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Abstract—This paper extends a novel neural network language
model (NNLM) which relies on word clustering to structure the
output vocabulary: Structured OUtput Layer (SOUL) NNLM.
This model is able to handle arbitrarily-sized vocabularies, hence
dispensing with the need for shortlists that are commonly used
in NNLMs. Several softmax layers replace the standard output
layer in this model. The output structure depends on the word
clustering which is based on the continuous word representation
determined by the NNLM. Mandarin and Arabic data are used
to evaluate the SOUL NNLM accuracy via speech-to-text experi-
ments. Well tuned speech-to-text systems (with error rates around
10%) serve as the baselines. The SOUL model achieves consistent
improvements over a classical shortlist NNLM both in terms of
perplexity and recognition accuracy for these two languages that
are quite different in terms of their internal structure and recog-
nition vocabulary size. An enhanced training scheme is proposed
that allows more data to be used at each training iteration of the
neural network.

Index Terms—Automatic speech recognition, neural network
language model, speech-to-text.

I. INTRODUCTION

H AVING been used for several decades, -gram models
still form the basis of modern language modeling for

speech-to-text (STT) transcription. Despite numerous attempts
there are very few approaches that have been shown to system-
atically and significantly improve over well-estimated -gram
language model (LM) baselines. Neural network language
models (NNLMs) are among these approaches and have been
adopted in some state-of-the-art STT systems [1]–[3].
Neural network LMs were introduced in [4], [5] as a means

to improve discrete models. Standard -gram back-off LMs rely
on a discrete representation of the vocabulary, where each word
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is associated with a discrete index. In contrast, NNLMs are
based on the idea of a continuous word representation, where
each word is associated with a real-valued feature vector. In this
continuous space, distributionally similar words are neighbors.
Thus -gram distributions are expressed as a smooth function
of the word representation, and can take into the account un-
derlying similarities between words. A neural network jointly
estimates both the word representations in a continuous space
and the associated probabilities.
An important specificity of NNLMs is the capability to take

into account longer -gram contexts. Previous experiments at
LIMSI with standard -gram LMs and large setups indicated
that the gain obtained by increasing the -gram order from 4 to
5 is almost negligible despite a drastic increase in model size.
Handling such models is thus rather impractical and can hardly
be done without pruning. For NNLMs, increasing the word con-
text length at the input layer results in at most a linear growth
in complexity [1] and does not lead to any prohibitive compu-
tational or memory overhead.
Themajor bottleneck with NNLMs is the computation of pos-

terior probabilities in the output layer, which must contain one
unit for each word in the vocabulary. As the softmax function
is used to obtain the posterior probabilities, the summation over
the entire vocabulary is required for each word in the training
or test data. This makes the handling of large vocabularies too
complex since it would require prohibitive computation time.
As a practical workaround, NNLMs usually estimate probabil-
ities only for the fraction of the vocabulary consisting of the
most frequent words which is called a shortlist. Probabilities of
all -grams finishing with an out-of-shortlist (OOS) word are
estimated with a conventional -gram LM. Such a restriction
limits the potential of NNLMs.
This article extends the Structured OUtput Layer (SOUL)

model introduced in [6], [7], describing training and clustering
issues in detail. The SOUL approach combines the benefits of
neural networks and class-based LMs by structuring the vo-
cabulary by means of a clustering tree automatically induced
from the continuous word representation. In contrast to standard
NNLMs, SOUL NNLM makes it feasible to estimate -gram
probabilities for large vocabularies. As a result, all vocabulary
words, and not just the words in a shortlist, can benefit from the
improved prediction capabilities of the NNLM.
Since estimating word probabilities for all vocabulary entries

can be regarded as one of the major distinctive features of the
SOUL NNLM, it is natural to evaluate and compare their per-
formance to more traditional NNLMs for different vocabulary
sizes.

1558-7916/$31.00 © 2012 IEEE
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Speech recognition experiments were carried out to assess
the performance of the SOUL NNLMs for the Mandarin Chi-
nese and Arabic (Modern Standard Arabic) languages using
data and systems developed for the GALE program. The base-
line STT systems [8], [9] have vocabularies of different sizes:
56 k words for Mandarin (including all characters) and 300 k
MADA-decomposed entries for Arabic. These systems make
use of well-tuned 4-gram LMs trained on corpora containing
several billion words of text (without any pruning or cut-offs)
interpolated with standard shortlist NNLMs.
It was shown that the training of full vocabulary NNLMs is

computationally feasible with the SOUL architecture, and that
this leads to improved STT accuracy for large tasks. In this
paper the clustering issues and the schemes for training the class
model embedded within the SOUL NNLM are described in de-
tail. Additional experiments dealing with the investigation of
the influence of different parameters on SOUL NNLM perfor-
mance are also reported. Examples of classes formed by words
that are close according to the SOUL NNLM projection space
are presented.
The remainder of this paper is organized as follows. Re-

lated work on hierarchical neural networks is summarized
in Section II, followed by a description of the architecture
of SOUL NNLMs in Section III. Section IV describes the
experimental setup and the baseline STT systems, with the
experimental results given in Section V. Finally, Section VI
concludes the paper along with providing a discussion of the
main findings.

II. RELATED WORK

A number of techniques are conventionally used to make the
training of NNLMs computationally feasible on the very large
corpora used to develop state-of-the-art STT systems.
As the time needed to train a NNLM on all available data

is usually prohibitive, a resampling technique was used to par-
tially circumvents this bottleneck [1]. Limited amounts of data
are selected at each neural network training iteration by sam-
pling the original corpus. This resampling is usually biased to-
wards in-domain data. However, resampling alone is not suffi-
cient to train NNLMs with large recognition vocabularies as the
output layer is also prohibitively large. A proposed solution to
this problem was to restrict the output vocabulary to a shortlist
of several thousand most frequent words [5].
Recently, some new methods for optimizing NNLM training

have been proposed. For example, a significant speed-up in
training without performance degradation can be obtained
by using a small hidden layer in combination with direct
connections between the input and the output layers. Such a
model with only 40 neurons in the hidden layer was reported
to be much faster to train and to provide the same results as a
model with 320 neurons in the hidden layer but without direct
connections [10]. Another recent study [11] showed the impact
of the initialization of the NNLM parameters and proposed
three new training schemes.
A crucial issue that arises with the use of shortlists is that the

NNLMs estimate the probabilities only of a limited number of
words. Therefore the probability distribution must be normal-
ized with a standard back-off LM in order to cover words that

are not in the shortlist. The formula for calculating the normal-
ized probabilities with shortlist NNLMs is:

if shortlist
otherwise

(1)

where is the word to be predicted and its word
history, is the probability of an in-shortlist word calculated
with the NNLM, is the probability assigned by the standard
backoff -gram LM. The scaling factor depends on the
history and was defined in [5] as:

(2)

As both and are normalized to sum to one, the “com-
bined” conditional distribution is also normalized.
To handle large output vocabularies, [12] and [13] proposed

to use a hierarchical structure for the output layer following
previous research to speed-up systems using maximum entropy
models. It should be noted that the idea to use classes to factorize
the output layer of a neural network can be traced to the classical
work of Brown et al. on distributed word representation [14].
A conditional maximum entropy model in its general form is

expressed as

(3)

where are the features, are the feature weights. The nor-
malization term in the denominator requires a summation over
all in-vocabulary words . This poses exactly the same
computational problems as the softmax in the output layer of
neural networks. In [15] it was proposed to first cluster words
into classes and then compute the conditional probabilities:

(4)

where denotes the class assigned to a word . Two models
are trained separately: one that predicts the class probability
given the history; and one predicting a word given its class and
its history. With this kind of model, a significant speed-up can
be obtained since the required summations for both models are
drastically reduced: for the first model, the summation ranges
over the number of different classes, whereas for the second
model it involves only the words in the given class.
The idea of clustering the vocabulary words was introduced

for NNLMs in [12], where a binary hierarchical clustering was
derived from the WordNet semantic hierarchy. In that work, the
output vocabulary was first clustered and represented by a bi-
nary tree. Each internal node of the tree held a word cluster
which was further divided into two sub-clusters and so on. The
leaves correspond to the words at the end of this representation
of the vocabulary. The neural network aims to estimate proba-
bilities for the paths in this binary tree given the history, rather
than for the word itself, as reflected by the following equation:

(5)
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Fig. 1. The architecture of the structured output layer neural network language model.

where is the depth of the tree and stands for 1 or 0 in the
path for a given word. This approach resulted in a two order
of magnitude speed-up on a small data set (1 million words of
the Brown corpus) with a vocabulary of 10 k words. However,
a significant increase in perplexity was observed relative to
a standard NNLM. One of the possible explanations is the
widely observed difficulty of integrating linguistic informa-
tion in statistical LMs and in the NNLM described above the
clustering tree is constructed using the semantic information
from the WordNet. Alternative solutions that do not rely on
external linguistic sources were proposed in [13], [16] for
neural network and log-bilinear models. These methods are
also appealing, as the WordNet or similar resources covering
large output vocabularies are not necessarily available for
different languages. Using automatic clustering to factorize the
output layer resulted in significant speed-ups in training and
perplexities similar to those obtained without clustering.
It can be seen that much of the previous work concentrated on

reducing the computational complexity, with less emphasis on
improving the accuracy of speech recognition or machine trans-
lation systems. In the binary hierarchical log-bilinear approach
the resulting binary clustering tree is deep (i.e. has many levels),
and thus faces a data fragmentation problem. This problem is
well known for decision trees, especially for language modeling
tasks [17]. Moreover, if a word is assigned to a wrong class at
some level in a decision tree, this error affects all the internal
nodes (or clusters) leading to this word. This is typically the
case for rare words that represent a large fraction of the vocab-
ulary. Thus an error in one word may have a significant impact
on the whole system. By relaxing the constraint of the binary
structure, it is expected that this shortcoming will be overcome
as explained in Section III.
Factorization of the output layer was also used for recurrent

NNLMs. Although a simpler approach based on the distribution
of unigram probabilities that does not reveal any relationships
between the words was used, this work illustrates the growing
interest in improving neural network LMs for STT [18]. An-
other active direction of research dealing with different clus-
tering methods is connected with recently proposed Model M
and its enhancements [19], [20].

