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The Arabic language presents a number of challenges for speech recognition, arising in part
from the significant differences in the spoken and written forms, in particular the conventional
form of texts being non-vowelized. Being a highly inflected language, the Arabic language has
a very large lexical variety and with typically several possible (generally semantically linked)
vowelizations for each written form. This paper summarizes research carried out over the last
few years on speech-to-text transcription of broadcast data in Arabic. The initial research was
oriented towards processing of broadcast news data in Modern Standard Arabic, and has since
been extended to address a larger variety of broadcast data, which as a consequence results in the
need to also be able to handle dialectal speech. While standard techniques in speech recognition
have been shown to apply well to the Arabic language, taking into account language specificities
help to significantly improve system performance.
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1. INTRODUCTION

This paper summarizes research aimed at speech-to-text transcription (STT) of
Arabic broadcast data. Much of this work has been carried out in the context of
the DARPA EARS and GALE programs for which speech recognition and machine
translation are key supporting technologies.1 The Arabic language poses challenges
somewhat different from the other languages for which we have developed automatic
speech recognition systems (mostly Indo-European Germanic or Romance) [Gau-
vain and Lamel 2000; Gauvain et al. 2002; Lamel and Gauvain 2008]. Modern
Standard Arabic is learned in school, used in most newspapers and is considered to
be the official language in most Arabic speaking countries. In contrast many people
speak in dialects for which there is only a spoken form and no recognized written
form. Arabic is a strongly consonantal language with nominally only three vowels,

1www.darpa.mil/ipto/Programs/gale
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each of which has a long and short form. Arabic is a highly inflected language, with
many different word forms for a given root, produced by appending articles (“the,
and, to, from, with, ...”) to the word beginning and possessives (“ours, theirs,
...”) on the word end. Written texts are by and large non-vowelized, meaning that
the short vowels and gemination marks are not indicated. There are typically sev-
eral possible (generally semantically linked) vowelizations for a given written word,
which are spoken. The word-final vowel varies as a function of the word context,
and this final vowel is often not pronounced. Thus one of the challenges faced when
explicitly modeling vowels in Arabic is to obtain vowelized resources, or to develop
efficient ways to use non-vowelized data. It is often necessary to understand the
meaning of the text in order to know how to vowelize or pronounce it correctly.
To address this problem the Buckwalter Arabic Morphological Analyzer [Buckwal-
ter 2004] is used to propose possible multiple vowelized word forms, and a speech
recognizer is used to automatically select the most appropriate one.

Our initial work on transcription of Arabic was carried out using manually vo-
calized data [Messaoudi et al. 2004], which enabled explicit modeling of the Arabic
short vowels. It was shown that even when producing a non-vocalized transcript,
explicitly modeling short vowels improves recognition performance [Afify et al.
2005] over a grapheme-based approach where only characters in the non-vocalized
written form are modeled [Billa et al. 2002]. However, since only very limited vo-
calized resources were available, research was carried out to reduce the reliance on
such data. Two main directions were pursued. One direction aimed to reduce the
supervision needed for acoustic model training, and another investigated how to
efficiently combine vocalized and non-vocalized texts when constructing language
models. As summarized in Section 4, it was demonstrated that by building a very
large vocalized vocabulary of more than 1.2 million words, and by using a lan-
guage model including a vocalized component, the word error rate (WER)2 could
be significantly reduced [Messaoudi et al. 2006].

Even though pronunciation modeling is generally considered straightforward in
Arabic from vocalized texts, there are frequent variants arising in the pronuncia-
tion of the definite article ’Al’ (’the’) depending on the word context which causes
the following consonant to be ’doubled’. The ’tanwin’, a grammatical mark spec-
ifying that a noun is non-definite, causes word final short vowels to be ’doubled’
(phonetically realized by adding an ’n’ after the vowel – this also referred to as
nunation). Studies that address explicitly representing the gemination and tanwin
in an attempt to improve the acoustic and lexical models are reported in Section 6.

Research has also explored using morphological decomposition to address the
challenges of dealing with the huge lexical variety. For the Arabic language, the
combination of compounding, agglutination and inflection generate a large number
of surface forms for a given root form. Morphological decomposition [Kirchhoff and

2The “word error” rate is commonly used to measure speech recognition performance. It takes
into account three types of errors: substitutions (a reference word is replaced by another word),
insertions (a word is hypothesized that was not in the reference) and deletions (a word in the

reference is missed). The word error rate is defined as
#subs+#ins+#del
# reference words

, and is typically com-

puted after a dynamic programming alignment of the reference and hypothesized transcriptions.
Note that the word error can be over 100%.
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et al. 2002; Vergyri et al. 2004; Xiang et al. 2006] has been proposed to address
this problem and thereby increasing the lexical coverage, and reducing errors that
are due to words that are unknown to the system. Our studies on morphological
decomposition are described in Section 8. Prior to presenting work specifically
directed at processing the Arabic language, an overview of the speech transcription
system is given in the next section.

