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ABSTRACT

This paper describes a systems for emotion recognition and
its application on the dataset from the AV+EC 2016 Emo-
tion Recognition Challenge. The realized system was pro-
duced and submitted to the AV+EC 2016 evaluation, making
use of all three modalities (audio, video, and physiological
data). Our work primarily focused on features derived from
audio. The original audio features were complement with
bottleneck features and also text-based emotion recognition
which is based on transcribing audio by an automatic speech
recognition system and applying resources such as word em-
bedding models and sentiment lexicons. Our multimodal fu-
sion reached CCC=0.855 on dev set for arousal and 0.713 for
valence. CCC on test set is 0.719 and 0.596 for arousal and
valence respectively.

Index Terms— emotion recognition, valence, arousal,
bottleneck features, neural networks, regression, speech tran-
scription, word embedding

1. INTRODUCTION

This paper presents an emotion recognition system evalueated
on the material defined within the Audio-Visual + Emotion
Recognition Challenge (AV+EC 2016)! [1]. AV+EC is an
annual challenge held since 2011. Its main purpose is emo-
tion recognition from multimodal data — audio, video and
physiological data. Emotion is understood as a value in two-
dimensional arousal-valence continuous space [2].

The data comes with three sets of features for audio, video
and physiological signals. Our main focus was on audio and
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video features. The work on physiological features was con-
centrated on their post-processing, regressor training and fu-
sion.

In audio, we have complemented the provided material
by Bottle-neck (BN) features generated from a narrow hidden
layer of a neural network trained toward phonetic targets. BN
features were designed for automatic speech recognition [3]
and have since been integrated into many top-performing
ASR systems and their multi-lingual variants [3]. Recently,
BN features (and general feature extraction schemes based on
deep neural networks) were found very efficient in other areas
of speech processing, such as language identification [4, 5]
and speaker identification [6, 7]. Due to their ability to sup-
press nuisance variability in the speech data, we proved in
AVEC2015 challenge [8] that these features are promising
candidate also for emotion recognition.

In video, we have complemented the baseline features by
activations of a convolutional neural network (CNN) trained
to localize facial landmarks [9]. These activations encode ge-
ometrical information mixed with appearance information.

In addition we experimented with text based features,
which we obtained from an automatic speech recognition
system. We explored a lexicon-based approach as well as
word embedding — a technique mapping words to vectors
of real numbers in a space with lower dimension than the
vocabulary size [10, 11].

The rest of this paper provides a description of experi-
ments leading to our submission for the AV+EC 2016 chal-
lenge.

2. EMOTION FEATURES

2.1. Audio Features

Organizers provided a set of 102 dimensional audio features,
known as Extended Geneva Minimalistic Acoustic Parame-
ter Set (eGeMAPS). The features were generated from short
fixed length segments (3s) shifted by 40 ms [1].

In addition, we used two Stacked Bottle-Neck features as
our main acoustic feature set trained as French only and sec-
ond in Multilingual fashion (trained on several languages).



We have seen very good results with this features in our
AVEC 2015 submission [8].

The architecture for the feature extraction consists of two
NNs. The output of the first network is stacked in time,
defining context-dependent input features for the second NN,
hence the term Stacked Bottleneck Features (SBN) [4].

The NN input features are 24 log Mel Filter band energies
concatenated with fundamental frequency (FO) features pro-
duced by four different estimators: BUT FO detector produces
2 coefficients (FO and probability of voicing), Snack FO gives
just a single FO and Kaldi FO estimator outputs 3 coefficients
(Normalized FO across a sliding window, probability of voic-
ing and delta). Fundamental frequency variation (FFV) esti-
mator [12] produces a 7-dimensional vector. Therefore, the
whole feature vector has 24+2+1+3+7=37 coefficients [13].

The conversation-side mean subtraction is applied on the
whole feature vector. 11 frames of log filter bank outputs
and fundamental frequency features are stacked together. The
Hamming window followed by the DCT consisting of 0*" to
5th base are applied on the time trajectory of each parameter
resulting in (244 13) x 6 = 222 coefficients on the first-stage
NN input [4].

The first-stage NN has four hidden layers with 1500 units
each except the BN layer. The size of the BN layer is 80 neu-
rons and it is the third hidden layer. Its outputs are stacked
over 21 frames and down-sampled (every 5th is taken) and
entered into the second-stage NN with the same structure as
the first-stage NN. Outputs from 80 neurons in the BN layer
form the final BN features for the recognition system [13].

We trained 2 systems with this topology, first only on
French data (which match the data from the challenge) and
second on 5 languages as multilingual bottleneck features.