III. STRUCTURED OUTPUT LAYER NEURAL NETWORK
LANGUAGE MODEL

In this section the class-based neural network language
model, namely Structured OUtput Layer (SOUL) NNLM, is
described in detail.
In the SOUL NNLM [6], [7] the output vocabulary is struc-

tured by a clustering tree, where each word belongs to only one
class and ends up in a single leaf of the tree. If denotes the
word in a sentence, the sequence en-

codes the path for word in the clustering tree, and is the
depth of the tree. is a class or sub-class assigned to ,
and is the leaf associated with (the word itself). Then
the -gram probability of given its history can be estimated
as follows:

(6)

The probability of a word is conditioned not only on its con-
text, but also on a non-binary string of indices encoding a path
in the clustering tree. Each word belongs to only one class and
there is a softmax function at each level of the hierarchical
representation.
Fig. 1 represents the architecture of the SOUL NNLM. Both

SOUL and standard NNLMs share the same architecture up to
the hidden layer. The output structure of the SOUL model is
made of three kinds of output layers. The first output layer esti-
mates the distribution over the shortlist words and the top (most
general) classes for the OOS words. Words in the shortlist are
regarded as a special case since each represents its own class
without sub-clustering (the tree depth is equal to 1 in this
case). The top classes serve as the roots of trees to handle the
OOS words and include multiple sub-class layers each with a
softmax function, forming the second kind layers. Finally, the
word layers estimate the word probabilities for the OOS words.
To summarize, the SOUL model estimate the -gram proba-
bility of a word given its context as defined by the (6)
as follows: the upper layer handles the distribution over the top
classes ; then subsequent sub-class layers compute
the sub-class probabilities for ;
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finally the OOS word probabilities are
given by the word layers.
The SOUL model can handle any arbitrary tree structure of

the vocabulary. A slightly different architecture could be con-
sidered, where the first softmax layer consists of classes corre-
sponding to the shortlist words plus an additional node. This ad-
ditional node serves as a root of a tree that includes all sub-class
layers needed to estimate the probabilities of the OOS words.
Experiments with this architecture showed slightly worse re-
sults with a negligible complexity reduction.

A. Training Scheme

The training scheme addresses two closely related parts of the
SOULmodel: the parameters estimation and the word clustering
that structures the output vocabulary. In [13] a rather sophisti-
cated divisive clustering algorithm is presented which is based
on a mixture of two Gaussians applied to the continuous word
space. In this work, we propose a more straightforward method
based on the relationship between the two word spaces defined
in a standard NNLM [11], i.e. the context and the prediction
spaces. The training procedure is summarized as follows:
Step 1) pre-training: Train an NNLM with a shortlist as

output, using the one vector initialization method
[11]. This step is only required to provide a prelimi-
nary estimate of the projection space defined by the
matrix .

Step 2) dimension reduction of the projection space:
Apply the standard Principal Component Analysis
(PCA) on the matrix .

Step 3) word clustering: Perform a divisive top-down word
clustering based on the -means algorithm, using
the continuous representation induced by the pre-
vious step for words that are not in the shortlist.

Step 4) full training: Train a full-vocabulary NNLM with
the tree structure as output.

The goal of step 1 is to learn the word features for clustering.
In the one word initialization method introduced in [11], all the
words in the context vocabulary are initially projected onto the
same (random) point in the context space. The intuition is that
it will be easier to build meaningful neighborhoods, especially
for rare types, if all words are initially considered similar and
only diverge if there is sufficient evidence in the training data
to suggest that they should. With this kind of initialization, only
a few iterations are required as the learning of word features
converges quickly.
As words input to a NNLM are represented in 1-of- coding

with 1 corresponding to a word’s vocabulary index and all other
elements set to zero, each line in the projection matrix corre-
sponds to a continuous representation of a particular word. The
dimensionality of this representation is reduced with the PCA at
step 2. The size of the context space after the dimensionality re-
duction is equal to 10 for the experiments described here. Such
low dimensional context space makes the subsequent -means
clustering at the step 3 computationally cheap.
The clustering at step 3 divides a word class (or sub-class)

only if the number of words in this class is above an empiri-
cally determined threshold . Each class containing more than
words is divided in sub-classes. The value of this

threshold allows to tune the depth of the clustering tree: small
values result in a deep clustering structure while a very large
value generates a flat tree. This threshold depends on the vo-
cabulary size and can be optimized. However, experimental re-
sults with different vocabulary sizes show that its value does
not have much influence on the overall performance of the STT
systems and three levels of hierarchy seem sufficient. The clus-
tering deals with rare words and thus there is little point in
making small classes and having a deep tree structure. In these
experiments, the -means algorithm starts with 4 k top classes.
Then each sub class is recursively divided. However, in prac-
tice, the one vector initialization used at step 1 implies that very
rare words are represented by very similar or identical feature
vectors. In that particular case, the rare words are then naturally
grouped in the same class by the first -means step, and a re-
cursive subdivision is therefore not well suited. In the rest of
this paper, the class for rare words is randomly divided.
Finally, standard back-propagation training [21] is performed

for the full vocabulary SOUL NNLM at step 4 using the param-
eters obtained at step 1 for initialization.
In order to evaluate the influence of the type of clustering

in the SOUL architecture, the clustering proposed above was
compared with two other techniques. The first is the widely
known Brown clustering algorithm based on the maximization
of the mutual information between adjacent classes [14]. This
algorithm has served as a baseline in the community and it has
been hard to improve upon, even with much more sophisticated
methods. The second method has been implemented in the BUT
RNNLM recurrent network toolkit [18], and assigns words to
classes according to their unigram probabilities.
Comparative results for the three clustering methods, dif-

ferent shortlist sizes, number of classes and depth of the
clustering tree are given and discussed in Section V.

B. Enhanced Training Scheme

NNLM training maximizes the log-likelihood of the training
data. This optimization is performed by stochastic back-propa-
gation [21]. A previously trained standard NNLM is used to ini-
tialize the shared parameters (i.e matrices and in Fig. 1).
The other parameters are initialized in a usual way, as described
in the previous section. Overall, the training time for a SOUL
model is only about 30% longer than for standard 8 k shortlist
NNLMs and slightly shorter the time to train a 12 k shortlist
NNLM.
When dealing with large vocabularies (e.g. the Arabic one in

this study), the number of parameters related to the class-part
of the model increases significantly. As a result, the resampling
technique that is used for neural network training at each epoch
may be insufficient to obtain robust parameter estimates.
As described in Section III, the output layer of the SOUL

NNLM is comprised of two parts: the first layer which directly
models the probabilities of the most frequent in-shortlist words
and top classes, and the remaining sub-class layers that deal with
the classes of OOS words as illustrated in Fig. 1.
The parameters related to the first output layer are updated for

all training examples since it covers the shortlist words and the
most general classes for the less frequent words. The -grams
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ending with in-shortlist words are used to update the parame-
ters only of this first layer, leaving sub-class layers intact. The
parameters of sub-class layers are updated with the -grams
ending in an OOS word and only those class layers leading to
the leaf with this particular word are activated and the corre-
sponding parameters are updated. A shortlist usually covers a
large part of training examples so that the updates of the pa-
rameters related to sub-class layers are less frequent. Moreover,
when such an update occurs, it is done for a subset of the pa-
rameters corresponding to a particular path in the clustering tree
of the class layers. At the same time the number of parameters
corresponding to OOS words is much larger. As a result, the
two parts of the SOUL output layer are not trained equally well.
Therefore a modified SOUL training scheme based on the sep-
arate training of the OOS part at the output layer is proposed.
This scheme adds an additional step to the training procedure
described in Section III-A.
This additional step 3 is similar to 1, but is carried out only

for OOS words. At this step the -grams ending with shortlist
words are skipped and the parameters associated with shortlist
words are temporarily fixed, reducing the size of the first output
layer to the number of main classes of infrequent words only (4
k as opposed to 12 k in the SOUL setup). As explained above,
the softmax in the first output layer is triggered for each training
example, which, in turn, requires summation over all nodes in
this layer. Thus, any reduction in the size of the first output layer
results in a significant speed-up. Since the number of OOS oc-
currences represent a relatively small proportion of the training
data (for our experiments on Chinese and Arabic data these rep-
resent 5–10% of all word occurrences), the number of training
examples can be easily increased by the factor of 10. As NNLMs
are trained (with resampling) on less data as compared with the
baseline -gram LMs, there are always additional data avail-
able for the step 3 . The parameters obtained at step 3 are used
to initialize the parameters associated with the OOS words at
the step 4.

IV. EXPERIMENTAL SETUP

The performance of the SOUL NNLM is compared to stan-
dard shortlist NNLMs on the GALE Arabic and Mandarin Chi-
nese tasks.
The general parameters of NNLMs are presented in Table I.