2. RECOGNITION SYSTEM OVERVIEW

Radio and television broadcast data are challenging to transcribe since they are
heterogeneous, containing segments of various acoustic and linguistic natures. The
signal may be of studio quality or may have been transmitted over a telephone or
other noisy channel (i.e., corrupted by additive noise and nonlinear distortions), or
can contain speech over music or pure music segments. The speech is produced by a
wide variety of speakers with different speaking styles: news anchors and talk show
hosts, reporters in remote locations, interviews with politicians and common people,
unknown speakers, new dialects, non-native speakers, etc. Speech from the same
speaker may occur in different parts of the broadcast, and with different background
noise conditions. In recent years the focus of research has moved from broadcast
news data (primarily prepared speech in studio conditions) to the transcription
of what is referred to as “broadcast conversational” speech (talk shows, debates,
and interactive programs). This type of data requires the explicit modeling of
spontaneous speech effects, much more common than in broadcast news, and also
the ability to deal with speech from a variety of Arabic dialects. The acoustic and
language modeling must accurately account for this varied data.

The broadcast news transcription system used in these experiments has two main
components, an audio partitioner and a word recognizer. Data partitioning is based
on an audio stream mixture model [Gauvain et al. 1998; 2002], and serves to divide
the continuous stream of acoustic data into homogeneous segments, associating
cluster, gender and labels with each non-overlapping segment. For each speech
segment, the word recognizer determines the sequence of words in the segment, as-
sociating start and end times and an optional confidence measure with each word.
The recognizer makes use of continuous density HMMs for acoustic modeling and
n-gram statistics for language modeling [Young and Bloothooft 2000; Chou and
Juang 2003; Gauvain and Lamel 2000; Lamel and Gauvain 2003]. Each context-
dependent phone model is a tied-state left-to-right CD-HMM with Gaussian mix-
ture observation densities where the tied states are obtained by means of a decision
tree.

Word recognition is performed in multiple passes, where each decoding pass gen-
erates a word lattice which is expanded with a 4-gram LM. Then the posterior
probabilities of the lattice edges are estimated using the forward-backward algo-
rithm and the 4-gram lattice is converted to a confusion network with posterior
probabilities by iteratively merging lattice vertices and splitting lattice edges un-
til a linear graph is obtained. This last step gives comparable results to the edge
clustering algorithm proposed in [Mangu et al. 1999]. The words with the highest
posterior in each confusion set are hypothesized.

The first decoding pass generates initial hypotheses which are then used for
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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cluster-based acoustic model adaptation. This is done via one pass (less than
1xRT) cross-word trigram decoding with gender-specific sets of position-dependent
triphones (typically 5k tied states) and a trigram language model. The trigram
lattices are rescored with a 4-gram language model. These hypothesis are used to
carry out unsupervised acoustic model adaptation for each segment cluster using the
MLLR technique [Leggetter and Woodland 1995] with one regression class. Then
a second lattice is generated for each segment using a bigram LM and position-
dependent triphones with 11500 tied states (32 Gaussians per state). The word
graph generated in this second decoding pass is rescored after carrying out unsu-
pervised MLLR acoustic model adaptation using a variable number of regression
classes.

3. PRONUNCIATION LEXICON

Letter to sound conversion is quite straightforward when starting from vowelized
texts. A grapheme-to-phoneme conversion tool was developed based on a set of
37 phonemes and three non-linguistic units (silence/noise, hesitation, breath). The
phonemes include the 28 Arabic consonants (including the emphatic consonants
and the hamza), 3 foreign consonants (/p,v,g/), and 6 vowels (short and long /i/,
/a/, /u/). In a fully expressed vowelized pronunciation lexicon, each vowelized
orthographic form of a word is treated as a distinct lexical entry. The example
entries for the word “kitaAb” are shown in the top part of Figure 1. As reported
in [Messaoudi et al. 2004], initial speech-to-text transcription studies were carried
out using vocalized word lists. Some example entries of a vocalized lexicon are
given in the left part of Figure 1. In 50 hours of manually transcribed vocalized
data, there were only 57k distinct lexical forms. The out-of-vocabulary (OOV)
rate on an independent set of 12 hours of test data is about 15%, which is very
high [Messaoudi et al. 2004].3

