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ABSTRACT

This paper proposes a new phone lattice based method for
automatic language recognition from speech data. By using
phone lattices some approximations usually made by language
identification (LID) systems relying on phonotactic constraints
to simplify the training and decoding processes can be avoided.
We demonstrate the use of phone lattices both in training and
testing significantly improves the accuracy of a phonotactically
based LID system. Performance is further enhanced by using a
neural network to combine the results of multiple phone recog-
nizers. Using three phone recognizers with context independent
phone models, the system achieves an equal error rate of 2.7%
on the Eval03 NIST detection test (30s segment, primary con-
dition) with an overall decoding process that runs faster than
real-time (0.5xRT).

1. INTRODUCTION

Some of the most efficient approaches to language
identification (LID) rely on language dependent phone
N -gram models which are based on the assumption that
phonotactic constraints contain enough information to
identify the language[1]. Various implementations of this
basic idea have been proposed, starting with the use ofN -
gram based phone decoders (one per language) [2, 3, 5],
the use of a single phone recognizer followed by the
computation of language dependent phone N -gram like-
lihoods [6], and the use of multiple phone recognizers fol-
lowed a phone N -gram classifier [7] (approach denoted
PPRLM for “parallel phone recognition followed by lan-
guage dependent modeling”). For these three approaches,
the acoustic and N -gram model can be estimated on ei-
ther unlabeled or orthographically/phonetically labeled
data, however the phoneN -gram models are usually esti-
mated on unlabeled data as this corresponds most closely
to anticipated usage. The PPRLM method proposed by
Zissman [8] is a very effective solution both in terms of
decoding time and needed resources, as acoustic decod-
ing can be limited to a few languages, and phone models
can be trained for each language of interest as long as un-
labeled data are available to estimate the phone N -gram
probabilities.

One question raised by the phonotactic approach is
how the posterior probabilities, Pr�LjX� for each con-
sidered language L given the speech segment X, are es-
timated from the phone N -gram probabilities and from
the phone acoustic scores. Another related issue concerns
the estimation of the phoneN -gram probabilities for each
language given some unlabeled data.

This paper demonstrates that phone lattices provide a
very effective solution to these two problems and sig-
nificantly improve the accuracy of the language identi-
fication system in comparison to previously investigated
methods. In addition it is shown that a neural-network
decision module can further improve the estimation of
the posterior probabilities leading to better identification
accuracy.

2. PHONOTACTIC APPROACH

The language identification problem can be described
as finding the language with the highest posterior proba-
bility Pr�LjX����� given a speech segment X, a set of
phone acoustic models � and a set of phonotactic mod-
els �. Assuming that the languages under consideration
are equiprobable, the LID problem can be formulated as
follows:

L� � argmax
L

X

H

f�XjH�L���P �HjL� (1)

where L� denotes the hypothesized language and
f�XjH�L��� is the likelihood of the speech segment
X given a phone sequence H and the language L, and
is usually estimated with HMM phone models. The
prior probability of H is estimated with a phone N -gram
model P �HjL� �

Q
i
P �hijhi�N��� ���� hi��� L�.

The formulation (1) can be approximated by keeping
only the dominant term of the summation, i.e.,

L� � argmax
L

max
H

f�XjH�L���P �HjL�� (2)

This implementation corresponds to the use of language
dependent phone recognizers in parallel as proposed
in [3] and is referred to as parallel phone recognition



(PPR) in [8]. Another approximation that can be used
at this level is the assumption that the phone models are
language independent [9], i.e., replacing f�XjH�L���
by f�XjH��� in equations (1) and (2). In the usual
PRLM implementation [8], this is further approximated
by not using any phonotactic constraints for phone de-
coding. The resulting formulation is

L� � argmax
L

P �H�jL� (3)

where H� is the most likely phone sequence, i.e. H� �
argmaxH f�XjH���. This formulation is also used in
the PPRLM method, in which case phone decoding is
done using multiple phone recognizers in parallel (for a
few languages) and the corresponding phonotactic scores
are combined for the final decision.

Finally, a better alternative solution to (3) is obtained
by maximizing the expectation of logP �HjL� over L
with respect to H given the observed speech X, i.e.

L� � argmax
L

EH �logP �HjL� jX��� L�� (4)

As for (3), the acoustic likelihood f�XjH��� is not di-
rectly included in the decision score, however the formu-
lation (4) does take into account the hidden nature of the
phone sequence.

For a language detection task (like for the NIST eval-
uation [13]) the posterior probability can be estimated by
taking the likelihood ratio F��jL���

P
L
F��jL�, where

F��jL� denotes one of the 4 likelihoods which are maxi-
mize over L in equations (1) to (4). This likelihood ratio
is also used here to combine results obtained from multi-
ple phone recognizers.