Several NNLMs differing in the size of the projection layer and
the hidden layer are trained for each task, and then interpolated
together, along with the standard N-gram backoff LM. Inter-
polation weights are tuned to minimize perplexity on the de-
velopment data. The same setups are used for both the SOUL
NNLMs and the shortlist NNLMs. Thus the difference in results
can be attributed to the use of the whole vocabulary at the output
(which, in turn, uses the class information).
Each NNLM is trained on about 25–30 M words at each iter-

ation after resampling of the training data. The enhanced SOUL
NNLM training scheme (see Section III-A) is investigated on
Arabic, for which shortlists of similar sizes provide lower data
coverage than for Mandarin thus leaving more space to im-
provement with the proposed scheme. Up to 300 M words are
used during step 3 to train the class output layers that deal with
OOS words. As all the -grams ending with an in-shortlist word

TABLE I
PARAMETERS OF THE MANDARIN CHINESE AND ARABIC NNLMS. FOR EACH
LANGUAGE, NNLMS WITH DIFFERENT PARAMETERS ARE SUBSEQUENTLY

INTERPOLATED TOGETHER

are skipped at step 3 , it makes about 30M -grams that are used
to update the parameters.
To assess the impact of the increase in the shortlist size,

NNLMs with 8 k and 12 k shortlists are trained on the Man-
darin data. As slightly better results are obtained with a
larger one, the Arabic shortlist NNLMs use a shortlist of 12 k
MADA-decomposed units.
In order to study possible improvements from using longer

span NNLMs, the increase in context length from 3 (that corre-
sponds to 4-grams) to 5 is investigated. For the shortlist NNLMs
the same 4-gram back-off LM is used for OOS words.
The performance of the different Mandarin models was

assessed on the GALE dev09_M and eval09_M data sets con-
taining broadcast news and broadcast conversations. A subset
of dev09_M called dev09s_M was also defined, comprised
of about a third of dev09_M data. The dev09_M, dev09s_M
and eval09_M sets contain respectively 97459, 31529 and
79246 segmented words. Three sets are used to evaluate the
performance of the different Arabic models, namely dev09s_A,
eval10ns_A and dev10c_A. These sets contain of 23576, 45629
and 52181 MADA-decomposed units respectively.

A. Mandarin STT System

Mandarin Chinese is a language with a low mor-
pheme-per-word ratio. Most words in a running text are
composed of a single morpheme (character), and, as there are
no markers neither for inflection nor for parts of speech, it has a
fixed word order. Words in written Chinese are not separated by
white spaces. A natural solution is either to use character-based
LMs or to perform word segmentation as a pre-processing step.
The former was shown to be inferior to the latter [22], so the
longest-match segmentation approach is taken in this work. As
is the convention, the character error rate is used to evaluate
recognition performance for Chinese.
The recognition vocabulary contains 56 k entries including

both multicharacter words (about 50 k) and individual Chinese
characters (6 k entries). There are no out-of-vocabulary (OOV)
words for Chinese. The acoustic models and the decoding
process of the Mandarin STT system are described in detail in
[8]. The Mandarin LM is trained on 3.2 billion word tokens
after segmentation. Individual 4-gram LMs are first built for
each of 48 sub-corpora without any cut-offs and pruning. These
models are smoothed according to the unmodified interpolated
Kneser-Ney scheme and are subsequently linearly interpolated
to form the baseline 4-gram LM, with the weights tuned on the
dev09_M data. This resulting model includes 2.2 billion unique
-grams.
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TABLE II
PERPLEXITY AND CER (%) FOR DIFFERENT MANDARIN LMS

B. Arabic STT System

Arabic is a highly inflective and morphologically rich lan-
guage characterized by a large number of word forms for a
given lemma. This usually results in vocabularies that are sev-
eral times larger than the ones used for Chinese or English.
The baseline Arabic STT system used in the speech recog-

nition experiments reported here gives state-of-the-art perfor-
mance on the GALE tasks [9]. The Arabic vocabulary contains
300 k entries. The MADA1 (Morphological Analysis and Dis-
ambiguation for Arabic) tool is used to decompose the words
into their morphological constituents, increasing lexical cov-
erage and improving recognition performance [23], [24]. The
Arabic LM training data contains about 1.7 billion words before
decomposition, resulting in a total of about 2 billion morphs.
4-gram LMs are trained for 32 different MADA-decomposed
text subsets using the unmodified interpolated Kneser-Ney
scheme, without pruning or cut-offs. These LMs are further
interpolated to form the final 4-gram LM. The resulting model
includes 1.2 billion unique -grams.

V. EXPERIMENTAL RESULTS

In this section, experimental results are provided for Arabic
and Mandarin, both in terms of perplexity and recognition error
rates. The internal structure of these two languages is quite dif-
ferent which is reflected by the vocabulary sizes of their STT
systems. The SOUL word clustering approach is also compared
to the classical Brown clusters and the more straightforward un-
igram algorithm. The representation of words in the projection
space is explored by finding the neighbors for some selected
words.

A. Perplexity Results

Tables II and III summarize the results in terms of perplexity
for Mandarin and Arabic respectively. The results are provided
both for stand-alone NNLMs (columns s/a) and after interpola-
tion with the baseline 4-gram LMs (columns int).
The rows marked with shortlist correspond to shortlist

NNLMs (with 8 k or 12 k shortlists). The context size for the
NNLMs is indicated as 4 g or 6 g. The models marked as SOUL
are based on the general SOUL architecture, while
corresponds to the SOUL NNLM that uses the enhanced

1http://www1.ccls.columbia.edu/~cadim/MADA.html.

TABLE III
PERPLEXITY FOR DIFFERENT ARABIC LMS

training scheme for the parameters dealing with OOS words, as
described in Section III-B.
As can be seen from Table II, increasing the shortlist size by

50% from 8 k to 12 k words brings only a small improvements
in perplexity. The SOULmodel that predicts probabilities for all
words in the vocabulary and uses word clustering for infrequent
words systematically outperforms the 12 k shortlist NNLM for
both languages even though it is not more computationally de-
manding.
Using a longer context (6 g vs. 4 g) reduces the perplexity

both for the shortlist and the SOUL NNLMs. These models
directly provide lower perplexities than the Kneser-Ney LM,
trained on much more data. All interpolations of different orders
and types of NNLMs with the Kneser-Ney LMs were found to
significantly reduce the perplexity.
These results show that the SOUL NNLM consistently out-

performs the shortlist counterparts of the same order on all the
test sets. For the 4-gram stand-alone NNLMs, the relative im-
provement obtained with the SOUL NNLM over the shortlist
NNLM is 3% for Mandarin and 9–10% for Arabic (13–15%
for ). In the longer-context 6-gram case, the gains with
the SOUL NNLM are somewhat larger, 7% for Mandarin and
14–16% for Arabic (17–19% for the ). The same ten-
dency holds for the NNLMs interpolated with the Kneser-Ney
LMs. For the 4-gram interpolated models the improvement with
the SOUL NNLM is 3% for Mandarin and 6–7% for Arabic
(8–9% for the ). For 6-gram interpolated models the
relative gains are 8% for Mandarin and 11–12% for Arabic
(12–14% for the ).
The difference in perplexity reduction between the enhanced

SOUL NNLM training and the standard SOUL NNLM is
smaller after interpolation with the Kneser-Ney LMs. This
suggests that the advantage of using 10 times more data to train
the part of SOUL NNLMs that deals with rare words should
not bring much benefit in state-of-the-art STT systems where
NNLMs are interpolated with -gram LMs.

B. Speech Recognition Results

Tables II and IV summarize the results of speech recognition
experiments in terms of character error rate (CER) for Mandarin
and word error rate (WER) for Arabic. The lattices generated
with the baseline 4-gram Kneser-Ney LMs are rescored with
the different models types. The lattice rescoring is performed
in a usual way, by extracting -grams from the lattice and esti-
mating their probabilities with NNLMs. The recognition results
with NNLMs are reported after interpolation with the baseline
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TABLE IV
WER (%) WITH DIFFERENT ARABIC LMS

TABLE V
NNLM WEIGHTS FOR INTERPOLATION WITH THE BASELINE N-GRAM LMS

4-gram Kneser-Ney LMs, the same as used to generate 4-gram
lattices.
To give the idea of lower bounds of possibleWER reductions,

e.g. on the Mandarin dev09_M set, the oracle CER is about 4%.
It should be noted that the exact calculation of oracle WERs
is not straightforward on GALE setups due to their specificities
(reference transcription is divided into “snipets”, normalization,
segmentation of Mandarin data into words, MADA decomposi-
tion for Arabic). Thus, oracle calculation is approximative and
may exhibit differences as compared to the way one-best hy-
pothesis scores are calculated by the NIST sclite tool.
The interpolation weights for different NNLMswith the base-

line Kneser-Ney LMs are presented in Table V. It can be seen in
this table that higher interpolation weights are obtained for the
SOUL NNLMs than the shortlist NNLMs.
The results in Table II for Mandarin and Table IV for Arabic

show that the improvements in perplexity attained with the
SOUL NNLMs compared with the shortlist NNLMs carry over
to speech recognition. The best recognition performance is
obtained with the 6-gram context NNLMs.
As compared to the Kneser-Ney LMs, the SOUL NNLM,

when interpolated with the latter, improves the WER by up to
0.7% absolute for Mandarin and 0.8% for Arabic. The SOUL
model brings an absolute error reduction of about 0.2–0.3%
more than the shortlist NNLM.
It should be noted that the gains from using 6-gram NNLMs

on Arabic are smaller than might be expected since for com-
putational reasons the lattices had to be pruned before rescoring
with the 6-gram model. The effect of pruning is most notable on
the dev10c_A set which contained some large lattices that were
subject to severe pruning. However, since the 6-gram short-
list NNLMs showed no improvement with pruned lattices over
4-gram NNLMs, the 6-gram SOUL NNLMs still improve the
results.