In order to extend the recognition vocabulary size, an alternative representation
is to use the non-vowelized orthographic form as the entry, allowing multiple pro-
nunciations, each being associated with a particular written form. Each entry can
be thought of as a word class, containing all observed (or even all possible) vowelized
forms of the word. This representation is illustrated in the right side of Figure 1,
where the left column contains the non-vocalized orthographic form or word class,
and the right column associates each vocalized word with a pronunciation. The
pronunciation is on the left of the equal sign and the vowelized written form is on
the right. This latter representation was used to create a word lexicon, where a
pronunciation graph is associated with each word so as to allow for alternate pro-
nunciations [Messaoudi et al. 2005]. Since multiple vowelized forms are associated
with each non-vowelized word entry, the Buckwalter Arabic Morphological Analyzer
was used to propose possible forms that were then manually verified4. The morpho-
logical analyzer was also applied to words in the vowelized training data in order
to propose forms that did not occur in the training data. A subset of the words

3In speech recognition, there are typically 1.2 to 1.6 errors due to each out-of-vocabulary word.
4When the first release of the Buckwalter Arabic Morphological Analyzer (v1.0) was used a series
of rules were developed to produce all possible forms [Messaoudi et al. 2006]. These rules were no
longer needed with the v2.0 release.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Vowelized lexicon
Traansliterated Pronunciation

kitaAb kitAb
kitaAba kitAba
kitaAbi kitAbi
kut˜aAbi kuttAbi

Non-Vowelized lexicon

ktAb kitAb=kitaAb
kitAba=kitaAba
kitAbi=kitaAbi
kuttAbi=kut˜aAbi

sbEyn sabEIna=saboEiyna
sabEIn=saboEiyn

Fig. 1. Example lexical entries for the vowelized and non-vowelized pronunciation lexicons. In the
vocalized lexicon, the transliterated form is on the left and the pronunciation on the right. In the
non-vowelized lexicon, the left column contains the non-vocalized orthographic form, and in the
right column vocalized words are associated with their pronunciation, where the pronunciation is
on the left of the equal sign and the written form on the right.

(about 1k), mostly proper names and technical terms, were manually vowelized.
Using this latter representation, the 57k word vocalized entries are replaced by 33k
word classes. The generalization enabled by this representation almost halves the
OOV rate of the test data (to about 8%). In Section 6 an expanded phone set is
explored, and in Section 7 pronunciation variants are introduced to better represent
some Arabic dialects.

4. LARGE VOCALIZED LANGUAGE MODELS

The previous section described a method based on word classes which allows the
transcription system to explicitly use information about the short vowels in Ara-
bic, while being able to generalize to other word forms so as to able to make use
of non-vocalized audio and textual resources. To address the large lexical variety
of Arabic, a much larger recognition vocabulary is needed. In [Messaoudi et al.
2006] the lexicon was extended to 200k word-classes (with over 1 million vocalized
words). Both vocalized and non-vocalized audio and textual resources are used
for language modeling by constructing separate language models and interpolating
them. More precisely, a 1.2 million word vocalized word language model was built
by interpolating the non-vocalized LM trained on texts (390M words from LDC
Arabic Gigaword corpus [Graff 2007] 204M words collected from Internet news
sources) and a vocalized LM trained on 1.1M words of vocalized manual transcrip-
tions of data from several broadcast news sources [Messaoudi et al. 2005]. There
are a total of 85k different vocalized forms corresponding 50k distinct non-vocalized
forms. As described in the previous section, the vocalized vocabulary has been ob-
tained by semi-automatically generating all possible vocalized forms for the 200k
non-vocalized word vocabulary.

The vocalized n-gram probabilities P (vi|vi−1, ...) are estimated in the following
way (vi and wi are respectively the vocalized and non-vocalized forms of ith word):

P (vi|vi−1, ...) = αPa(vi|vi−1, ...) +
(1− α)Pv(vi|wi)Pt(wi|wi−1, ...)

where Pa is the vocalized LM trained only on the vocalized part of the acoustic
data, Pv is trained on all the acoustic data after Viterbi alignment, and Pt is the
standard non vocalized LM trained on all of the data described above. Adding the

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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automatically vowelized transcripts to the data used to estimate the vocalized LM
did not improve performance. Independent of whether a vocalized or non vocalized
language model is used, the decoder outputs a non vocalized transcription. When
using the vocalized LM, the posterior probabilities of the vocalized forms corre-
sponding to the same non-vocalized word are summed to compute the word poste-
rior probabilities. This is the same as what is done for consensus decoding [Mangu
et al. 1999] with alternate pronunciations. Using pronunciation probabilities is
quite important given the large number of possible pronunciation per word class.
On average there about 8 forms per lexical entry, and using probabilities can give
a relative the word error rate reduction of almost 10%.

