings: 116k words

ICSI: 785k words

CTS: 3M words

AMI/IDIAP meeting: 143k words
NIST RT04, RTO5 data: 57k words
CHIL Jun04/Jan05 seminars: 55k words
CHIL summer04 seminars: 38k word

or

The language model training data consist of manual transcriptions of related audio
data as well as the proceedings texts from a variety of speech and language related con-
ferences and workshops. The audio transcripts come from the same sources as are used
for acoustic training. In addition transcriptions of conversational telephone speech from
the CallHome, SwitchBoard and Fisher collections (distributed by the LDC) were used.
We also tried using assorted transcriptions from Broadcast News (BN) data, but since
these did not reduce the perplexity they were not used to estimate the language models.
The amount of words in the each audio transcript source are given in Table 3. Com-
pared with last year’s system we made use of some additional data from the AMI/IDIAP
meeting corpus, the NIST RT04 and RT05 development data, and the transcripts of the
additional CHIL seminars (24k words more than last year).

Table 4. Summary of proceedings texts (20k articles, 42M words).

TED texts: 426 papers 929k words
ASRU’99-05: 427 papers 1140k words
DARPA97-99,04: 119 papers 317k words
Eurospeech’97-05: 3485 papers 7650k words
ICASSP’95-05: 7831 papers 14318k words
ICME’00,03: 996 papers 2101k words
ICSLP’96-04: 3202 papers 7198k words
LREC’02,04: 891 papers 2553k words
ISCA+other workshops: 2333 papers 6077k words

In addition to the audio transcripts, a large number of texts on audio, speech and
language processing can be obtained from conference and workshop proceedings as
shown in Table 4. The almost 20k papers in the proceedings texts were processed using
scripts derived from ones shared by ITC-IRST to convert postscript and pdf files to ascii
texts. The texts were extracted from the PDF files, after removing corrupted documents.
Further processing removed unwanted materials (email, websites, telephone numbers,
addresses, mathematical formulas and symbols, figures, tables, references) as well as



special formatting characters and ill-formed lines. A stricter filtering was applied this
year than last year in order to have cleaner texts for language model training.

4 Acoustic modeling

The acoustic feature vector has 39-components comprised of 12 cepstrum coefficients
and the log energy, along with the first and second order derivatives. The cepstral param-
eters are derived from a Mel frequency spectrum estimated on the 0-8kHz band every
10ms. For each 30ms frame the Mel scale power spectrum is computed, and the cubic
root taken followed by an inverse Fourier transform. Then LPC-based cepstrum coeffi-
cients are computed. The cepstral coefficients are normalized on a segment-cluster basis
using cepstral mean removal and variance normalization. Thus each cepstral coefficient
for each cluster has a zero mean and unity variance.

The acoustic models are context-dependent, 3-state left-to-right hidden Markov
models with Gaussian mixture. The triphone-based phone models are word-independent
and gender-independent, but word position-dependent. The acoustic models are MLLT-
SAT trained, with different sets of tied-state models are used in successive decoding
passes. State-tying is carried out via divisive decision tree clustering, constructing one
tree for each state position of each phone so as to maximize the likelihood of the training
data using single Gaussian state models, penalized by the number of tied-states [6]. A
set of 152 questions concern the phone position, the distinctive features (and identities)
of the phone and the neighboring phones.

The baseline acoustic models were those used in the LIMSI 2005 CHIL system.
This year several enhancements were added to the system. Speaker adaptive (SAT)
training was used in the system which gave about a 1% absolute improvement for the
ihm condition. The acoustic models were trained on multi-style data, including close-
talking and farfield microphones. Different training strategies were investigated, and
the best for us was to pool the close-talking head-mounted data with the table-top audio
data for the models used in the ihm condition. For the farfield conditions (sdm, mdm,
and mm3a) the best results were obtained by adapting the ihm models with the farfield
data. We also explored adapting broadcast news models since this was advantageous last
yeatr, but better results were obtained on the development data using lecture models.