C. NNLM Configurations

In order to investigate the impact of different NNLM param-
eters, such as the size of the shortlist, the number of top classes

TABLE VI
PERPLEXITY FOR LMS WITH DIFFERENT SHORTLIST

SIZES ON THE MANDARIN DEV09_M SET

in the first output layer and the depth of the clustering tree, a
number of additional experiments were carried out on the Chi-
nese setup. In these experiments, only one NNLM (as opposed
to three or four in the experiments described in the previous sec-
tions, see Table I) with 300 nodes in the projection layer for each
history word and 500 nodes in the hidden layer is trained for
each configuration.
Results with NNLMs with different sizes of the shortlist are

presented in Table VI. Shortlist column corresponds to different
sizes of the shortlist part, top classes reports the number of top
classes of the first SOUL output layer, depth is the depth of the
SOUL clustering tree, s/a stands for stand-alone NNLMs and
int for NNLMs interpolated with the baseline -gram model.
One conclusion from Table VI is that the flat full-vocabulary

NNLM, while being computationally very expensive, does sim-
ilarly or worse than the ones that make use of a shortlist. The
SOUL NNLMs benefit from clustering of rare words by means
of a clustering tree (shortlist NNLMs back off to normalized
Kneser-Ney estimates in this case) at the output, as seen from
the comparison with the full-vocabulary flat model. The SOUL
NNLMs also deliver top results with a relatively small shortlist
(i.e. 8 k). This may be important in order to save computation
time and resources, as it is not necessary to train SOUL NNLMs
with large shortlists. For example, running similar experiments
with shortlists equal or close to the vocabulary size is hardly
feasible on larger vocabulary setups (56 k Mandarin vocabulary
size can be considered as very moderate), as e.g. Arabic with
300 k vocabulary entries, because of the prohibitive training
costs.
A natural question is then whether stand-alone NNLMs

outperform -gram models. This question is difficult to answer
on the GALE setups, since it is infeasible to train NNLMs on
the same amounts of data as the Kneser-Ney LM baseline; as
pointed out in Sections II and IV, resampling has to be used
for NNLMs. A fair comparison is however possible on smaller
setups. The reader may find a discussion for which type of
events NNLMs do better that -gram LMs and vice versa in
[25].
Table VII reports perplexity for Mandarin 6-gram SOUL

NNLMs with different numbers of top classes in the first
output layer, SOUL NNLMs with clustering trees of different
depths and a full-vocabulary SOUL NNLM (no shortlist is
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TABLE VII
PERPLEXITY FOR 6-GRAM SOUL NNLMS WITH DIFFERENT NUMBER OF TOP
CLASSES AND CLUSTERING TREE DEPTHS ON THE MANDARIN DEV09_M SET

used, all words are clustered). It can be seen that the number
of top-level classes does not have much influence on the final
perplexity. The same holds for the depth of the clustering tree.
On one hand, training with a flat tree is slow and it yields
higher perplexity. On the other hand, there is little difference
between the clustering tree of depth two and three. This can be
explained by the fact that clustering mostly concern rare words;
there is thus little point to perform a deep and fine-grained
clustering. However, deeper clustering trees are expected to
provide training speed-ups for larger vocabulary tasks as it
results in more numerous but smaller softmax layers (see dis-
cussion in Section II). A similar experiment on Arabic showed
that a three-level tree indeed provides gains in training time as
opposed to the two-level one (5.8 days vs. 6.2 days).
The benefit of using the shortlist part in the SOUL architec-

ture as described in Section III-B was also verified. The SOUL
NNLM representing the whole vocabulary as a clustering tree
was trained. It is reported in the last row of Table VII, showing
that in the SOUL architecture, frequent words should be treated
separately.

D. Clustering Within SOUL NNLMs

According to the SOUL architecture, the 8 k most frequent
words do not undergo clustering as they form classes on their
own. Only the remaining words are clustered into 4 k classes on
the top level. As described in Section III-A, the training steps (1
to 3) of the SOUL model are used to derive the word clustering.
The depth of clustering hierarchy equals to 3.
With the Brown (as in [14]) and the unigram clustering (see

Section III-A), models can be directly trained with step 4 within
the SOUL architecture. This scenario is referred as single-step in
Table VIII, where the results obtained with different word clus-
tering schemes are given. The original SOUL clustering pro-
cedure with all the training steps described in Section III-A is
referred as SOUL. In this SOUL scenario neural networks based
on the Brown and the Unigram clustering also benefit from the
information obtained during steps 1 (e.g. lookup tables) and 3
(using more data to estimate probabilities of OOS words). The
original clustering method based on word similarity in contin-
uous space in the neural network is referred as . It should
be noted that both Brown and unigram approaches provide clus-
tering tree structures, just as the original NN method.

TABLE VIII
STAND-ALONE SOUL NNLM PERPLEXITY WITH DIFFERENT CLUSTERINGS

ON THE MANDARIN DEV09_M SET

TABLE IX
EXAMPLES OF CLOSE MADA-DECOMPOSED ARABIC WORDS ACCORDING

TO THE SOUL NNLM PROJECTION SPACE

Several conclusions can be drawn from the comparative re-
sults in Table VIII. First, models with the original clus-
tering slightly outperform the Brown and unigram clustering if
the latter are performed in the classic single-step way. How-
ever, the perplexity results in single-step and SOUL columns
should not be directly compared as all the NNLMs in the latter
scenario benefit from pre-training of neural network parame-
ters in steps 1 and 3 , as it was mentioned above. Results for
the SOUL scenario lead to the conclusion that taking advan-
tage of the SOUL training approach brings additional improve-
ments for the NNLMs based on the Brown and unigram clus-
tering methods. At the same time, there is no significant differ-
ence in perplexity between the three methods in the SOUL sce-
nario. This implies that the way words are assigned to classes is
not very important when the complete SOUL NNLM training
is performed. Finally, an additional benefit of the original
clustering is that it is obtained as a by-product during model
training, and thus at no extra cost, whereas Brown clustering is
computationally expensive.
The SOUL clustering scheme is based on the similarity be-

tween words in continuous space. This similarity can be ana-
lyzed by finding the nearest neighbors of words according to
the Euclidean distance in the projection space. Table IX in-
cludes some words with close concepts or sharing similar func-
tions, that are close in the SOUL projection space. Headwords
are the words for which “similar” words are determined (la-
beled close words). The closest words are presented first with
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more distant words near the end of the lists. The Arabic words
are MADA-decomposed units represented with a slightly mod-
ified MADA notation used at LIMSI along with their possible
translations. The indices and stand for the grammat-
ical markers for gender (masculine/feminine), information en-
coded in Arabic words. Many cases were observed where words
with semantic or grammatical similarities have similar represen-
tations in the projection space. Thus, neural networks seem to
reveal some of the similarities that exist between words.

VI. DISCUSSION AND CONCLUSIONS

The Structured OUtput Layer Neural Network approach to
language modeling was presented in detail in this paper. This
approach combines neural network and class-based language
models, with the goal of improving STT system performance
for large-scale tasks. The SOUL architecture allows training
of neural network LMs with full vocabularies, in contrast to
standard NNLMs that require shortlists for computational rea-
sons. The performance of the SOUL NNLMs was evaluated on
Mandarin Chinese and Arabic data from recent GALE develop-
ment and test sets. Significant improvements in speech recog-
nition were obtained over challenging baselines using shortlist
NNLMs interpolated with conventional 4-gram LMs.
Longer-context NNLMs were shown to improve the results

without drastic increase in computational costs and model size.
The ability of feed-forward NNLMs to improve system perfor-
mance with increasing of context is in line with results obtained
with recurrent networks that implicitly take into account the full
history to predict a given word [26].
There is a major difference in the recognition vocabulary size

for the Arabic and Mandarin languages. The Mandarin vocabu-
lary contains 56 k words and covers essentially all lexical items,
where as the Arabic vocabulary contains 300 k MADA-decom-
posed entries. Perplexity gains with the SOUL over shortlist
NNLMs are larger for Arabic than for Mandarin. Comparing the
SOULNNLM and shortlist NNLMs, the reduction of the speech
recognition error rate is less than the perplexity reduction. This
can be explained by a relatively high data coverage with short-
lists for both languages. The training data coverage of the 12
k shortlists for Mandarin and Arabic are 95% and 90% respec-
tively. Such statistics show that similar size shortlists do rela-
tively well in terms of data coverage even for models with very
different sized vocabularies. Thus, as confirmed by the exper-
imental results, the improvements from using full-vocabulary
SOUL NNLMs, while being consistent, are not proportional to
the vocabulary size.
Another reason that similar gains in speech recognition are

observed for both languages could be that the amounts of data
are insufficient to robustly estimate parameters for very infre-
quent words. In order to address this issue, the enhanced SOUL
NNLM training scheme was proposed. This method carries out
separate training of different parts of the structured output layer.
An order of magnitude more data are used to train the OOS part
of the SOULNNLMwithout any prohibitive increase in compu-
tational cost and training time. Although it was observed that the
enhanced SOUL NNLM is advantageous when used on its own,

the enhanced training scheme does not seem to have much in-
fluence on the overall performance after interpolation with stan-
dard -gram LMs.
Investigation of SOUL NNLM configurations led to several

conclusions about the peculiarities of the SOUL architecture.
First, frequent words should be treated separately though the
size of the shortlist can be kept small (e.g. 8 k words). Second,
the number of top-level classes and the depth of the clustering
tree do not have much influence on perplexity. The use of clus-
tering tree itself is important since it provides faster training and
better perplexities as compared to flat NNLMs.
Consistent perplexity and speech recognition improvements

over both conventional -gram baselines and shortlist NNLMs
on the GALE Mandarin and Arabic STT tasks make the SOUL
NNLM an alternative to the shortlist approach to neural network
language modeling. The application of the SOUL NNLM is not
confined to speech recognition but can be used for other lan-
guage technology tasks. The SOUL NNLM has been recently
reported to bring improvements in the statistical machine trans-
lation framework [27].
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Structured Output Layer Neural Network Language
Models for Speech Recognition

Hai-Son Le, Ilya Oparin, Member, IEEE, Alexandre Allauzen, Jean-Luc Gauvain, Member, IEEE, and
François Yvon

Abstract—This paper extends a novel neural network language
model (NNLM) which relies on word clustering to structure the
output vocabulary: Structured OUtput Layer (SOUL) NNLM.
This model is able to handle arbitrarily-sized vocabularies, hence
dispensing with the need for shortlists that are commonly used
in NNLMs. Several softmax layers replace the standard output
layer in this model. The output structure depends on the word
clustering which is based on the continuous word representation
determined by the NNLM. Mandarin and Arabic data are used
to evaluate the SOUL NNLM accuracy via speech-to-text experi-
ments. Well tuned speech-to-text systems (with error rates around
10%) serve as the baselines. The SOUL model achieves consistent
improvements over a classical shortlist NNLM both in terms of
perplexity and recognition accuracy for these two languages that
are quite different in terms of their internal structure and recog-
nition vocabulary size. An enhanced training scheme is proposed
that allows more data to be used at each training iteration of the
neural network.