3. BASELINE SYSTEM

For this work we adopt the PPRLM approach and make
an attempt to remove some of the approximations of the
original method with the goal of increasing the accuracy
of the LID system.

Three phone recognizers for Arabic, American En-
glish, and Spanish are used in the experiments reported
here. Each phone recognizer uses a language dependent
set of context-independent phone models (primarily for
efficiency reasons). Each phone model is a tied-state
left-to-right CD-HMM with Gaussian mixture observa-
tion densities and 32 Gaussians per state. The acoustic
feature vector has 39-components comprised of 12 PLP
cepstrum coefficients and the log energy, along with their
first and second order derivatives. The 42 Arabic phone
models and the 27 Spanish phone models were trained
on 80 conversations from the LDC CallHome family [10]
of corpora (about 12 hours of Egyptian Arabic and 10
hours of Spanish data). The 48 English phone models
were trained on 160 hours of conversations from the LDC
Switchboard corpus [11].

Our experimental setup is in accordance with the NIST
2003 language recognition evaluation [13], where the
task is to recognize the language spoken in segments of
conversational speech with three nominal durations (3s,
10s, and 30s) extracted from LDC conversational speech
corpora (CallFriend, Switchboard, Callhome). There
are twelve target languages for this task: Egyptian Ara-
bic, American English, Farsi, Canadian French, German,
Hindi, Japanese, Korean, Mandarin Chinese, Spanish,
Tamil, and Vietnamese.

For the baseline PPRLM system, the language depen-
dent phone N -gram models were obtained by decoding
the CallFriend [12] training data (12 languages) with each
of the three phone recognizers, and by estimating 12
backoff 3-gram phone models from each phone transcrip-
tion. The training data consist of 20 conversations of 30
minutes for each language, with the exception of English,
Mandarin and Spanish, for which twice this amount of
data was used since conversations are available for two
dialects.

The decison score for the baseline system is obtained
by computing the average of the three posterior probabil-
ities. In Section 5 a much better combination method is
proposed.

The NIST LID Dev’96, Eval’96 and Eval’03 data sets
were used for development and testing purposes. The
data sets respectively contain 1200, 1500 and 1280 test
speech segments for each norminal duration (3s, 10s,
30s).

Results with our baseline PPRLM system are given in
Table 1 in terms of equal error rate (EER) as reported by
the NIST scoring software. These results are in the range
of the best reported results with a PPRLM system. For
comparison, the EER reported in [16] with the PPRLM
system on the Eval’96 and Eval’03 test sets for the 30s
segments are 5.6% and 6.6% respectively . It should be
noted that for this work we use three phone recogniz-
ers trained on orthographically transcribed Switchboard
and Callhome data, whereas the PPRLM system reported
in [16] uses six phone recognizers trained on the phonet-
ically transcribed OGI-TS corpus [15].

NIST Dev’96
Method 3s 10s 30s
Baseline 25.7 13.3 7.2
Lattice 22.0 10.2 4.9

NIST Eval’96
Baseline 20.5 9.7 4.9
Lattice 15.6 7.0 3.2

NIST Eval’03
Baseline 23.7 12.6 6.8
Lattice 18.3 8.3 4.0

Table 1: Equal error rates on three NIST test sets (Dev’96,
Eval’96, Eval’03 primary condition).



4. USING PHONE LATTICES
Phone lattices are graphs where nodes correspond to

particular frames and where edges represent the phone
hypotheses and have associated acoustic scores. The lat-
tices are generated by the phone decoder using the acous-
tic models described in Section 3 without any phonotactic
constraints. A typical phone lattice for a speech segment
of 30s has on average 3700 nodes and 15000 edges.

The idea behind the use of phone lattices is to avoid
some of the approximations made in the baseline system.
To identify the language of a given speech segment, equa-
tion (1) can be better approximated by taking the summa-
tion over the phone sequences present in the phone lattice
instead of just using the most likely one.

Similarly when training the phonotacticN -gram mod-
els from the unlabeled training data,X, the phone lattices
can be used to obtain better maximum likelihood (ML)
estimates. As a matter of fact, ML training of the phone
N -grams from X, consists of finding P ��jL� that maxi-
mizes

P
H
f�XjH���P �HjL� for a given set of acous-

tic models �. Therefore using only the 1-best hypothesis
from the phone decoder to estimate the N -gram proba-
bilities appears to be a crude approximation. We make
the assumption here that this approximation can be over-
come by summing the likelihoods over all paths in the
phone lattice.