5 Language modeling

The 58k recognizer word list was determined using the following process: The 75k most
probable words were selected by linear interpolation of the unigram language models
obtained from the 8 different seminar and meeting data sources listed in Table 3 and a
component trained on 46M words of proceedings texts. While the CTS data were used
for language model training, they were not used for vocabulary selection. Compared
with last year, about 300k words of additional audio transcripts were available. This
75k word list was then filtered using our master pronunciation dictionary for American
English in order to eliminate errors. (Pronunciations for several hundred frequently oc-
curring words in the transcripts had already been added to the master dictionary for AM
training.) The final word list contains 57768 words, and has an OOV rate of 0.46% on



the development data (RTO5s eval). Last year’s 35k word list had an OOV rate of 0.61%
on the same data.
For language model estimation the available corpora were grouped into 3 sources:

— Seminar and meeting transcriptions (1.42M words)

— Proceedings texts (46M words)

— Transcriptions of Conversational Telephone Speech databases available from LDC
(29M words)

The proceeding texts are comprised of the proceedings from 54 conferences and work-
shops in speech and language, which represent about 20,000 PDF documents.

Three backoff n-gram language models were estimated, one on each of the data
subsets. The component language models were interpolated [16], and the weights were
chosen to minimize the perplexity of the development data. The largest weight is for
the transcriptions (0.6), with weights of 0.3 and 0.1 for the proceedings texts and CTS
transcripts respectively. The perplexity of the 4-gram LM is 130 on the development
data, which can be compared to 140 with last years’ model.

Our text normalization process has been drastically changed since last year. Our
previous normalization was case insensitive (all words were in upper case), no com-
pound words were allowed, and all acronyms were split in a sequence of letters. In the
new normalization, some compound words are kept (words which contain an internal
hyphen such asir-conditioning’) according to a reference list. The reference list of
compound word was derived from compound words in the American Heritage Dic-
tionary, completed with a list of first and last names in different languages, and some
place names found in geographical and historical encyclopedias. The texts were also
processed with a primitive named entity detector, in order to preserve the proper names.

Thus, for instance, for a compound word 'A-B’ present in the text, 2 cases are
distinguished:

1. If the word ‘A-B’ is present in one of the reference lists or was tagged as a ‘proper

name’, the word ‘A-B’ is kept as a lexical entry.
2. If the first case is not true, the word ‘A-B’ is split into the two words ‘A B'.

The new text processing is case sensitive, which means that to have correct texts, a
decision must be taken as to what is the true case for the first word of each sentence.
Moreover, in some texts word case may be vague either for stylistic reasons (signifying
emphasis) or due to segmentation errors in the proceedings texts. For these texts the case
of all words needs to be reconsidered. This process is done by adding all the possible
cases encountered in the texts for all words for which case is potentially ambiguous.
For this process the available 472M words of broadcast news texts were also used. To
attribute the correct case for the sentence-initial word an interpolated language model
was constructed with a set of texts after removing the first word of each sentence. Case
is then added to the original sentence by creating a graph with all possible cases for
all words with multiple forms, and parsing the graph using the interpolated language
model. Finally, all acronyms are considered as words and have not been split.

The aim of this new normalization is not to optimize the lexical coverage or to
decrease the perplexity of the language model, but to be able to deliver a transcrip-
tion containing more information, and thus facilitate the further downstream processing
(named entity detection, summarization, ...).



Connectioninst language models [2, 14] have been shown to be performant when
LM training data is limited. The basic idea is to project the word indices onto a contin-
uous space and to use a probability estimator operating on this space, as illustrated in
Figure 1. Both tasks are performed by a neural network. This is stijeam approach,
but then-gram LM probabilities are “interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts. Since the resulting probability densities
are continuous functions of the word representation, better generalization to unknown
n-grams can be expected.

. output
input probability estimation layer

Wi-n+1 pé.ojecﬁm [ P=P(w;=1lh)
: layer hidden
layer
| R=P(y=ily)
Win42 L sl_lare}i
projections ~ :
Wj’l :
|| B= P(wj:nlhj,
N N
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indices in wordlist P dimensional vectors

Fig. 1. Neural network language model.

The neural network LM was trained on the transcriptions of the audio data and the
proceedings, but not the CTS data. This language model reduces the perplexity on the
development data from 135 to 108.

5.1 Decoding

Word recognition is performed in two passes, where each decoding pass generates a
word lattice which is expanded with a 4-gram LM. The posterior probabilities of the
lattice edges are estimated using the forward-backward algorithm. The 4-gram lattices
are converted to a confusion network with posterior probabilities by iteratively merging
lattice vertices and splitting lattices edges until a linear graph is obtained. This proce-
dure gives comparable results to the edge clustering algorithm proposed in [13]. The
words with the highest posterior in each confusion set are hypothesized.

Pass 1: Initial Hypothesis Generation - This step generates initial hypotheses
which are then used for speaker-based acoustic model adaptation. This is done via
one pass (about 1xRT) cross-word trigram decoding with gender-independent sets of
position-dependent triphones (5k contexts, 5k tied states) and a 35k word trigram lan-
guage model (15M trigrams and 4M bigrams). The trigram lattices are rescored with a
4-gram language model (7M fourgrams, 15M trigrams and 4M bigrams).