Index Terms—Automatic speech recognition, neural network
language model, speech-to-text.

I. INTRODUCTION

H AVING been used for several decades, -gram models
still form the basis of modern language modeling for

speech-to-text (STT) transcription. Despite numerous attempts
there are very few approaches that have been shown to system-
atically and significantly improve over well-estimated -gram
language model (LM) baselines. Neural network language
models (NNLMs) are among these approaches and have been
adopted in some state-of-the-art STT systems [1]–[3].

Neural network LMs were introduced in [4], [5] as a means
to improve discrete models. Standard -gram back-off LMs rely
on a discrete representation of the vocabulary, where each word
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is associated with a discrete index. In contrast, NNLMs are
based on the idea of a continuous word representation, where
each word is associated with a real-valued feature vector. In this
continuous space, distributionally similar words are neighbors.
Thus -gram distributions are expressed as a smooth function
of the word representation, and can take into the account un-
derlying similarities between words. A neural network jointly
estimates both the word representations in a continuous space
and the associated probabilities.

An important specificity of NNLMs is the capability to take
into account longer -gram contexts. Previous experiments at
LIMSI with standard -gram LMs and large setups indicated
that the gain obtained by increasing the -gram order from 4 to
5 is almost negligible despite a drastic increase in model size.
Handling such models is thus rather impractical and can hardly
be done without pruning. For NNLMs, increasing the word con-
text length at the input layer results in at most a linear growth
in complexity [1] and does not lead to any prohibitive compu-
tational or memory overhead.

The major bottleneck with NNLMs is the computation of pos-
terior probabilities in the output layer, which must contain one
unit for each word in the vocabulary. As the softmax function
is used to obtain the posterior probabilities, the summation over
the entire vocabulary is required for each word in the training
or test data. This makes the handling of large vocabularies too
complex since it would require prohibitive computation time.
As a practical workaround, NNLMs usually estimate probabil-
ities only for the fraction of the vocabulary consisting of the
most frequent words which is called a shortlist. Probabilities of
all -grams finishing with an out-of-shortlist (OOS) word are
estimated with a conventional -gram LM. Such a restriction
limits the potential of NNLMs.

This article extends the Structured OUtput Layer (SOUL)
model introduced in [6], [7], describing training and clustering
issues in detail. The SOUL approach combines the benefits of
neural networks and class-based LMs by structuring the vo-
cabulary by means of a clustering tree automatically induced
from the continuous word representation. In contrast to standard
NNLMs, SOUL NNLM makes it feasible to estimate -gram
probabilities for large vocabularies. As a result, all vocabulary
words, and not just the words in a shortlist, can benefit from the
improved prediction capabilities of the NNLM.

Since estimating word probabilities for all vocabulary entries
can be regarded as one of the major distinctive features of the
SOUL NNLM, it is natural to evaluate and compare their per-
formance to more traditional NNLMs for different vocabulary
sizes.

1558-7916/$31.00 © 2012 IEEE
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Speech recognition experiments were carried out to assess
the performance of the SOUL NNLMs for the Mandarin Chi-
nese and Arabic (Modern Standard Arabic) languages using
data and systems developed for the GALE program. The base-
line STT systems [8], [9] have vocabularies of different sizes:
56 k words for Mandarin (including all characters) and 300 k
MADA-decomposed entries for Arabic. These systems make
use of well-tuned 4-gram LMs trained on corpora containing
several billion words of text (without any pruning or cut-offs)
interpolated with standard shortlist NNLMs.

It was shown that the training of full vocabulary NNLMs is
computationally feasible with the SOUL architecture, and that
this leads to improved STT accuracy for large tasks. In this
paper the clustering issues and the schemes for training the class
model embedded within the SOUL NNLM are described in de-
tail. Additional experiments dealing with the investigation of
the influence of different parameters on SOUL NNLM perfor-
mance are also reported. Examples of classes formed by words
that are close according to the SOUL NNLM projection space
are presented.

The remainder of this paper is organized as follows. Re-
lated work on hierarchical neural networks is summarized
in Section II, followed by a description of the architecture
of SOUL NNLMs in Section III. Section IV describes the
experimental setup and the baseline STT systems, with the
experimental results given in Section V. Finally, Section VI
concludes the paper along with providing a discussion of the
main findings.

II. RELATED WORK

A number of techniques are conventionally used to make the
training of NNLMs computationally feasible on the very large
corpora used to develop state-of-the-art STT systems.

As the time needed to train a NNLM on all available data
is usually prohibitive, a resampling technique was used to par-
tially circumvents this bottleneck [1]. Limited amounts of data
are selected at each neural network training iteration by sam-
pling the original corpus. This resampling is usually biased to-
wards in-domain data. However, resampling alone is not suffi-
cient to train NNLMs with large recognition vocabularies as the
output layer is also prohibitively large. A proposed solution to
this problem was to restrict the output vocabulary to a shortlist
of several thousand most frequent words [5].

Recently, some new methods for optimizing NNLM training
have been proposed. For example, a significant speed-up in
training without performance degradation can be obtained
by using a small hidden layer in combination with direct
connections between the input and the output layers. Such a
model with only 40 neurons in the hidden layer was reported
to be much faster to train and to provide the same results as a
model with 320 neurons in the hidden layer but without direct
connections [10]. Another recent study [11] showed the impact
of the initialization of the NNLM parameters and proposed
three new training schemes.

A crucial issue that arises with the use of shortlists is that the
NNLMs estimate the probabilities only of a limited number of
words. Therefore the probability distribution must be normal-
ized with a standard back-off LM in order to cover words that

are not in the shortlist. The formula for calculating the normal-
ized probabilities with shortlist NNLMs is:

if shortlist
otherwise

(1)

where is the word to be predicted and its word
history, is the probability of an in-shortlist word calculated
with the NNLM, is the probability assigned by the standard
backoff -gram LM. The scaling factor depends on the
history and was defined in [5] as:

(2)

As both and are normalized to sum to one, the “com-
bined” conditional distribution is also normalized.

To handle large output vocabularies, [12] and [13] proposed
to use a hierarchical structure for the output layer following
previous research to speed-up systems using maximum entropy
models. It should be noted that the idea to use classes to factorize
the output layer of a neural network can be traced to the classical
work of Brown et al. on distributed word representation [14].

A conditional maximum entropy model in its general form is
expressed as

(3)

where are the features, are the feature weights. The nor-
malization term in the denominator requires a summation over
all in-vocabulary words . This poses exactly the same
computational problems as the softmax in the output layer of
neural networks. In [15] it was proposed to first cluster words
into classes and then compute the conditional probabilities:

(4)

where denotes the class assigned to a word . Two models
are trained separately: one that predicts the class probability
given the history; and one predicting a word given its class and
its history. With this kind of model, a significant speed-up can
be obtained since the required summations for both models are
drastically reduced: for the first model, the summation ranges
over the number of different classes, whereas for the second
model it involves only the words in the given class.

The idea of clustering the vocabulary words was introduced
for NNLMs in [12], where a binary hierarchical clustering was
derived from the WordNet semantic hierarchy. In that work, the
output vocabulary was first clustered and represented by a bi-
nary tree. Each internal node of the tree held a word cluster
which was further divided into two sub-clusters and so on. The
leaves correspond to the words at the end of this representation
of the vocabulary. The neural network aims to estimate proba-
bilities for the paths in this binary tree given the history, rather
than for the word itself, as reflected by the following equation:

(5)
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Fig. 1. The architecture of the structured output layer neural network language model.

where is the depth of the tree and stands for 1 or 0 in the
path for a given word. This approach resulted in a two order
of magnitude speed-up on a small data set (1 million words of
the Brown corpus) with a vocabulary of 10 k words. However,
a significant increase in perplexity was observed relative to
a standard NNLM. One of the possible explanations is the
widely observed difficulty of integrating linguistic informa-
tion in statistical LMs and in the NNLM described above the
clustering tree is constructed using the semantic information
from the WordNet. Alternative solutions that do not rely on
external linguistic sources were proposed in [13], [16] for
neural network and log-bilinear models. These methods are
also appealing, as the WordNet or similar resources covering
large output vocabularies are not necessarily available for
different languages. Using automatic clustering to factorize the
output layer resulted in significant speed-ups in training and
perplexities similar to those obtained without clustering.

It can be seen that much of the previous work concentrated on
reducing the computational complexity, with less emphasis on
improving the accuracy of speech recognition or machine trans-
lation systems. In the binary hierarchical log-bilinear approach
the resulting binary clustering tree is deep (i.e. has many levels),
and thus faces a data fragmentation problem. This problem is
well known for decision trees, especially for language modeling
tasks [17]. Moreover, if a word is assigned to a wrong class at
some level in a decision tree, this error affects all the internal
nodes (or clusters) leading to this word. This is typically the
case for rare words that represent a large fraction of the vocab-
ulary. Thus an error in one word may have a significant impact
on the whole system. By relaxing the constraint of the binary
structure, it is expected that this shortcoming will be overcome
as explained in Section III.