5. TRAINING MODELS WITH GENERIC VOWELS

Generally speaking, extending the pronunciation dictionary to include entries for
additional training data entails some manual intervention or verification. For Ara-
bic, the difficulty lies in determining the vocalized forms, after which grapheme-to-
phoneme conversion is (relatively) straightforward. In the case of a large quantity of
training data with non-vocalized transcripts there can be too many words without
vocalizations to add these manually or even semi-automatically. One possibility
that we considered was to generate all possible vocalized forms, allowing all 3 short
vowels or no vowel after every consonant. This idea was quickly rejected since
there are too many possible vocalized forms. For example, with words with 4 con-
sonants generate 512 possible pronunciations, and words with 8 consonants have
8192 possible pronunciations.

In order to simplify the problem, we investigated the use of a generic vowel to
replace the three short vowels. This does not pose any problem since even though
short vowels are represented internally in the system, the Arabic recognizer outputs
the non-vocalized word form. Using a generic vowel offers two main advantages.
First, the manual work in dealing with words that are not handled by the Buck-
walter morphological analyzer (typically proper names, technical words, words in
Arabic dialects) is reduced. With this approach these can be automatically pro-
cessed. Second, the number of vocalizations, and hence pronunciations, per word
is greatly reduced (1 vowel instead of 3).

A set of detailed rules were used to generate pronunciations with a generic vowel
from the non-vocalized word form. Some rules concern the word initial Alif (support
of the Hamza), which can be stable or unstable. For the former case a pronunciation
is generated with a glottal attack (denoted /’/) followed by a generic vowel (denoted
/@/). These rules also cover word initial letter sequences [wAl, wbAl, wkAl, fAl,
fbAl, fkAl] which often correspond to a composed prefix ending in “Al”. Different
pronunciations are generated to represent both situations. For example, the possible
pronunciations for wAl are: w@l w’@l wAl. In word final position, short vowels can
be followed by an “n” (tanwin), so two forms are proposed, the generic vowel alone
and the generic vowel followed by an “n”. Similarly rules handle the pronunciation
of words ending in “wA” and a final letter “p” (which symbolizes the ta marbouta).
Within a word, a generic vowel is added after each consonant with the exception
of the semivowels “w” and “y” which can be realized as respective semivowels or
can serve as a support for the long vowels /U/ and /I/. A word internal Alif can
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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represent the long vowel or a glottal attack.
After applying these rules, each word has multiple pronunciations represented

with consonants, long vowels, and the generic vowel. Since vowels may also be
absent (written with a Sukoun), additional pronunciations are added by removing
one generic vowel at a time. For example, the rules generate the following two
generic vowel forms for the word “ktb”:

ktb k@t@b@ k@t@b@n
which after allowing each generic vowel to be deleted produces:

ktb k@t@b@ k@t@b@n
kt@b@ kt@b@n
k@tb@ k@tb@n k@t@b

It should be noted that the diacritic for gemination has not been taken into
account when generating pronunciations with generic vowels. These decision was
taken to limit the number of pronunciations even though the gemination is explicitly
represented for most words in the lexicon. In the current system, words with generic
vowels are not included in the recognition word list, and are only used during
training.

An experiment was carried out to assess the quality of acoustic models with
generic vowels by mapping all short vowels in the vocalized lexicon to a generic
vowel. Acoustic models were retrained by first mapping all short vowels to a single
generic vowel (@), and training context dependent models with the standard con-
sonant set and the single generic vowel. A pronunciation lexicon was then created
that used the standard pronunciations with short vowels for the vocalized words
and automatically generated pronunciations with the generic vowel for the non-
vocalized words. We then segmented all of the audio data using this lexicon with a
combined set of acoustic models formed by merging the CD models with short vow-
els and those with a generic vowel. Note that the basic idea was to use the generic
vowel only in training, but not during recognition so a number of CD models are
never used. In the future we may consider also extending the recognition lexicon in
an analogous manner. In order to assess the feasibility of this, several model sets
were built and tested in decoding using only a generic vowel.

Recognition word error rates with a single pass system (corresponding to the
first pass of the evaluation system described below) are given in Table I with the
standard phone set including 3 short vowels, and with models trained with only
one generic short vowel. Both model sets have 5k tied states (64 Gaussians per
state) and covering 5k phone contexts. It can be seen that there is only a slight
degradation in performance for both the broadcast news (bnat06) and broadcast
conversation (bcat06) data types, when using a generic vowel. Therefore it was
decided that the generic vowels provide an effective means to facilitate training on
non-vocalized data.