Pass 2: Adapted decode -Unsupervised acoustic model adaptation of speaker-
independent models is performed for each speaker using the CMLLR and MLLR tech-
niques [11] with only two regression class. The lattice is generated for each segment
using a 58k word bigram LM and position-dependent triphones with 24k contexts and
11k tied states (32 Gaussians per state). As in the first pass, the lattices are rescored with
a 58k word 4-gram language model (9M fourgrams, 19M trigrams and 5M bigrams).

6 Experiments and results

All the development work at LIMSI was carried out using a portion of the RT05s evalu-

ation data for which audio files and transcripts were shared by UKA. The data consist of
the ihm channels of excerpts from 16 seminars shown in Table 5. For the sdm condition
and mdm ccondition the subset of seminars used are listed in the lower part of the table.

Table 5. Development set used at LIMSI for ihm and sdm/mdm conditions (from RTO5s eval).

ihm:

CHIL_20041123-0900-[E1,E2401.001, CHIL 20041123-1000-[E1,E2/01.001,
CHIL_20041123-1100-[E1,E2,E3]01.001, CHIL 20041123-1500-[E1,EZj01.001,
CHIL_20041123-1600-[E1,E2301.001, CHIL.20041124-1000-[E1,E2H01.001,
CHIL_20041124-1100-[E1,E2101.001, CHIL20050112-0000-[E1,E2§01.001,
CHIL_20050126-0000-Eh01.001, CHIL.20050127-0000-Eh01.001,
CHIL_20050128-0000-[E1,E2301.001, CHIL.20050202-0000-[E1,E2H01.001,
CHIL_20050214-0000-Eh01.001, CHIL 20050310-0000-[E1,E2H01.001,
CHIL_20050310-0001-Eh01.001, CHIL 20050314-0000-[E1,E2H01.001
sdm/mdm:

CHIL_20041123-1600-E1: d01, d02, d03,d04, d05 CI20050202-0000-E2: d01, d02, d03,d04, d05
CHIL_20050314-0000-E2: d01, d02, d03,d04, d05 CI2m050128-0000-E1: d01, d02, d03,d04, d05
CHIL_20050310-0001-E1: d01, d02, d03,d04, d05

The starting point was an updated version of the LIMSI 2005 evaluation system
which incorporated an automatic data partitioner (last year’s evaluation used manually
determined speech segments). As cen be seen in Table 6 the word error rate with the
baseline system was 26.1%. This is the same system as was used to automatically tran-
scribe the Q&A development seminars. Using updated acoustic models (AM 1), with
the 35k LM from last year gave a small increase in performance. Resgmenting the train-
ing data and reestimating acoustic models (AM 2) gave an additional small gain, with a
larger gain from SAT training (AM 2 + SAT). The use of the 58k wordlist and language
model with the baseline acoustic models gave essentially the same performance as the
baseline system (verifying that the new normalization did not degrade performance).
Retraining acoustic models with the same text normalization results in a better match
of the cross-word context-dependent phone models during training and test, as can be
seen in the second entry in the lower part of Table 6. Tuning the system gave a further



improvement, as did speaker adaptive training (+SAT), pronunciation probabilities (+
pron probs) and the connectionist language model (+ NNLM). The neural network LM
achieves almost a 1% absolute word error reduction on top of the other improvements.
Overall on the development data a relative word error reduction of 13% was obtained
compared to the 2005 system.

Table 6. Word error rates on the ihm development data (see Table 5).

System WER (%)
Baseline, 35k LM 26.1
Updated AM 1, 35k LM 25.9
Updated AM 2, 35k LM 25.7
Updated AM 2+SAT, 35k LM 25.0
58k wordlist, LM 26.0
58k LM, updated AM 25.3
+ tuning 24.6
+ SAT 24.0
+ pron probs 235
+ NNLM 22.6

The close-talking microphone contrast condition for RTO6s aimed at transcribing
only the speech from the primary talker. This is very different from the previous CHIL
evaluations where the segments of speech from other speakers were removed prior to
scoring. In order to compare the performance of the LIMSI 2006 system to that of the
2005 system, we decided to score using the same method as was used last year, that is
ignoring speech in inter-segment gaps. (Strong arguments can be made for both points
of view. At LIMSI we believe that the role of the speech recognizer is to transcribe
speech into words, independent of who spoke them. It is the role of the speaker diariza-
tion system to associate words with the person who spoke them. This is not the point of
view taken in the RT06s evaluation, and the evaluation plan, while clearly stating this
for SAD is a bit ambiguous on this point for STT.) The LIMSI system did not make any
attempt to exclude speech from other speakers and therefore has a very high insertion
rate (over 121%, more than 22k words), giving an overall error rate of 147%. (Note that
the development set we used did not contain background speech so it was not possible
to do a serious development activity. Therefore we did not try.)