Factorization of the output layer was also used for recurrent
NNLMs. Although a simpler approach based on the distribution
of unigram probabilities that does not reveal any relationships
between the words was used, this work illustrates the growing
interest in improving neural network LMs for STT [18]. An-
other active direction of research dealing with different clus-
tering methods is connected with recently proposed Model M
and its enhancements [19], [20].

III. STRUCTURED OUTPUT LAYER NEURAL NETWORK

LANGUAGE MODEL

In this section the class-based neural network language
model, namely Structured OUtput Layer (SOUL) NNLM, is
described in detail.

In the SOUL NNLM [6], [7] the output vocabulary is struc-
tured by a clustering tree, where each word belongs to only one
class and ends up in a single leaf of the tree. If denotes the

word in a sentence, the sequence en-
codes the path for word in the clustering tree, and is the
depth of the tree. is a class or sub-class assigned to ,
and is the leaf associated with (the word itself). Then
the -gram probability of given its history can be estimated
as follows:

(6)

The probability of a word is conditioned not only on its con-
text, but also on a non-binary string of indices encoding a path
in the clustering tree. Each word belongs to only one class and
there is a softmax function at each level of the hierarchical
representation.

Fig. 1 represents the architecture of the SOUL NNLM. Both
SOUL and standard NNLMs share the same architecture up to
the hidden layer. The output structure of the SOUL model is
made of three kinds of output layers. The first output layer esti-
mates the distribution over the shortlist words and the top (most
general) classes for the OOS words. Words in the shortlist are
regarded as a special case since each represents its own class
without sub-clustering (the tree depth is equal to 1 in this
case). The top classes serve as the roots of trees to handle the
OOS words and include multiple sub-class layers each with a
softmax function, forming the second kind layers. Finally, the
word layers estimate the word probabilities for the OOS words.
To summarize, the SOUL model estimate the -gram proba-
bility of a word given its context as defined by the (6)
as follows: the upper layer handles the distribution over the top
classes ; then subsequent sub-class layers compute
the sub-class probabilities for ;
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finally the OOS word probabilities are
given by the word layers.

The SOUL model can handle any arbitrary tree structure of
the vocabulary. A slightly different architecture could be con-
sidered, where the first softmax layer consists of classes corre-
sponding to the shortlist words plus an additional node. This ad-
ditional node serves as a root of a tree that includes all sub-class
layers needed to estimate the probabilities of the OOS words.
Experiments with this architecture showed slightly worse re-
sults with a negligible complexity reduction.

A. Training Scheme

The training scheme addresses two closely related parts of the
SOUL model: the parameters estimation and the word clustering
that structures the output vocabulary. In [13] a rather sophisti-
cated divisive clustering algorithm is presented which is based
on a mixture of two Gaussians applied to the continuous word
space. In this work, we propose a more straightforward method
based on the relationship between the two word spaces defined
in a standard NNLM [11], i.e. the context and the prediction
spaces. The training procedure is summarized as follows:
Step 1) pre-training: Train an NNLM with a shortlist as

output, using the one vector initialization method
[11]. This step is only required to provide a prelimi-
nary estimate of the projection space defined by the
matrix .

Step 2) dimension reduction of the projection space:
Apply the standard Principal Component Analysis
(PCA) on the matrix .

Step 3) word clustering: Perform a divisive top-down word
clustering based on the -means algorithm, using
the continuous representation induced by the pre-
vious step for words that are not in the shortlist.

Step 4) full training: Train a full-vocabulary NNLM with
the tree structure as output.

The goal of step 1 is to learn the word features for clustering.
In the one word initialization method introduced in [11], all the
words in the context vocabulary are initially projected onto the
same (random) point in the context space. The intuition is that
it will be easier to build meaningful neighborhoods, especially
for rare types, if all words are initially considered similar and
only diverge if there is sufficient evidence in the training data
to suggest that they should. With this kind of initialization, only
a few iterations are required as the learning of word features
converges quickly.

As words input to a NNLM are represented in 1-of- coding
with 1 corresponding to a word’s vocabulary index and all other
elements set to zero, each line in the projection matrix corre-
sponds to a continuous representation of a particular word. The
dimensionality of this representation is reduced with the PCA at
step 2. The size of the context space after the dimensionality re-
duction is equal to 10 for the experiments described here. Such
low dimensional context space makes the subsequent -means
clustering at the step 3 computationally cheap.

The clustering at step 3 divides a word class (or sub-class)
only if the number of words in this class is above an empiri-
cally determined threshold . Each class containing more than

words is divided in sub-classes. The value of this

threshold allows to tune the depth of the clustering tree: small
values result in a deep clustering structure while a very large
value generates a flat tree. This threshold depends on the vo-
cabulary size and can be optimized. However, experimental re-
sults with different vocabulary sizes show that its value does
not have much influence on the overall performance of the STT
systems and three levels of hierarchy seem sufficient. The clus-
tering deals with rare words and thus there is little point in
making small classes and having a deep tree structure. In these
experiments, the -means algorithm starts with 4 k top classes.
Then each sub class is recursively divided. However, in prac-
tice, the one vector initialization used at step 1 implies that very
rare words are represented by very similar or identical feature
vectors. In that particular case, the rare words are then naturally
grouped in the same class by the first -means step, and a re-
cursive subdivision is therefore not well suited. In the rest of
this paper, the class for rare words is randomly divided.

Finally, standard back-propagation training [21] is performed
for the full vocabulary SOUL NNLM at step 4 using the param-
eters obtained at step 1 for initialization.

In order to evaluate the influence of the type of clustering
in the SOUL architecture, the clustering proposed above was
compared with two other techniques. The first is the widely
known Brown clustering algorithm based on the maximization
of the mutual information between adjacent classes [14]. This
algorithm has served as a baseline in the community and it has
been hard to improve upon, even with much more sophisticated
methods. The second method has been implemented in the BUT
RNNLM recurrent network toolkit [18], and assigns words to
classes according to their unigram probabilities.

Comparative results for the three clustering methods, dif-
ferent shortlist sizes, number of classes and depth of the
clustering tree are given and discussed in Section V.

B. Enhanced Training Scheme

NNLM training maximizes the log-likelihood of the training
data. This optimization is performed by stochastic back-propa-
gation [21]. A previously trained standard NNLM is used to ini-
tialize the shared parameters (i.e matrices and in Fig. 1).
The other parameters are initialized in a usual way, as described
in the previous section. Overall, the training time for a SOUL
model is only about 30% longer than for standard 8 k shortlist
NNLMs and slightly shorter the time to train a 12 k shortlist
NNLM.

When dealing with large vocabularies (e.g. the Arabic one in
this study), the number of parameters related to the class-part
of the model increases significantly. As a result, the resampling
technique that is used for neural network training at each epoch
may be insufficient to obtain robust parameter estimates.

As described in Section III, the output layer of the SOUL
NNLM is comprised of two parts: the first layer which directly
models the probabilities of the most frequent in-shortlist words
and top classes, and the remaining sub-class layers that deal with
the classes of OOS words as illustrated in Fig. 1.

The parameters related to the first output layer are updated for
all training examples since it covers the shortlist words and the
most general classes for the less frequent words. The -grams
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ending with in-shortlist words are used to update the parame-
ters only of this first layer, leaving sub-class layers intact. The
parameters of sub-class layers are updated with the -grams
ending in an OOS word and only those class layers leading to
the leaf with this particular word are activated and the corre-
sponding parameters are updated. A shortlist usually covers a
large part of training examples so that the updates of the pa-
rameters related to sub-class layers are less frequent. Moreover,
when such an update occurs, it is done for a subset of the pa-
rameters corresponding to a particular path in the clustering tree
of the class layers. At the same time the number of parameters
corresponding to OOS words is much larger. As a result, the
two parts of the SOUL output layer are not trained equally well.
Therefore a modified SOUL training scheme based on the sep-
arate training of the OOS part at the output layer is proposed.
This scheme adds an additional step to the training procedure
described in Section III-A.

This additional step 3 is similar to 1, but is carried out only
for OOS words. At this step the -grams ending with shortlist
words are skipped and the parameters associated with shortlist
words are temporarily fixed, reducing the size of the first output
layer to the number of main classes of infrequent words only (4
k as opposed to 12 k in the SOUL setup). As explained above,
the softmax in the first output layer is triggered for each training
example, which, in turn, requires summation over all nodes in
this layer. Thus, any reduction in the size of the first output layer
results in a significant speed-up. Since the number of OOS oc-
currences represent a relatively small proportion of the training
data (for our experiments on Chinese and Arabic data these rep-
resent 5–10% of all word occurrences), the number of training
examples can be easily increased by the factor of 10. As NNLMs
are trained (with resampling) on less data as compared with the
baseline -gram LMs, there are always additional data avail-
able for the step 3 . The parameters obtained at step 3 are used
to initialize the parameters associated with the OOS words at
the step 4.

IV. EXPERIMENTAL SETUP

The performance of the SOUL NNLM is compared to stan-
dard shortlist NNLMs on the GALE Arabic and Mandarin Chi-
nese tasks.

The general parameters of NNLMs are presented in Table I.
Several NNLMs differing in the size of the projection layer and
the hidden layer are trained for each task, and then interpolated
together, along with the standard N-gram backoff LM. Inter-
polation weights are tuned to minimize perplexity on the de-
velopment data. The same setups are used for both the SOUL
NNLMs and the shortlist NNLMs. Thus the difference in results
can be attributed to the use of the whole vocabulary at the output
(which, in turn, uses the class information).

