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ABSTRACT
In this paper we report on the LIMSI recognizer evaluated in

the ARPA 1995 North American Business (NAB) News Hub 3
benchmark test. The LIMSI recognizer is an HMM-based system
with Gaussian mixture. Decoding is carried out in multiple for-
ward acoustic passes, where more refined acoustic and language
models are used in successive passes and information is transmit-
ted via word graphs. In order to deal with the varied acoustic
conditions, channel compensation is performed iteratively, refin-
ing the noise estimates before the first three decoding passes. The
final decoding pass is carried out with speaker-adapted models ob-
tained via unsupervised adaptation using the MLLR method. In
contrast to previous evaluations, the new Hub 3 test aimed at im-
proving basic SI, CSR performance on unlimited-vocabulary read
speech recorded under more varied acoustical conditions (back-
ground environmental noise and unknown microphones). On the
Sennheiser microphone (average SNR 29dB) a word error of 9.1%
was obtained, which can be compared to 17.5% on the secondary
microphone data (average SNR 15dB) using the same recognition
system.

INTRODUCTION

In this paper we report on the LIMSI speech recognizer
used in the ARPA November 1995 evaluation on the North
American Business (NAB) News task[13]. LIMSI has partic-
ipated in annual ARPA sponsored continuous speech recogni-
tion evaluations aimed at improving basic speech recognition
technology since November 1992. The goal of the 1995 Hub
3 task was to “improve basic speaker-independent perfor-
mance on unlimited-vocabulary read speech under acoustical
conditions that are somewhat more varied and degraded than
speech used in previous ARPA evaluations”. Besides the
problems posed by the unlimited vocabulary dictation task
on reasonably clean speech data (such as the WSJ0/WSJ1
corpus), one of the major challenges of the Nov95 evalua-
tion was to achieve acceptable performance on other (ie. non
close-talking) microphone data with no prior knowledge of
either the microphone type or the background noise charac-
teristics.

In the next section we provide an overview of the LIMSI
speech recognition system and the decoder strategy. We
then describe our development work in language model-
ing, including the text processing and vocabulary selection.

The recognition lexicon is presented along with a descrip-
tion of our semi-automatic method for adding pronunciations
for new words. We then return to the experiments carried
out with acoustic modeling and environmental compensa-
tion aimed at improving performance on the noisy data. In
contrast to previous evaluations, where for the primary sys-
tem each sentence was treated independently (i.e., the results
must be independent of the order in which the test sentences
were processed), this year we used the knowledge of the arti-
cle boundaries and utterance order to carry out unsupervised
transcription-mode adaptation.

RECOGNIZER OVERVIEW

The LIMSI speech recognizer makes use of continuous
density HMMs with Gaussian mixture for acoustic modeling
and n-gram statistics estimated on newspaper texts for lan-
guage modeling. The recognition vocabulary contains 65k
words selected to minimize the out-of-vocabulary rate on a
set-aside portion of the development text set. Bigram and
trigram language models were trained on 284M words of
text and read WSJ0/1 speech transcriptions predating July
30, 1995 (inclusive). Context-dependent phone models were
trained on the Sennheiser channel on 46k sentences taken
from the WSJ0/1 corpus. The decoding is carried out in
multiple passes, with more accurate models in successive
passes. All passes use cross-word CD phone models. Re-
vised noise estimates are made in between decoding passes
and unsupervised speaker adaptation is carried out in the final
pass.

Acoustic models
Acoustic modeling uses 48 cepstral parameters derived

from a Mel frequency spectrum estimated on the 0-8kHz band
every 10ms (30ms window). Cepstral mean removal was per-
formed for each sentence. The models were trained on 46,146
sentences (about 99 hours of speech) from 355 speakers of
the WSJ0/1 corpus. This is comprised of 37,518 sentences
from the WSJ0/1 SI-284 corpus, 130 sentences/speaker from
57 long-term and journalist speakers in WSJ0/1, and 1218
sentences from 14 of the 17 additional WSJ0 speakers not
included in SI-84. Only the data from the close-talking
Sennheiser HMD-410 microphone was used for training.



Each phone model is a tied-state left-to-right, 3-state
CDHMM with Gaussian mixture observation densities (typ-
ically 32 components). The triphone contexts to be mod-
eled are selected based on their frequencies in the training
data, with backoff to right-context, left-context, and context-
independent phone models.