For the training of the French recognition system, we used
the 21 hours of transcribed data from BISON project? and 23
hours from EVALDA project®. Bottleneck features derived
from this system are denoted as BN-FR.

To train the multilingual system, the IARPA Babel Pro-
gram data* were used. We used 11 languages to train our
multilingual SBN feature extractor: Cantonese, Pashto, Turk-
ish, Tagalog, Vietnamese, Assamese, Bengali, Haitian, Lao,
Tamil, Zulu. Details about the characteristics of the languages
can be found in [14]. The training speech was force-aligned
using our BABEL ASR system [13]. Bottleneck features de-
rived from this system are denoted as BN-Multi.

2.2. Text Based Features

People’s emotion can be perceived through different modali-
ties, most acknowledged ones being hearing and vision. How-
ever, the semantic of the words used can also be an important
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aspect to take into consideration in emotion detection. The
words chosen can say a lot on the current state of emotion of
the person indeed.

Automatic speech recognition was applied to the audio
data and several approaches to extract features from the re-
sulting texts were attempted. These included word embed-
ding, lexicon based sentiment detection in French and two
standard English sentiment tools applied to automatic trans-
lations of the transcripts.

2.2.1. Automatic Speech Recognition

The French speech-to-text transcription system used to gener-
ate the automatic word hypotheses has the same basic struc-
ture as the American English one described in [15] except that
an MLP is used to estimate the HMM state likelihood. The
French system (developed in collaboration with Vocapia Re-
search), first separates non-speech and speech portions of the
audio file and then applies a maximum-likelihood segmenta-
tion/clustering process [16], to associate labels with segment
clusters, where each cluster ideally represents one speaker.

The acoustic models are speaker-adaptive (SAT) and
Maximum Mutual Information (MMIE) trained on about
*1200* hours of audio data from a variety of broadcast
sources and cover 33k context-dependent phones. They are
gender-independent, word-position dependent tied-state, left-
to-right phone HMMs with about 10k tied pdfs estimated with
a DNN. The states are tied by means of a divisive decision
tree with questions concerning the phone position, the phone
identity and distinctive features and the neighboring phones
in order to reduce model size and increase triphone coverage.
The acoustic features are obtained by combining bottle-neck
MLP outputs applied to raw PLP and TRAP features [17].

The system has a 250k word pronunciation lexicon, rep-
resented with 34 phones including specific units for silence,
breath noise and filler words [18].

N-gram language models are trained on over 2 billions
words of text from a large number of sources. Unpruned com-
ponent LMs trained on different subsets of the training texts
are interpolated for the final language models used for both
decoding and lattice rescoring.

Word decoding is carried out in two passes, where each
decoding pass produces a word lattice with cross-word, word-
position dependent acoustic models, followed by consensus
decoding with a 4-gram language model and pronunciation
probabilities. Unsupervised acoustic model adaptation is per-
formed for each segment cluster using CMLLR [19].

While the ASR word error rate (WER) is not known on
this data, an older version of the system obtained a WER in
the range of 9-28% (average 15%) aross a variety of styles of
broadcast data in the Quaero 2011 test [20].



2.2.2. Word Embedding (WE)

Word embedding or word2vec is a technique which maps
words to vectors of real numbers in a space with lower di-
mension than the vocabulary size [10, 11]. Usual dimension
are ranging between 80 and 2000. Most of the new word
embedding techniques rely on a neural network architecture
where bottleneck layer does the compression to the final
vector.

We used a French word embedding model® built using
Word2Vec [11] on the frWak® corpus [21]. The model had
200 embedding dimensions with a cutoff of 0 and the cbow
algorithm.

2.2.3. Lexicon-based approach

We realized a valence and arousal estimation from text analy-
sis, based on the transcriptions obtained from the ASR system
previously described. Several methods have been approached,
among them a lexicon-based system. A French lexicon of
emotional words have been extracted from the emoBase plat-
form’ which stores resources gathered for the ANR project
EMOLEX?®. The semantic (high intensity, verbal demonstra-
tion, etc.) and emotion (joy, disappointment, contempt, etc.)
labels, as well as the collocation information (as for con-
text) provided by the corpus have been interpolated to esti-
mate valence and arousal values for each entry of the lexicon.
The latter were then applied to the training and development
datasets, expecting high precision results.

2.3. Video Features

Organizers provided features including two types of facial de-
scriptors: appearance and geometric based [22, 1]. The for-
mer were extracted by Gabor Binary Patterns from Three Or-
thogonal Planes (LGBP-TOP) leading to total vector size of
84, the latter are facial landmarks leading to vector size of
316. Again, overlapping 3s segments with 40 ms were used.
The problem we experienced with the video features was that
for parts of the data, the face was not recognized and no in-
formation was provided. For certain records, the amounts of
unrecognized frames were up to 40%.