Each NNLM is trained on about 25–30 M words at each iter-
ation after resampling of the training data. The enhanced SOUL
NNLM training scheme (see Section III-A) is investigated on
Arabic, for which shortlists of similar sizes provide lower data
coverage than for Mandarin thus leaving more space to im-
provement with the proposed scheme. Up to 300 M words are
used during step 3 to train the class output layers that deal with
OOS words. As all the -grams ending with an in-shortlist word

TABLE I
PARAMETERS OF THE MANDARIN CHINESE AND ARABIC NNLMS. FOR EACH

LANGUAGE, NNLMS WITH DIFFERENT PARAMETERS ARE SUBSEQUENTLY

INTERPOLATED TOGETHER

are skipped at step 3 , it makes about 30 M -grams that are used
to update the parameters.

To assess the impact of the increase in the shortlist size,
NNLMs with 8 k and 12 k shortlists are trained on the Man-
darin data. As slightly better results are obtained with a
larger one, the Arabic shortlist NNLMs use a shortlist of 12 k
MADA-decomposed units.

In order to study possible improvements from using longer
span NNLMs, the increase in context length from 3 (that corre-
sponds to 4-grams) to 5 is investigated. For the shortlist NNLMs
the same 4-gram back-off LM is used for OOS words.

The performance of the different Mandarin models was
assessed on the GALE dev09_M and eval09_M data sets con-
taining broadcast news and broadcast conversations. A subset
of dev09_M called dev09s_M was also defined, comprised
of about a third of dev09_M data. The dev09_M, dev09s_M
and eval09_M sets contain respectively 97459, 31529 and
79246 segmented words. Three sets are used to evaluate the
performance of the different Arabic models, namely dev09s_A,
eval10ns_A and dev10c_A. These sets contain of 23576, 45629
and 52181 MADA-decomposed units respectively.

A. Mandarin STT System

Mandarin Chinese is a language with a low mor-
pheme-per-word ratio. Most words in a running text are
composed of a single morpheme (character), and, as there are
no markers neither for inflection nor for parts of speech, it has a
fixed word order. Words in written Chinese are not separated by
white spaces. A natural solution is either to use character-based
LMs or to perform word segmentation as a pre-processing step.
The former was shown to be inferior to the latter [22], so the
longest-match segmentation approach is taken in this work. As
is the convention, the character error rate is used to evaluate
recognition performance for Chinese.

The recognition vocabulary contains 56 k entries including
both multicharacter words (about 50 k) and individual Chinese
characters (6 k entries). There are no out-of-vocabulary (OOV)
words for Chinese. The acoustic models and the decoding
process of the Mandarin STT system are described in detail in
[8]. The Mandarin LM is trained on 3.2 billion word tokens
after segmentation. Individual 4-gram LMs are first built for
each of 48 sub-corpora without any cut-offs and pruning. These
models are smoothed according to the unmodified interpolated
Kneser-Ney scheme and are subsequently linearly interpolated
to form the baseline 4-gram LM, with the weights tuned on the
dev09_M data. This resulting model includes 2.2 billion unique

-grams.



IE
EE

 P
ro

of

Pr
in

t V
er

sio
n

6 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 0, NO. 0, 2012

TABLE II
PERPLEXITY AND CER (%) FOR DIFFERENT MANDARIN LMS

B. Arabic STT System

Arabic is a highly inflective and morphologically rich lan-
guage characterized by a large number of word forms for a
given lemma. This usually results in vocabularies that are sev-
eral times larger than the ones used for Chinese or English.

The baseline Arabic STT system used in the speech recog-
nition experiments reported here gives state-of-the-art perfor-
mance on the GALE tasks [9]. The Arabic vocabulary contains
300 k entries. The MADA1 (Morphological Analysis and Dis-
ambiguation for Arabic) tool is used to decompose the words
into their morphological constituents, increasing lexical cov-
erage and improving recognition performance [23], [24]. The
Arabic LM training data contains about 1.7 billion words before
decomposition, resulting in a total of about 2 billion morphs.
4-gram LMs are trained for 32 different MADA-decomposed
text subsets using the unmodified interpolated Kneser-Ney
scheme, without pruning or cut-offs. These LMs are further
interpolated to form the final 4-gram LM. The resulting model
includes 1.2 billion unique -grams.

V. EXPERIMENTAL RESULTS

In this section, experimental results are provided for Arabic
and Mandarin, both in terms of perplexity and recognition error
rates. The internal structure of these two languages is quite dif-
ferent which is reflected by the vocabulary sizes of their STT
systems. The SOUL word clustering approach is also compared
to the classical Brown clusters and the more straightforward un-
igram algorithm. The representation of words in the projection
space is explored by finding the neighbors for some selected
words.

A. Perplexity Results

Tables II and III summarize the results in terms of perplexity
for Mandarin and Arabic respectively. The results are provided
both for stand-alone NNLMs (columns s/a) and after interpola-
tion with the baseline 4-gram LMs (columns int).

The rows marked with shortlist correspond to shortlist
NNLMs (with 8 k or 12 k shortlists). The context size for the
NNLMs is indicated as 4 g or 6 g. The models marked as SOUL
are based on the general SOUL architecture, while
corresponds to the SOUL NNLM that uses the enhanced

1http://www1.ccls.columbia.edu/~cadim/MADA.html.

TABLE III
PERPLEXITY FOR DIFFERENT ARABIC LMS

training scheme for the parameters dealing with OOS words, as
described in Section III-B.

As can be seen from Table II, increasing the shortlist size by
50% from 8 k to 12 k words brings only a small improvements
in perplexity. The SOUL model that predicts probabilities for all
words in the vocabulary and uses word clustering for infrequent
words systematically outperforms the 12 k shortlist NNLM for
both languages even though it is not more computationally de-
manding.

Using a longer context (6 g vs. 4 g) reduces the perplexity
both for the shortlist and the SOUL NNLMs. These models
directly provide lower perplexities than the Kneser-Ney LM,
trained on much more data. All interpolations of different orders
and types of NNLMs with the Kneser-Ney LMs were found to
significantly reduce the perplexity.

These results show that the SOUL NNLM consistently out-
performs the shortlist counterparts of the same order on all the
test sets. For the 4-gram stand-alone NNLMs, the relative im-
provement obtained with the SOUL NNLM over the shortlist
NNLM is 3% for Mandarin and 9–10% for Arabic (13–15%
for ). In the longer-context 6-gram case, the gains with
the SOUL NNLM are somewhat larger, 7% for Mandarin and
14–16% for Arabic (17–19% for the ). The same ten-
dency holds for the NNLMs interpolated with the Kneser-Ney
LMs. For the 4-gram interpolated models the improvement with
the SOUL NNLM is 3% for Mandarin and 6–7% for Arabic
(8–9% for the ). For 6-gram interpolated models the
relative gains are 8% for Mandarin and 11–12% for Arabic
(12–14% for the ).

The difference in perplexity reduction between the enhanced
SOUL NNLM training and the standard SOUL NNLM is
smaller after interpolation with the Kneser-Ney LMs. This
suggests that the advantage of using 10 times more data to train
the part of SOUL NNLMs that deals with rare words should
not bring much benefit in state-of-the-art STT systems where
NNLMs are interpolated with -gram LMs.

B. Speech Recognition Results

Tables II and IV summarize the results of speech recognition
experiments in terms of character error rate (CER) for Mandarin
and word error rate (WER) for Arabic. The lattices generated
with the baseline 4-gram Kneser-Ney LMs are rescored with
the different models types. The lattice rescoring is performed
in a usual way, by extracting -grams from the lattice and esti-
mating their probabilities with NNLMs. The recognition results
with NNLMs are reported after interpolation with the baseline
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TABLE IV
WER (%) WITH DIFFERENT ARABIC LMS

TABLE V
NNLM WEIGHTS FOR INTERPOLATION WITH THE BASELINE N-GRAM LMS

4-gram Kneser-Ney LMs, the same as used to generate 4-gram
lattices.

To give the idea of lower bounds of possible WER reductions,
e.g. on the Mandarin dev09_M set, the oracle CER is about 4%.
It should be noted that the exact calculation of oracle WERs
is not straightforward on GALE setups due to their specificities
(reference transcription is divided into “snipets”, normalization,
segmentation of Mandarin data into words, MADA decomposi-
tion for Arabic). Thus, oracle calculation is approximative and
may exhibit differences as compared to the way one-best hy-
pothesis scores are calculated by the NIST sclite tool.

The interpolation weights for different NNLMs with the base-
line Kneser-Ney LMs are presented in Table V. It can be seen in
this table that higher interpolation weights are obtained for the
SOUL NNLMs than the shortlist NNLMs.

The results in Table II for Mandarin and Table IV for Arabic
show that the improvements in perplexity attained with the
SOUL NNLMs compared with the shortlist NNLMs carry over
to speech recognition. The best recognition performance is
obtained with the 6-gram context NNLMs.

As compared to the Kneser-Ney LMs, the SOUL NNLM,
when interpolated with the latter, improves the WER by up to
0.7% absolute for Mandarin and 0.8% for Arabic. The SOUL
model brings an absolute error reduction of about 0.2–0.3%
more than the shortlist NNLM.

It should be noted that the gains from using 6-gram NNLMs
on Arabic are smaller than might be expected since for com-
putational reasons the lattices had to be pruned before rescoring
with the 6-gram model. The effect of pruning is most notable on
the dev10c_A set which contained some large lattices that were
subject to severe pruning. However, since the 6-gram short-
list NNLMs showed no improvement with pruned lattices over
4-gram NNLMs, the 6-gram SOUL NNLMs still improve the
results.