6. MODELING GEMINATES AND TANWIN

The original phone set for Arabic described in Section 3 contained 37 symbols.
When pronunciations were produced with this phone set, all consonants with a
gemination mark were simply doubled. While this may be a reasonable approxi-
mation for some sounds, such as fricatives, if is clearly not well adapted to plosives

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Table I. Word error rates on GALE broadcast news (bnat06) and broadcast conversation (bcat06)
development data with scoring with small acoustic models, representing 3 short vowels or 1 generic
vowel.

bnat06 bcat06

Standard model 24.4% 35.2%
Generic model 25.7% 35.5%

a t i TT A ? i r a SS i r

Solar
y 50.5%
$ 26.9%
S 20.1%
p 19.1%
v 19.0%
Z 18.4%
d 15.3%
s 14.1%
t 9.2%
n 8.9%
T 8.7%
r 8.3%
z 7.4%
l 6.4%
D 4.9%
g 2.6%

Lunar
k 6.6%
w 4.7%
m 4.2%
q 3.1%
j 2.7%
G 2.5%
b 2.1%
x 1.8%
H 1.2%
c 0.2%
J 1.1%
f 1.7%
h 0.5%
’ 0.0%
V 0.0%

Fig. 2. Left: Spectrogram illustrating gemination (segments labeled ’TT’ and ’SS’).
Right: Percentage occurrences of geminates for solar and lunar consonants. The
grid is 100ms by 1 kHz. The blue lines represent the estimated pitch (displayed at
10 times its value).

where gemination does not result in multiple bursts.
Figure 2 illustrates a portion of the phrase “(kaAn)ati AlT∼aA}irap Al$∼ir(aAEiyap)”.

An aligned approximate phone transcription is shown on the bottom. There are two
geminates in this example. The first is the ’T’ (emphatic ’t’) around timee 783.85
and the other a geminate ’S’ (’sh’) is centered at time 784.4. These segments have
a duration that is about 50% longer than their non-geminate counterparts.

An additional 30 phone symbols were added to represent the geminate phones.
The frequencies of the consonants in single and geminate form were counted in
a 100 hour corpus of manually transcribed and vocalized Arabic broadcast news
data [Messaoudi et al. 2005]. The right part of Figure 2 lists the solar and lunar
consonants, along with the percentage of occurrences as geminates. It can be ob-
served that the solar consonants generally have a higher proportion of geminates
than the lunar ones. Figure 3 shows how the geminates are represented in the orig-
inal pronunciation dictionary (top) and the new dictionary with specific geminate
symbols.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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ktAb kitAb=kitaAb kitAba=kitaAba
kitAbi=kitaAbi kitAbin=kitaAbK
kitAbu=kitaAbu kitAbun=kitaAbN
kuttAb=kut˜aAb kuttAba=kut˜aAba
kuttAbi=kut˜aAbi kuttAbin=kut˜aAbK
kuttAbu=kut˜aAbu kuttAbun=kut˜aAbN

ktAb kitAb=kitaAb kitAba=kitaAba
kitAbi=kitaAbi kitAbin=kitaAbK
kitAbu=kitaAbu kitAbun=kitaAbN
ku+Ab=kut˜aAb ku+Aba=kut˜aAba
ku+Abi=kut˜aAbi ku+Abin=kut˜aAbK
ku+Abu=kut˜aAbu ku+Abun=kut˜aAbN

Fig. 3. Sample pronunciations for ktb in the original dictionary (top) and with geminate symbols
(bottom). Each lexical entry is the non-vocalized word class encompassing all possible vocalized
forms. The ˜ signifies gemination in the transliterated form (on the right of the = sign), and the
+ is the phone symbol for the geminate t (one the left side of the = sign).

Table II. Word error rates without and with explicit modeling of geminates on the GALE 2006
development data sets. bnat06: broadcast news, bcat06: broadcast conversations. Acoustic
models were trained on about 1000 hours of Arabic broadcast data.

bnat06 bcat06

Standard model 22.0% 32.6%
Geminate model 21.7% 32.3%
Combination 21.5% 31.9%

Recognition results are given in Table II on two 3-hour sets of development data
used in the GALE community, comparing models trained using the original phone
set and the extended one which includes geminates. It can be seen that mod-
eling geminates improves performance for both the broadcast news (bnat06) and
broadcast conversation (bcat06) data types, and that a further gain is obtained
by combining the two models [Fiscus 1997]. Increasing the phone set also has the
added advantage of increasing the number of context-dependent phones that are
modeled.

As mentioned above, final short vowels are followed by /n/ for indefinite word
forms. These can be realized as a vowel-n sequence or a nasalized vowel. In order
to better capture this variability three additional phones were added to the phone
set to represent the three tanwin phones (in, an, un) with a single unit. Acoustic
models were built using this new phone set, and tested on the development data
sets. These models obtained word error rates comparable to that of the non-tanwin
models, and when used in system combination [Fiscus 1997] gave a gain of 0.4%
absolute over either model set alone. Given the large variability in the realization
of tanwin, these results are not surprising.