Table 7 gives unofficial, comparative results on the RT06s evaluation data with
the baseline system and the RT06s evaluation system on the ihm audio data, ignor-
ing speech in inter-segment gaps. Although these numbers cannot be compared to other
sites, they allow us to measure the improvement of our models this year. The overall
error rate has been reduced by almost 12% absolute (28% relative). A more appropriate
measure would be to score all of the speech recognized, but at the time of this writing
reference transcriptions for the inter-segment gap regions are not available.

Development for the farfield data condition was carried out on portion of the avail-
able data consisting of 5 seminars listed in the lower portion of Table 5. Initially the



Table 7. Unofficial, comparative results on the RT06s evaluation data with the baseline system
and the RT06s evaluation system on the ihm audio data, ignoring speech in inter-segment gaps.
There are a total of 19373 reference words.

System | Cor | Subs| Del | Ins | WER
ihm baseling 64.0 | 25.7 | 10.3 | 6.1 42.1
ihm RTO6s| 72.9 | 19.5 76| 3.2 | 303

standard data partitioner was used, but when the SAD/SPKR systems for RT06s were
finalized (see [17]), these were used for further development work and in the final eval-
uation system. As can be seen in Table 8, the word error on the sdm data was reduced
from 64% to 55% when scoring with overlap. The mdm system output was created by
combining withROVER [4] the outputs of all the sdm channels. For this condition the
development word error rate was reduced from 55.7% to about 51%.

Table 8.Word error rates on the sdm and mdm development data (see Table 5).

sdm WER (%) |mdm WER (%)

System overlap |nonoverlap overlap
58k LM, update AM 2 64.0 62.9

58k LM, adapt AM with FR  62.5 61.3 55.7

+ tuning 60.4 58.8

+ SAT 60.1 58.5

+ mdm partitioner 56.6 57.1 53.3

+ pron prob 56.1 55.3

+ NNLM 55.2 54.4 51.1

The first two entries in Table 9 give the official NIST results for the for the mdm and
sdm conditions. As for the development results, the mdm hypotheses are obtained by ap-
plying ROVER [4] to the hypotheses of the individual microphone channels. The lower
part of the table gives unofficial contrastive results on the mm3a beam-formed multiple
mark 11l microphone array data provided by UKA for the baseline RTO6s farfield sys-
tem and with acoustic model adaptation using about 5 hours of beam-formed multiple
mark 11l microphone array data also provided by UKA. These data correspond to the
portion of the development data for which manual transcripts were available. Since no
data remained for system development, we chose not to submit a system for this condi-
tion in the official evaluation. Although all the word error rates are quite high, the best
performance is obtained on the mm3a data using the acoustic models adapted with the
beam-formed data.



Table 9. NIST official RT06s results on farfield data: mdm and sdm conditions (top). Un-
official, comparative results on the RTO06s evaluation beam-formed data distributed by UKA
with the baseline farfield models and a post RTO6 model set adapted with 5 hours of beam-
formed data. There are a total of 17986 reference words. (Results are missing for seminar
AIT -20051011B_Segmentl due to a partitioning error for the baseline system.)

| System [ Cor [ Subs| Del [ Ins [ WER |
mdm 48.3 | 39.3 | 124 | 11.8| 635
sdm 432 | 38.6 | 18.2| 6.5| 63.3
mma3a baseling 32.6 | 20.8 | 46.6 | 1.4 | 68.8
mm3a post RTO6 48.1 | 31.7 | 20.2 | 5.6 57.5

7 Conclusions

This paper has described our research aimed at developing a system to automatically
transcribe lectures and seminars for off-line applications. Publicly available corpora
were used to train both the acoustic and language models, since only a small amount
of CHIL data were available for system development. Results were reported for both
close talking and far-field microphones, for both development and evaluation data. This
was LIMSI'’s first participation to the multiple farfield microphone task. Compared to
the LIMSI 2005 system, the overall error rate has been reduced by over 10% on the
development data for the ihm condition and about 15% on the RT06s eval mm3a data.
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