Separate male and female models obtained with MAP
estimation[5] are used to more accurately model the speech
data. Different size models were built for use in successive
decoding passes. The model sets used in this evaluation
were:� two sets of speaker-dependent 490 CD phone models,

31 Gaussians per state (total of 45k Gaussians)� two sets of 3500 gender-dependent CD phone mod-
els with 6000 tied states, 31 Gaussians per state (190k
Gaussians per model set);� two sets of 5300 gender-dependent CD phone models
with 7000 tied states, and 31 Gaussians per state (total
of 220k Gaussians per model set);� two sets of 7900 gender-dependent CD phone models
with 10400 tied states, and 31 Gaussians per state (total
of 325k Gaussians per model set);

The smallest model set was used only for gender selection
and endpoint detection. The middle two model sets were
used for adaptation, and the largest model set was used only
for a contrast condition with the clean-speech test data (C0).

Decoding
Decoding is carried out in multiple passes, where more

accurate acoustic and language models are used in successive
passes.� Step 0: Gender-identification and endpoint detection

Gender identification is performed by running a phone
recognizer on all the data from the given test speaker
and selecting the gender associated with the model set
giving the highest likelihood on the entire set[9]. Gen-
der identification uses a small acoustic model set (490
SI, CD models) with a phone bigram to provide phono-
tactic constraints. The sentence initial and final silences
are removed in this pass.� Step 1: Bigram decoding A word graph is gener-
ated using a bigram LM. Due to memory constraints,
this step is actually carried out in two passes, the first
with gender-specific sets of 3500 position-dependent
triphone models and a small bigram LM (cutoff 10) and
the second with gender-specific sets of 5300 position-
independent context-dependent phone models and a
larger bigram LM (cutoff 1).

� Step 2: Trigram decoding The sentence is decoded
using the same set of 5300 gender-specific position-
independent phone models and the word graph gener-
ated by the 2nd bigram pass, with the trigram language
model. This step is also carried out in 2 passes. The
first pass uses a more compact trigram LM (cutoffs 1 and
2), and the second pass uses a larger trigram LM (cut-
offs 0 and 1) with speaker-adapted models obtained via
unsupervised adaptation using the MLLR method[10]).

Compared to the LIMSI recognizer described pre-
viously[6, 7, 8], this year’s system has the following new
attributes:� State-tying is used to reduce the size of the acoustic

models in order to facilitate model adaptation (for noise
compensation and speaker adaptation) and to increase
the triphone coverage of a larger set of clean speech
models;� Noise compensation is performed for additive and con-
volutional noises (to facilitate this, the log energy has
been replaced by the first cepstral coefficient);� Gender selection is based on all the data from a given
speaker, rather than on a sentence-by-sentence basis;� Position-dependent triphones are used in the first decod-
ing pass so as to optimize the coverage of the cross word
triphones versus the number of models (given memory
limitations);� Unsupervised speaker adaptation using the MLLR
method is used to create speaker-specific acoustic mod-
els for the final decoding pass.

MODEL ADAPTATION

Since no prior knowledge of either the microphone type,
the background noise characteristics or the speaker identity is
available to the system, model adaptation has to be peformed
by using only the data in the test, i.e. in unsupervised mode.

Environmental adaptation is based on the following model
of the observed signal y given the input signal x: y = (x +n) � h, where n is the additive noise and h the convolutional
noise. Compensation is performed iteratively, where refined
estimates of n and h are obtained before each of the first
three passes of the decoding process (gender identification
and the two bigram passes). Estimation makes use of the
3s background sample provided for each speaker session,
the silence segments from the test material (not used in the
first phone recognition pass) and a Gaussian model of the
test speech (the 15 test sentences). The compensated models
are obtained by adapting models trained exclusively on the
Sennheiser data. We use a data driven approach which is
related to model combination schemes[3, 11, 4].
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Figure 1: Model adaptation process.

Parallel model combination (PMC) approximates a noisy
speech model by combining a clean speech model with a
noise model. For practical reasons, it is generally assumed
that the noise density is Gaussian and that the noisy speech
model has the same structure and number of parameters as the
clean speech model – typically a continuous density HMM
with Gaussian mixture. Various techniques have been pro-
posed to estimate the noisy speech models, including the
log-normal approximation approach, the numerical integra-
tion approach, and the data driven approach[4]. The log-
normal approximation is crude especially for the derivative
parameters, and all three approaches require making some
approximations to estimate non-trivialderivative parameters.