C. NNLM Configurations

In order to investigate the impact of different NNLM param-
eters, such as the size of the shortlist, the number of top classes

TABLE VI
PERPLEXITY FOR LMS WITH DIFFERENT SHORTLIST

SIZES ON THE MANDARIN DEV09_M SET

in the first output layer and the depth of the clustering tree, a
number of additional experiments were carried out on the Chi-
nese setup. In these experiments, only one NNLM (as opposed
to three or four in the experiments described in the previous sec-
tions, see Table I) with 300 nodes in the projection layer for each
history word and 500 nodes in the hidden layer is trained for
each configuration.

Results with NNLMs with different sizes of the shortlist are
presented in Table VI. Shortlist column corresponds to different
sizes of the shortlist part, top classes reports the number of top
classes of the first SOUL output layer, depth is the depth of the
SOUL clustering tree, s/a stands for stand-alone NNLMs and
int for NNLMs interpolated with the baseline -gram model.

One conclusion from Table VI is that the flat full-vocabulary
NNLM, while being computationally very expensive, does sim-
ilarly or worse than the ones that make use of a shortlist. The
SOUL NNLMs benefit from clustering of rare words by means
of a clustering tree (shortlist NNLMs back off to normalized
Kneser-Ney estimates in this case) at the output, as seen from
the comparison with the full-vocabulary flat model. The SOUL
NNLMs also deliver top results with a relatively small shortlist
(i.e. 8 k). This may be important in order to save computation
time and resources, as it is not necessary to train SOUL NNLMs
with large shortlists. For example, running similar experiments
with shortlists equal or close to the vocabulary size is hardly
feasible on larger vocabulary setups (56 k Mandarin vocabulary
size can be considered as very moderate), as e.g. Arabic with
300 k vocabulary entries, because of the prohibitive training
costs.

A natural question is then whether stand-alone NNLMs
outperform -gram models. This question is difficult to answer
on the GALE setups, since it is infeasible to train NNLMs on
the same amounts of data as the Kneser-Ney LM baseline; as
pointed out in Sections II and IV, resampling has to be used
for NNLMs. A fair comparison is however possible on smaller
setups. The reader may find a discussion for which type of
events NNLMs do better that -gram LMs and vice versa in
[25].

Table VII reports perplexity for Mandarin 6-gram SOUL
NNLMs with different numbers of top classes in the first
output layer, SOUL NNLMs with clustering trees of different
depths and a full-vocabulary SOUL NNLM (no shortlist is
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TABLE VII
PERPLEXITY FOR 6-GRAM SOUL NNLMS WITH DIFFERENT NUMBER OF TOP

CLASSES AND CLUSTERING TREE DEPTHS ON THE MANDARIN DEV09_M SET

used, all words are clustered). It can be seen that the number
of top-level classes does not have much influence on the final
perplexity. The same holds for the depth of the clustering tree.
On one hand, training with a flat tree is slow and it yields
higher perplexity. On the other hand, there is little difference
between the clustering tree of depth two and three. This can be
explained by the fact that clustering mostly concern rare words;
there is thus little point to perform a deep and fine-grained
clustering. However, deeper clustering trees are expected to
provide training speed-ups for larger vocabulary tasks as it
results in more numerous but smaller softmax layers (see dis-
cussion in Section II). A similar experiment on Arabic showed
that a three-level tree indeed provides gains in training time as
opposed to the two-level one (5.8 days vs. 6.2 days).

The benefit of using the shortlist part in the SOUL architec-
ture as described in Section III-B was also verified. The SOUL
NNLM representing the whole vocabulary as a clustering tree
was trained. It is reported in the last row of Table VII, showing
that in the SOUL architecture, frequent words should be treated
separately.

D. Clustering Within SOUL NNLMs

According to the SOUL architecture, the 8 k most frequent
words do not undergo clustering as they form classes on their
own. Only the remaining words are clustered into 4 k classes on
the top level. As described in Section III-A, the training steps (1
to 3) of the SOUL model are used to derive the word clustering.
The depth of clustering hierarchy equals to 3.

With the Brown (as in [14]) and the unigram clustering (see
Section III-A), models can be directly trained with step 4 within
the SOUL architecture. This scenario is referred as single-step in
Table VIII, where the results obtained with different word clus-
tering schemes are given. The original SOUL clustering pro-
cedure with all the training steps described in Section III-A is
referred as SOUL. In this SOUL scenario neural networks based
on the Brown and the Unigram clustering also benefit from the
information obtained during steps 1 (e.g. lookup tables) and 3
(using more data to estimate probabilities of OOS words). The
original clustering method based on word similarity in contin-
uous space in the neural network is referred as . It should
be noted that both Brown and unigram approaches provide clus-
tering tree structures, just as the original NN method.

TABLE VIII
STAND-ALONE SOUL NNLM PERPLEXITY WITH DIFFERENT CLUSTERINGS

ON THE MANDARIN DEV09_M SET

TABLE IX
EXAMPLES OF CLOSE MADA-DECOMPOSED ARABIC WORDS ACCORDING

TO THE SOUL NNLM PROJECTION SPACE

Several conclusions can be drawn from the comparative re-
sults in Table VIII. First, models with the original clus-
tering slightly outperform the Brown and unigram clustering if
the latter are performed in the classic single-step way. How-
ever, the perplexity results in single-step and SOUL columns
should not be directly compared as all the NNLMs in the latter
scenario benefit from pre-training of neural network parame-
ters in steps 1 and 3 , as it was mentioned above. Results for
the SOUL scenario lead to the conclusion that taking advan-
tage of the SOUL training approach brings additional improve-
ments for the NNLMs based on the Brown and unigram clus-
tering methods. At the same time, there is no significant differ-
ence in perplexity between the three methods in the SOUL sce-
nario. This implies that the way words are assigned to classes is
not very important when the complete SOUL NNLM training
is performed. Finally, an additional benefit of the original
clustering is that it is obtained as a by-product during model
training, and thus at no extra cost, whereas Brown clustering is
computationally expensive.

The SOUL clustering scheme is based on the similarity be-
tween words in continuous space. This similarity can be ana-
lyzed by finding the nearest neighbors of words according to
the Euclidean distance in the projection space. Table IX in-
cludes some words with close concepts or sharing similar func-
tions, that are close in the SOUL projection space. Headwords
are the words for which “similar” words are determined (la-
beled close words). The closest words are presented first with
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more distant words near the end of the lists. The Arabic words
are MADA-decomposed units represented with a slightly mod-
ified MADA notation used at LIMSI along with their possible
translations. The indices and stand for the grammat-
ical markers for gender (masculine/feminine), information en-
coded in Arabic words. Many cases were observed where words
with semantic or grammatical similarities have similar represen-
tations in the projection space. Thus, neural networks seem to
reveal some of the similarities that exist between words.

VI. DISCUSSION AND CONCLUSIONS

The Structured OUtput Layer Neural Network approach to
language modeling was presented in detail in this paper. This
approach combines neural network and class-based language
models, with the goal of improving STT system performance
for large-scale tasks. The SOUL architecture allows training
of neural network LMs with full vocabularies, in contrast to
standard NNLMs that require shortlists for computational rea-
sons. The performance of the SOUL NNLMs was evaluated on
Mandarin Chinese and Arabic data from recent GALE develop-
ment and test sets. Significant improvements in speech recog-
nition were obtained over challenging baselines using shortlist
NNLMs interpolated with conventional 4-gram LMs.

Longer-context NNLMs were shown to improve the results
without drastic increase in computational costs and model size.
The ability of feed-forward NNLMs to improve system perfor-
mance with increasing of context is in line with results obtained
with recurrent networks that implicitly take into account the full
history to predict a given word [26].

There is a major difference in the recognition vocabulary size
for the Arabic and Mandarin languages. The Mandarin vocabu-
lary contains 56 k words and covers essentially all lexical items,
where as the Arabic vocabulary contains 300 k MADA-decom-
posed entries. Perplexity gains with the SOUL over shortlist
NNLMs are larger for Arabic than for Mandarin. Comparing the
SOUL NNLM and shortlist NNLMs, the reduction of the speech
recognition error rate is less than the perplexity reduction. This
can be explained by a relatively high data coverage with short-
lists for both languages. The training data coverage of the 12
k shortlists for Mandarin and Arabic are 95% and 90% respec-
tively. Such statistics show that similar size shortlists do rela-
tively well in terms of data coverage even for models with very
different sized vocabularies. Thus, as confirmed by the exper-
imental results, the improvements from using full-vocabulary
SOUL NNLMs, while being consistent, are not proportional to
the vocabulary size.

Another reason that similar gains in speech recognition are
observed for both languages could be that the amounts of data
are insufficient to robustly estimate parameters for very infre-
quent words. In order to address this issue, the enhanced SOUL
NNLM training scheme was proposed. This method carries out
separate training of different parts of the structured output layer.
An order of magnitude more data are used to train the OOS part
of the SOUL NNLM without any prohibitive increase in compu-
tational cost and training time. Although it was observed that the
enhanced SOUL NNLM is advantageous when used on its own,

the enhanced training scheme does not seem to have much in-
fluence on the overall performance after interpolation with stan-
dard -gram LMs.

Investigation of SOUL NNLM configurations led to several
conclusions about the peculiarities of the SOUL architecture.
First, frequent words should be treated separately though the
size of the shortlist can be kept small (e.g. 8 k words). Second,
the number of top-level classes and the depth of the clustering
tree do not have much influence on perplexity. The use of clus-
tering tree itself is important since it provides faster training and
better perplexities as compared to flat NNLMs.

Consistent perplexity and speech recognition improvements
over both conventional -gram baselines and shortlist NNLMs
on the GALE Mandarin and Arabic STT tasks make the SOUL
NNLM an alternative to the shortlist approach to neural network
language modeling. The application of the SOUL NNLM is not
confined to speech recognition but can be used for other lan-
guage technology tasks. The SOUL NNLM has been recently
reported to bring improvements in the statistical machine trans-
lation framework [27].
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