7. PRONUNCIATION VARIANTS FOR DIALECTAL SPEECH

An analysis of the errors made by the STT system showed that many of the errors
involve the insertion or deletion of a prefix or a suffix, such as the confusion of
ktAb and wktAb or ktAbh and ktAb. The article ’Al’ is found in 37% of the prefix

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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’aljalsa (meeting) a ’aljalsi e

Fig. 4. Two example spectrograms of the word ’aljalsa (meeting), the rightmost
illustrating the Lebanese realization of the final vowel. The grid is 100ms by 1 kHz.
The blue lines represent the estimated pitch (displayed at 10 times its value).

errors, and contributes an absolute error of 1%. In examining the errors a number
of dialectal pronunciation variants were observed, that were not represented in the
lexicon. Figure 4 shows two spectrograms of the word ’aljalsa (meeting). The final
short vowel in the example on the left is an /a/. The right example is the same
word, but the final vowel is not produced in the same manner. Arabic speakers
consider this to be an /i/, whereas it appears more like an /e/ in the spectrogram.

Systematically adding pronunciation variants to the lexicon resulted in an ab-
solute WER reduction of 0.3% on broadcast news data and 0.6% on broadcast
conversation data which contains more dialectal speech.

8. MORPHOLOGICAL DECOMPOSITION

As for other morphologically-rich languages such as Estonian, Finnish, German,
Korean and Turkish [Carki et al. 2000; Whittaker and Woodland 2000; Adda-
Decker 2003], one of challenges of Arabic speech recognition is to deal with the
huge lexical variety. For Arabic the combination of compounding, agglutination
and inflection generate a large number of surface forms for a given root form.
Morphological decomposition [Kirchhoff and et al. 2002; Vergyri et al. 2004; Xiang
et al. 2006] has been proposed to deal with this characteristic, resulting in increased
lexical coverage, thereby reducing errors that are due to words that are unknown
to the system.

Generally speaking, a recognition vocabulary is simply a list of words as found
in texts of the language. This view is a bit simplistic as it assumes that the texts
have already been normalized, which in turn entails a variety of more or less im-
portant decisions [Adda et al. 1997; Adda-Decker and Lamel 2000]. For morpho-
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Automatic Speech-to-Text Transcription in Arabic · 11

logically rich languages there has been growing interest in using sub-word units
to reduce the needed vocabulary size for a given lexical coverage. There are two
main approaches to morphological decomposition, those based on the use of explicit
linguistic knowledge and rules (for example, [Schmid 1994; Vergyri et al. 2004; Xi-
ang et al. 2006]), and unsupervised methods (for example, [Harris 1955; Goldsmith
2001; Adda-Decker 2003; Creutz and Lagus 2005]). Since the Arabic language has a
relatively limited number of affixes, and rules can capture the manner in which they
are applied, in this work the rules as implemented in the Buckwalter morphological
analyzer are used [Buckwalter 2004; Ghaoui et al. 2005].

In the next section the variant methods for morphological decomposition are
described, followed by a description of the audio and text training corpora used in
the recognition experiments.

8.1 Methodology

Three variant methods for morphological decomposition were investigated. For all
three the basis for decomposition is derived from the results of the Buckwalter
morphological analysis [Buckwalter 2004]. In Buckwalter, the following affixes are
decomposed (the Buckwalter transliteration codes are used here):
• 12 prefixes with ’Al’: Al wAl fAl bAl wbAl fbAl ll wll fll kAl wkAl fkAl
• 11 prefixes without ’Al’: w f b wb fb l wl fl k wk fk
• 6 negation prefixes: mA wmA fmA lA wlA flA
• 3 prefixes future tense: s ws fs
• suffixes (possessive pronouns): y, ny, nA, h, hm, hmA, hn, k, kmA, km, kn

In total there are 32 prefixes, 6 for negation, 3 for the future formed and 12 formed
with the definite article, and 11 others without ’Al’. The suffixes in Arabic are
personal pronouns, the objective form serves as a direct object of a verb, and as
the possessive form serves as the complement of a noun.

In the first variant, a set of decomposition rules were applied to all words in the
training texts that were identifiable by the Buckwalter morphological analyzer. Of
the 1137k distinct words in the training texts, 880K can be decomposed with the
rules. About half of the remaining words are simple words, and the remainder have
several possible decompositions (29%) or have a root that is not in the recognition
dictionary (12%). Decomposition of a 200K lexicon results in a lexicon with 79K
entries and reduces the out-of-vocabulary rate from 4.4% to 2%. If the decomposi-
tion rules are applied to the entire 1.1 M words, it is reduced to 270k forms (stems,
affixes and decomposed words). During decomposition, each affix that is split from
the word root is marked by adding a ”+” (to the end of prefixes and the start of
suffices) to signify that it should be recomposed with the following or preceding
word in the recognizer hypothesis.