For this work we have chosen to use a data-driven ap-
proach, where in order to avoid making all the approxima-
tions of model combination, we directly use the original
clean speech training samples instead of generating clean
speech samples from the clean speech models. In order to
be efficient, the approach requires (like data-driven PMC)
the precomputation and clipping of the Gaussian posterior
probabilities for a given training frame. These values are
assumed to remain unchanged after adding the noise frames
to the clean speech frames. In comparison to other proposed
approaches, this scheme is computationally inexpensive, but
requires reading all of the clean speech training data from
disk. However, with proper organisation and compression
of the training data, we have observed that model adaptation

using this scheme can in fact be performed faster than by us-
ing PMC with the log-normal approximation approach. This
is true even with relatively large amounts of training data (on
the order of 20h of speech) since more parameters are typi-
cally used when more training data is available. (With the log
normal approach the processing time is roughly proportional
to the model size, where as with the data-driven approach it
is proportional to the training data size.)

In addition to allowing the use of any kind of derivative
parameters, the data-driven approach also allows the use of
sentence-based cepstral mean removal, which is commonly
used to make the acoustic features robust to convolutional
noise. However, this can only be done properly if the ad-
ditive noise n can be estimated from the observed noiseh � n, or equivalently, if the convolutional noise h can be
estimated for the noisy speech sample. The noise n can be
estimated iteratively starting with the silence frames n0 of
the adaptation data (noisy test data). These silence frames
are used to compute the noisy speech cepstrum mean (us-
ing log-normal approximation PMC or data-driven PMC),
which is substracted from the cepstrum mean of adaptation
data to obtain a first estimate of h̃. The filter h̃�1 is then
applied to the adaptation data to obtain a better estimate ofn. We observed that in practice no more than 5 iterations are
needed to properly estimate n and h. (It should be noted that
cepstral mean removal is not performed when estimating h.)
The model adaptation process is shown in Figure 1.



Unsupervised speaker adaptation performed in the last
decoding pass is based on the ML linear regression
technique[10]. A single full regression matrix (49 � 48)
is used to transform the Gaussian means of the models for
the hypothesized gender. The use of a single regression ma-
trix makes speaker adaptation effective even with the high
recognition error rates on the low SNR data.

LANGUAGE MODELS AND LEXICON
In this section we describe our development work for lan-

guage modeling and modifications to our recognition lexicon.

Selection of a development text set
Development texts were needed to choose the recognition

vocabulary so as to maximize coverage and to measure the
perplexity of different language models we estimated. Since
the dev95 speech data used the same prompt text as were used
for the dev94 speech data, and no separate set of development
texts were distributed for 1995, we selected a subset of the
Hub3-95 texts according to the NIST criteria (source distri-
bution, articles and sentences selection and verification). A
set of 600 sentences (17k words) were selected from the texts
of the last day of July 1995 (about 200,000 words) so as to
have no overlap between the development, the training and
the evaluation texts. This also represented a compromise in
terms of size: enough texts to select a subset from, but not
too large of a set to remove from the training data.

We actually selected two subsets of development texts,
with and without headlines (eg. Beirut LEBANON
Reuters), but we observed no difference with respect to
out-of-vocabulary rates (OOV) and perplexity measures.

Text preprocessing
We preprocessed all the 1995 Hub3 and Hub4 training

texts, predating the 31st of July, as well as then August’94
release of the CSR standard LM training texts. Starting
with the standard verbalized punctuation form distributed by
LDC, training texts were cleaned to remove errors inherent
to the texts or arising from processing with the distributed
text processing tools.

As was done last year, the texts were transformed to be
closer to the observed American English reading style[7, 8].
The set of rules and the corresponding probabilities were
derived from the examination of the WSJ1/WSJ0 acoustic
data (prompts and transcriptions). For example, while the
default text processing tools convert 1=8 into one eighth,
people say an eighth just as frequently, so a rules maps 50%
of the former into the latter.

Word list selection
To select the 65k word list, OOV rates on three text sets

were compared: last year’s development texts (dev95), last
year’s evaluation texts (eval94), and the LIMSI 1995 devel-
opment text set (l-dev95), using different subsets of the avail-
able text data. Different combinations of the texts were tried,
and the 65,500 most common words selected. The OOV rates

Text Source dev94 eval94 l-dev95

87-94 49 56 138
H3 33 35 95
H3+H4 37 44 126
WSJ 40 35 119
WSJ+dev94+si85k 31 35 119
WSJ+dev94+si85k+H3 25 33 92
WSJ+dev94+si85k+H3+H4 33 38 104