Finding estimates of the N -gram probabilities that
maximize

P
H
f�XjH���P �HjL� can be done itera-

tively by using the EM algorithm. Given the current es-
timates of these probabilities (denoted M �) for one tar-
get language, the next EM estimates are obtained by
computing the expectation of the N -gram frequencies
C�h�� ���� hn� which can be approximated by taking the
expected frequencies given the phone lattice L. This
gives us

E�C�h�� ���� hN� jX���M
�� �

X

h�ei��hi

P �e�� ���� eN jL�

(5)
where in the right hand part we compute the sum of
the lattice posterior probabilities of all sequences of N
edges corresponding to the phone N -gram �h�� ���� hN�.
The lattice posterior probabilities in (5) are computed by
means of the forward-backward algorithm which gives us

P �e�� ���� eNjL� � ��e����eN �
Y

i

��ei� (6)

where ��e� is the forward probability of the starting node
of the edge e, ��e� is the posterior probability of the edge
e, and ��e� is the backward probability of the ending
node of edge e. The new estimates of theN -gram proba-
bilities can then be used to recompute the posterior scores
with the same lattice (i.e. only the phonotactic scores are
changed) for the next EM iteration. The EM procedure
can be initialized with a uniform distribution.
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Figure 1: NIST DET curves for the 30s segments of the Eval03
test set with and without phone lattices.

During decoding, the computation of the sum of the
terms f�XjH���P �HjL� over the lattice for each target
language, can be obtained by means of the forward algo-
rithm. Alternatively, in keeping with the PRLM scheme
we can use the formulation given in equation (4) which
can be solved by computing the expected N -gram fre-
quencies for each target language. This solution was
adopted for the experiments reported in this paper. The
results (ERR) with lattices are given in Table 1 where they
can be compared to the baseline results. The error rate
reduction is very significant on the three test sets for the
three test durations. However, the relative error reduction
is largest for long speech segments. Figure 1 plots the
NIST DET curves with and without phone lattices for the
30s test segments. The lattice based method outperforms
the baseline system at all operating points.

For a speech segment of 30s, computing the expected
N -gram count from the lattice requires only a fraction of
a second for N=3. Overall this lattice-based language
identification system runs in about 0.5xRT (i.e. faster
than real-time) on a Pentium4 at 2.4GHz. The measured
elapsed time includes feature extraction, lattice genera-
tion for the three reference languages (about 0.4xRT),N -
gram count estimation and likelihood computation.

5. NEURAL NETWORK COMBINATION
The simple method of taking the average of the pos-

terior probabilities estimated for each phone recognizer
to take the final decision can be replace by a more ef-
fective combination function. In this work a fully con-
nected multi-layer neural network trained by stochastic
back propagation, similar for instance to [14] is used.
The network has 36 inputs, corresponding to three times
the 12 phonotactic scores, one hidden layer with sig-



moidal activation functions and 12 softmax outputs. In
order to achieve good generalization behavior the Dev’96
and Eval’96 data sets have been joined together, and 60%
was used for training and 40% for development and pa-
rameter optimization. In the Eval’96 data set there are ap-
proximately six times as many examples for the English
language as there are for the other ones, which would re-
sult in an biased decision module. To avoid this bias only
the 80 first speech segments for each language were used.

The best results are obtained by building duration de-
pendent classifiers using 24 hidden units for the 30s test
condition and 15 hidden units for the 10s condition. Ta-
ble 2 reports the equal error rates for the two combination
methods for the three test durations. Results are only re-
ported for the NIST Eval’03 test set since the results on
two other data sets are biased due to their use for training
the neural networks (the values are very low).

Combination 3s 10s 30s
Average 18.3 8.3 4.0

NN fusion 18.3 7.9 2.7

Table 2: Equal error rates on the NIST Eval’03 test set for the
two combination methods.

The neural network approach is most effective for the
30s condition, and does not improve the error rate for the
3s condition. This is in agreement with observations of
other authors [16]. Using the neural network fusion the
lattice based PPRLM LID system achieves state-of-the-
art results [13] with a real-time factor of 0.5.

6. CONCLUSIONS

In this paper we have described our recent work in
developing a language recognition system for conversa-
tional data relying on N -gram phonotactic models. The
original parallel phonotactic method has been extended
to use phone lattices both in training and testing instead
of being limited to only the most likely phone sequence.
Decoding is done by maximizing the expectation of the
phonotactic likelihood for each language. The phone
lattices offer much more accurate estimates of the N -
gram frequencies given the hidden nature of the phone
sequence in an LID system based on phonotactic con-
straints.

In this work three phone recognizers were used to pro-
duce phone lattices for each training and test segment.
On the NIST Eval03 language recognition test set, the lat-
tice based method reduces the equal error rate from 6.8%
to 4.0% for the 30s segments, with smaller gains for the
shorter segments. When the scores corresponding to the
3 phone recognizers are combined with a neural network,
the equal error rate for the 30s segments is further re-
duced to 2.7%. This makes a very competitive language
recognition system running in about 0.5xRT.
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