In the first version (v1), the decomposition was applied to a list of 1.1 M words
that were recognized by Buckwalter. Of these 880k were decomposed, and 256k
remained unchanged. After decomposition, the word list was reduced to 270k forms
(stems, affixes and decomposed words). Following what has been done by others,
in the second version (v2), the most frequent 65k words were never decomposed.
This had the effect of blocking the decomposition of 35k words, which when added
to the word list increased its size to 300k words.

In the third version (v3), on top of v2, the prefix ’Al’ is not decomposed if the
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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a t i TT A ? i r a SS i r

Fig. 5. Example of assimilation of ’Al’ preceding a solar conso-
nant. The segment corresponds to the sequence (kaAn)ati AlT∼aA}irap
Al$∼ir(aAEiyap) in Buckwalter code and is taken from the segment
LBC NEWS ARB 20060601 195801-0783.64-784.57. The grid is 100ms by 1 kHz.
The blue lines represent the estimated pitch (displayed at 10 times its value).

word begins with a solar consonant (the solar consonants in the Buckwalter code
are: t, v, d, g, r, z, s, $, S, D, T, Z, l, n.). The reason to forbid the decomposition of
’Al’ preceding words starting with a solar consonant is because the ’l’ is assimilated
with the following consonant and it is difficult to isolate a portion of the signal
that clearly corresponds to the ’Al’. This problem is illustrated by the spectrogram
in Figure 5 which is the same excerpt (kaAn)ati AlT∼aA}irap Al$∼ir(aAEiyap) in
Buckwalter code shown in Figure 2. The letters in parenthesis at the start and end
provide the context. For the portion of interest ati AlT∼aA}irap Al$∼ir the first i
was underlyingly a Sukoun (a mark which inhibits the pronunciation of a vowel).
However, preceding the Al it is realized as an i (which is reduced to more or less a
schwa) and the Al causes the following consonant to be realized as a geminate TT.
This example shows a second gemination SS corresponding to the second Al. These
type of phenomena are extremely difficult to model when the Al is allowed to be
decomposed from the word, and explains why the Al was involved in so many of
the errors in the first version. This restriction blocks decomposition of the prefix
’Al’ preceding a solar letter if it is a simple prefix. If the prefix ’Al’ is preceded by
other prefixes, the other prefixes are split off and the ’Al’ is kept with the stem.

For example, the original decomposition rules split the word wbAlslAm which has
3 prefixes w+b+Al+slAm into wbAl+ slAm, whereas the version 3 decomposition
gives wb+ AlslAm.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Automatic Speech-to-Text Transcription in Arabic · 13

Some of the words that were not able to be analyzed with Buckwalter were found
to be in dialectal Arabic. Adding seven dialect prefixes to the Buckwalter prefix
table allows over 85% of these words to be decomposed.

In addition to processing the training texts and constructing language models,
in order to build a complete system using the morphological decomposition, the
affixes needed to be added to the pronunciation dictionary, and acoustic models
trained with the decomposed lexical units. The pronunciation lexicon was extended
to include all possible pronunciations of the affixes. One particular problem is
handling the article ’Al’ when it is followed by a solar consonant, since in this case
the ’l’ assimilated with the consonant. This phenomenon is taken into account
within words by assigning a gemination mark to the consonant. To represent this
in the decomposed prefix ’Al’, contextual pronunciations are included for all solar
consonants. For the acoustic models, the decomposition rules were applied to the
transcripts of the audio training data, and several iterations segmentation and
model estimation were carried out.

8.2 Experimental Results

The training and test data are all from the Gale program, and distributed by LDC 5.
The audio training data used in this work are comprised of 1200 hours of manually
transcribed broadcast data (1200h train). Roughly 60% of the data are classed as
broadcast news (BN), that is typically well-prepared speech from announcers and
reporters in speaking Modern Standard Arabic, and 40% is classified as broadcast
conversation (BC), which tends to be more casual in style and has a higher pro-
portion of dialectal Arabic. Results are reported on the Gale development and
evaluation data sets from 2006 and 2007 (bnat06, bnad06, bcat06, bcad06, eval06,
dev07, eval07), each set containing 2 to 3 hours of audio data.

The texts used for language model training are obtained from written sources
and transcriptions of audio data. The written texts comprise more that 1.1 billion
words from a variety of news sources, predominantly newspapers and news wires
in Arabic. The transcriptions of audio data contain over 11 M words: 6.3 M words
from BN and 4.8 M words of BC, and an additional 3.8 M words of Web transcripts
of Aljazeera BC data.

The baseline recognition lexicon has 200k non-vocalized entries, each of which
is associated with multiple vocalized forms, which in turn are associated with one
or more phone pronunciations [Messaoudi et al. 2006]. The pronunciations make
use of 71 symbols, including 31 simple consonants, 30 geminate consonants, 3 long
and 3 short vowels, plus 3 pseudo phones for non-linguistic events (breath, filler,
silence). There are on average 8.6 pronunciations/word.