Table 1: # OOVs using different text sources:
87-94 : all standard training material from 87 to July 94
WSJ : WSJ subset from 92-94
H3 : all texts from the Hub3 LM material (< 31st of July)
H4 : all texts from the Hub4 LM material (< 31st of July)
dev94 : 1994 NAB development data (excluding dev94 set)
si85k : WSJ0/WSJ1 read speech transcriptions

Text CMU 60k LIMSI 65k OOV rate
set # % # % reduction

dev94 44 (0.6) 26 (0.4) 40%
eval94 59 (0.7) 31 (0.4) 48%
l-dev95 143 (0.9) 92 (0.6) 36%
eval95 60 (1.0) 47 (0.8) 20%

Table 2: Comparison of OOV rates for the standard CMU 60k and
the LIMSI 65k word lists.

on the three test sets are shown in Table 1. We observed that
combinations which included the Hub4 (H4) data typically
had higher OOV rates than without this data. The chosen
combination was: WSJ92-94 (45M words), Hub3 (H3, 44M
words), dev94 (1.9M words), and WSJ0/WSJ1 read speech
transcriptions (consisting of 85k sentences and 1.4M words).
Weighting the dev94 texts and the transcriptions by 2 gave
the lowest OOV rate on the development data and minimized
the number of new words to be added to the lexicon.

Table 2 compares the OOV rates of the LIMSI Nov95 65k
vocabulary and the standard CMU 60k vocabulary. While
on the different dev sets the LIMSI OOV rate is about 40%
lower than the CMU OOV rate, on the 1995 eval data, only
a 20% OOV rate reduction was obtained. Apparently the
development set l-dev95 was not a very good estimator of
the evaluation texts.

Language models

We estimated language models on all the Hub3 available
training texts (excluding the texts of July 31, 1995), the
read speech transcriptions, and optionally, the Hub4 language
model training texts. Four language models were constructed
using the CMU toolkit, ranging from a small bigram in the
first pass to a large trigram for the final pass.

Language model perplexities with and without the Hub4
texts are given in Table 3. With a small bigram the perplexity
increased on all 3 development text sets. For the large trigram
model, small but inconsistent differences were observed, so



Training text 87-94+H3 87-94+H3+H4

cutoff 10 14
# bg (M) 1.56 1.56
dev94 236.8 242.4
eval94 249.1 254.8
l-dev95 234.1 241.7

cutoffs 0-1 0-1
# bg-tg (M) 15.7-21.1 19.7-28.9
dev94 130.2 128.8
eval94 136.3 133.9
l-dev95 126.0 126.5

Table 3: Perplexity of the development text sets, for bigram and
trigram trained with and without Hub4 texts.

we decided not to use the Hub4 training texts.
The training texts were reprocessed in order to obtain a

second version in which the 1000 most frequent acronyms
are treated as whole words instead of as sequences of in-
dependent letters. The motivation was two-fold: to have
better word level context modeling in the language model,
and to more easily represent reduced pronunciation variants
for common acronyms such as S&L, AT&T, IRA, IRS, where
the middle word is often highly reduced.

A new 65k word list and bigram and trigram LMs were
built with acronyms. In order to compare the perplexity to
that obtained with the original LMs we needed to normalize
for the difference in text length n (about 1%). We used a
normalized perplexity p� defined as:p� = 2

n1n2

log(p)log(2)
where n1 and n2 are the number of words in the text with
and without acronyms respectively, and p and p� are the
unnormalized and normalized perplexity on the text with
acronyms.

Using the normalized perplexity, the bigram perplexity of
the text with acronyms is actually about 5% lower than for
the original texts. The bigram and trigram perplexities on the
transcriptions of the ARPA Nov95 evaluation data are 239.3
and 137.2, respectively.

Conditions dev94 eval94 l-dev95

no acronyms, px 236.8 249.1 234.1
acronyms, px 245.9 256.8 245.8
acronyms, normalized px 231.9 244.7 225.7

Table 4: Perplexity and normalized perplexity, on different devel-
opement text sets, for training texts with and without acronyms.

Recognition lexicon
Creation of pronunciation lexicons for speech recognition

is widely acknowledged to be an important aspect of sys-
tem development, that is labor-intensive. Lexicons are often
manually created and make use of knowledge and expertise

that is difficult to codify. Our experience in large vocabu-
lary, continuous speech recognition is that systematic lexical
design can improve the overall system performance. Our
approach is to represent the lexicons with standard pronun-
ciations using a set of 45 phonemes and do not explicitly
represent allophones. We have chosen a phonemic repre-
sentation, as most allophonic variants can be predicted by
rules, and their use is optional. More importantly, there of-
ten is a continuum between different allophones of a given
phoneme and the decision as to which occured in any given
utterance is subjective. By using a phonemic representa-
tion, no hard decision is imposed, and the acoustic models
can automatically learn the observed variants in the training
data. Frequent alternative variants which are not allophonic
differences (such as the suffix “-ization” in American En-
glish which can be pronounced with a diphthong (/Y/) or a
schwa (/x/)) are explicitly represented in the lexicon. These
frequent inflected forms have been verified to provide more
systematic pronunciations.

Since generating pronunciations is time-consuming and
error-prone (it is mostly manual work), several utilities were
developed to facilitate the work. While these utilities can be
run in an automatic mode, our experience that human verifi-
cation is required, and that interactive use is more efficient.1

First, missing pronunciationsare generated by rule when pos-
sible, by automatically adding and removing affixes.2 When
multiple pronunciations can be derived they are presented
for selection, along with their source. The source lexicons
that we make use of are (in order of decreasing confidence):
the LIMSI “Master” lexicon, which contains pronunciations
for 80k words; the TIMIT lexicon; a modified version of
the Moby pronouncing lexicon; and a modified version of
the Merriam Webster Pocket dictionary. The Carnegie Mel-
lon Pronouncing Dictionary (version cmudict.0.3) and the
Merriam Webster American English Pronouncing Dictionary
(book) are also used for reference. We observed that often
when no rules applied, it was because the missing word was
actually a compound word, or an inflected form of a com-
pound word. Thus, the ability to easily split such words
and concatenate the result of multiple rule applications was
added.

We evaluate the lexicon in the context of our recognizer
by confronting the pronunciations with large corpora. By
carrying out a forced alignment of the training data using its
orthographic transcription,we are able to estimate the relative
frequencies of different alternative pronunciations, as well
as to determine sources of pronunciation errors. While it is
difficult to systematically evaluate the changes to the lexicon,
because in the LIMSI system the set of context dependent

1An erroneous transcription early on was obtained for the word “used”.
The program derived the pronunciation /^st/, from the word “us”. These
types of errors can only be detected manually.

2This algorithm was inspired by a set of rules written by David Shipman
while he was at MIT.



INTEREST IntrIst InftgXIst
CIVILIZATION sIvL[xY]zeSxn
EXCUSE Ekskyu[sz]

Figure 2: Example lexical entries,with phones in fg being optional,
phones in [ ] being alternates.

acoustic models changes when the lexicon is changed, we
have observed small but consistent improvements (on the
order of 5%) across individual test sets.

The 65,500 word lexicon used in the Nov95 evaluation
contains 65,500 words and 72,637 phone transcriptions, with
an average of 6.5 phones per transcription. A pronunciation
graph is associated with each word so as to allow for al-
ternate pronunciations, which occur for about 10% of the
entries. Some example entries are shown in Figure 2. The
first word “INTEREST”, may be produced with 2 or 3 sylla-
bles, depending upon the speaker, where in the latter case
the /t/ may be deleted. “CIVILIZATION” illustrates the /x,Y/
alternates mentioned above. In contrast, the alternate pro-
nunciations for “EXCUSE” reflect different parts of speech
(verb or noun).

EVALUATION RESULTS

In our development work we made use of the data from 10
speakers of the development set collected by NIST and made
available to test participants. This multi-microphone(MUM)
corpus contains simultaneous recordings on 8 microphone
channels for a variety of background noise levels ranging
from 47 to 61dBA[1]. However, since the prompt texts
corresponding to this data date from June 1994, the new
language models cannot be properly applied to this data.

The Nov95 test data consist of 15 sentences from each
of 20 speakers (10m/10f), with simultaneous recordings on
two different microphone channels per speaker. The primary
test condition (P0) makes use of the secondary microphone
channel, and the required contrast condition (C0) makes use
of the Sennheiser HMD-410 microphone data. The same
recognition system is to be used for both P0 and C0. The P0
data sample 3 different microphones, with all the sentences
of each speaker derived from the same microphone. The
test prompt texts were extracted from the North American
Business (NAB) news texts during the 1-31 August 1995.