Recognition results of a single decoding pass with unsupervised acoustic model
adaptation are given in Table III. The acoustic models were trained on about 1200
hours of manually transcribed speech data distributed by LDC. The three versions
of decomposition were applied to the training transcripts, and three sets of word-
position dependent acoustic models were estimated, specific to each versions. The
WER of the reference word based system with MLE training was 20.9%. With
the first decomposition method that simply splits all affixes, the WER is increased

5http://projects.ldc.upenn.edu/gale/index.html
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Table III. WER on the Gale bnat06 data set with the reference 200k word based system, the
system with three morphological decomposition versions for a single decoding pass with acoustic
model adaptation (1200h train).

Condition WER Vocabulary size

Reference word based 20.9 200k

Decomposition v1 23.7 270k, baseline
Decomposition v2 21.8 300k
Decomposition v3 20.5 320k

by 2% absolute. By forbidding the decomposition of the most frequent 65k words
(v2) most of these errors are avoided. Applying the 3rd version of decomposition
rules prevents the decomposition of the prefix ’Al’ preceding solar 11k solar words.
After applying these to the full 1.1 M word list, the recognition vocabulary contains
320k entries (stems, affixes and decomposed words). The WER is reduced by 1.3%
compared to the v2 decomposition, but there is only a small gain relative to the
word based system.

The above sections have introduced ideas, that were validated during different
stages of system development. A complete system was developed based on the
prior results, and on complementary work on using multi-layer perceptrons to pro-
vide discriminative acoustic feature extraction [Zhu et al. 2005; Stolcke et al. 2006;
Fousek 2007; Grézl and Fousek 2008; Fousek et al. 2008a; 2008b] and neural net
language models to cope with the data sparseness problem in estimating n-gram
probabilities [Schwenk and Gauvain 2005; Schwenk 2007]. Standard techniques
used in state-of-the-art speech transcriptions such as speaker adaptive training
(SAT) [Anastasakos et al. 1996] and Maximum Mutual Information (MMI) training,
Constrained Maximum Likelihood Linear Regression (CMLLR) and MLLR [Legget-
ter and Woodland 1995] adaptation are all used.

Table IV reports results using MMI trained acoustic models (on the 1200 hours
of manually transcribed data), developed for the word-based system, that is the
training transcriptions use a word representation. Results are given for all Gale
development sets with neural net language models that has been estimated on
the texts that have been morphologically decomposed and for the baseline word
based NN LM [Schwenk 2007]. Comparing the first two entries, it can be seen
that the baseline word-based and morphologically decomposed language models
give quite comparable results. The results obtained by combining the two models
using Rover [Fiscus 1997] are given in the third row of this table. Compared to
the baseline system the average word error reduction across all test sets is about
0.6%. The final entry in the table shows the results of a 4-way Rover obtained using
the 290k word based LM and the 290k LM with morphological decomposition each
with two acoustic model sets, one using standard cepstral features and the other
MLP based features [Fousek et al. 2008a; 2008b]. The word error rate is reduced
on all test sets by over 1% compared to the 2-way combination.

9. CONCLUSIONS

This paper has described the incremental improvements to a system for the auto-
matic transcription of broadcast data in Arabic, highlighting techniques developed
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Table IV. Word error rates for the 290k word based LM (baseline) and the 290k LM with morpho-
logical decomposition for different data sets. All conditions use MMIE trained acoustic models
and a NN language model.

Conditions bnat06 bnad06 bcat06 bcad06 eval06 dev07 eval07

Baseline 16.7 15.5 22.8 20.4 19.3 12.4 13.7
Decomposition 16.7 15.3 23.1 20.6 19.4 12.2 13.8

Combination 16.1 14.9 22.3 19.7 18.5 11.8 13.2

4-way Rover 14.5 13.2 20.2 17.9 17.1 10.6 11.9

to deal with specificities of the Arabic language. One of the challenges is training
with incomplete information since most Arabic texts are written without diacrit-
ics, yet the diacritics provide useful information for pronunciation modeling and
higher level processing. After initial studies which focused on Modern Standard
Arabic broadcast news data using a completely vocalized representation, different
methods were explored to reduce the reliance on vocalized data and to handled
more varied data. Many vocalized word forms can be derived using the Buckwalter
morphological analyzer and modifications thereof. However it is necessary to also
be able to generate pronunciations for words that Buckwalter is not able to pro-
cess. Rules to generate pronunciations with a generic vowel have been proposed,
and this method has been used to significantly facilitate training on non-vocalized
data. Concerning pronunciation modeling, explicit rules were developed to handle
frequent dialectal variants, as well as systematic variations in the language. The
explicit modeling of gemination and the introduction of pronunciation variants led
to significant improvements in speech-to-text transcription performance.
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