Table 5 gives the word error rates obtained on the evalua-
tion data for the P0 and C0 data, with different acoustic mod-
els (speaker-adapted or not, noise compensation (yes,no,SNR
switch)) and different language models (2-gram and 3-gram).
The acoustic model sets were trained only on the clean speech
data (the Sennheiser microphone) in the WSJ0/1 corpus.
Comparing the first and second lines in the Table, we ob-
serve a relative error reduction using a trigram LM of 14%
on the P0 data and 21% on the C0 data. In the evaluation sys-
tem, channel compensation was systematically applied, even
for the clean data. The word error on the C0 data without

Grammar Noise Speaker % Word Error
condition compens. adapt. P0 data C0 data

2-g yes no 23.7 13.2
3-g yes no 20.5 10.4
3-g no no >50 10.4
3-g yes yes 17.5 9.1
3-g sw yes 17.5 8.6

Table 5: Word error rates on the ARPA Nov95 test data for different
acoustic and language models: P0 and C0 denote respectively the
secondary microphone data and the Sennheiser data.

spkrs C0 data P0 data P0/C0
SNR %werr SNR %werr werr ratio

7 28.3dB 7.4 16.3dB 11.6 1.57
7 28.8dB 7.6 15.7dB 14.2 1.87
6 29.9dB 13.1 13.2dB 28.7 2.19

Table 6: Average SNR and word error rates on the three subsets
of the ARPA Nov95 test data, each subset represents a primary and
secondary microphone pairing.

compensation (third line in Table 5) is the same, thus noise
compensation doesn’t increase error rate on the clean speech.
Based on partial runs on the development data, we estimate
the word error on the P0 data without channel compensation
to be at least 50%.3 The final decoding pass makes use of a
larger trigram LM and speaker-adapted models. An error re-
duction of 15% is obtained on the P0 data and 13% on the C0
data. The gain is slightly larger for the noisy data because
the MLLR adaptation also compensates for some residual
mismatch not represented in our channel model. However,
even with noise compensation the word error is still twice as
high as for the clean speech condition.

A contrast condition was also carried out where channel
compensation was only performed when the SNR was lower
than 25dB, allowing us to use larger sets of acoustic models
for clean speech (i.e. SNR higher than 25dB). Each set
of clean-speech gender-specific models includes 7895 tied-
state context-dependent phone models obtained via MAP
estimation[5]. The test data SNR was estimated for each
speaker by computing the ratio of the average short term
RMS powers of the speech samples and noise samples on a
30ms window after preemphasis with a 0.95 coefficient. The
speech/noise decision was based on a bimodal distribution
estimated by fitting a mixture of 2 Gaussians to the log-RMS
power for all frames[2]. With this configuration a word error
of 8.6% was obtained on the C0 data (last row of Table 5). No
noise compensation was carried out on the high SNR data,
all other system parameters were identical.

In Table 6 the relative increase in word error for the P0

3The computation time to process the P0 data without noise compen-
sation exceeds our curiosity to have a more accurate estimate of the word
error.



data is shown for the 3 subsets of data corresponding to
different secondary microphones. The average SNRs (as
defined above) and word errors are given for both sets of
data. While the largest word error increase is observed for the
lowest SNR (set 3), the difference in SNR between sets 1 and
2 is small, but the increase in word error rate is larger for set2.
This suggests that factors, such as changes in microphone
characteristics and positioning are not properly compensated
with our channel model.

CONCLUSION
In this paper we have described the LIMSI recognizer eval-

uated in the Nov95 ARPA NAB benchmark test, using multi-
microphone data recorded in a variety of background noise
conditions. New features of this year’s system were channel
compensation based on a data-driven approach, state tying
to reduce the size of the acoustic models in order to facilitate
model adaptation, the use of position-dependent triphones
for the first pass so as to optimize the coverage of the cross
word triphones versus the number of models and unsuper-
vised speaker-adaptation using the MLLR method in a final
decoding pass. We also reprocessed the language model
training text materials so as to be able to model the most
common 1000 acronyms as words, instead of as sequences
of independent letters. The language models were trained
on all the available training texts, with the exception of texts
from July 31st. The lowest out-of-vocabulary rate was ob-
tained using only a subset of the training texts. The word
error obtained on the multi-microphone P0 data was 17.5%.
Environmental adaptation based on the y = (x + n) � h
model was demonstrated to be effective as it reduced the
estimated word error from over 50% without compensation
to 17.5% with compensation. Using the same system on
the Sennheiser C0 data, a word error of 9.1% was obtained.
When channel compensation was applied only for low SNR
(less than 25dB), we are able to use a larger sets of acoustic
models for the high SNR data, and obtained a word error of
8.6% on the C0 data.
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