We have complemented the baseline video features by ac-
tivations of a convolutional neural network (CNN) trained to
localize facial landmarks [9] on the AFLW dataset. The re-
gression network has 4 convolutional layers followed by a
fully connected layer with absolute hyperbolic tangent acti-
vation. A final fully connected layer outputs = and y coordi-
nates of 5 facial landmarks. It is necessary to use a pretrained
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network due to the very small size of the AVEC dataset, and
the facial landmark localization task should be suitable for
emotion recognition considering the good performance of the
baseline geometric features on the valence task.

We have extracted the activations of the last convolutional
layer (Video CNN-L4) and the first fully connected layer
(Video CNN-L5) from the baseline facial regions enlarged by
factor of 1.3 and rescaled to 40 x 40 pixels. The CNN-L4
features should contain more appearance information while
the CNN-L5 should encode more geometric information.

2.4. Physiological Features

Physiological sets included Electrocardiogram (ECG) derived
features, based on heart rate, its measure of variability, and
derived parameters and statistics, and Electrodermal activity
(EDA), skin conductance response (SCR), skin conductance
level (SCL), as well as a number of derived parameters [22]

3. EXPERIMENTS AND ANALYSIS

3.1. Database

The data-set comes from RECOLA multimodal database [23].
It contains spontaneous interactions in French. Participants
were recorded in dyads during a video conference while re-
solving of a collaborative task (Winter survival task). Data
was collected from 46 participants, but due to consent issues,
only 5.5 hours of fully multimodal recordings from 27 par-
ticipants are usable. The database is gender balanced and
the mother tongues of speakers are French, Italian and Ger-
man. The first 5 minutes of each recordings were rated by
6 French-speaking emotion raters in the continuous arousal-
valence space, leading to 135 minutes of data with emotion
ground truth. The database is freely available® and full details
are provided in [23].

3.2. Evaluation and baselines

The results were evaluated using the concordance correlation
coefficient (CCC) to measure the correlation between the pre-
diction and the gold standard. CCC combines the Pearson
correlation coefficient of two time series p with mean square
error:

2p0 0y

CCC = .
0205 + (o = pa)?

CCC produces values from -1 to 1. 1 means that the two
variables are identical, -1 means that they are opposite and 0
means that they are totally uncorrelated.

The organizers experimented with several emotion recog-
nition schemes and provided the best obtained values in [1].
These serve as baselines for our work and are mentioned in
the tables in brackets.

https://diuf.unifr.ch/diva/recola/



3.3. Feature pre-processing

There are several steps to prepare features for regressor train-
ing. Each step has a different setting for different input fea-
tures and different modality. Table 1 shows in condense form
the settings of each pre-processing block which are described
in more details below in this section.

At first, Principal Component Analysis (PCA) is used for
dimensionality reduction. And the resulting features are nor-
malized to have zero mean an unit variance.

In our experiments, we trained regression models for va-
lence and arousal values for each frame (every 40 ms). In
many other classification and recognition tasks, we have seen
the need of adding larger temporal context to make a good
prediction. This context is different for each modality.

We chose to provide the context primarily by stacking to-
gether features from a temporal neighborhood. The features
themselves have quite smooth trajectories, so we do not need
to take every frame but rather skip some frames, in order to
keep the size of frame feature vectors manageable - we call it
subsampling.

Further context is provided by computing local statistics
for each feature. We compute mean, variance, maximum and
minimum for each feature from a temporal window. Finally,
we apply PCA again to reduce the size of feature vectors and
we optionally normalize the features again to zero mean and
unit variance.

We experimented with the delay applied to the gold-
standard and optimal numbers in seconds for each modality
are presented in the work too, This shift is consistent with
previous works [24, 1].

All parameters in the Table 1 were obtained by grid search
with the performance measured as CCC on the development
partition of the AVEC 2016 database. Dash - in the Table 1
means that this step was skipped for particular subsystem.

3.4. Classifiers and Fusion

Linear regression is used on all single systems for arousal and
valence. Liner regression is used also for the fusion. We
have experimented with many clasifiers (NN, RNN, LSTM,
BLSTM) and their settings ... but we did not see any gain.

3.5. Individual systems

Table 2 summarizes our best results of single systems on de-
velopment data for both modalities (Arousal and Valence).
First part of the Table describes our systems with baseline
features. We provide baseline results from organizers [1] for
comparison, the numbers in brackets.

Second part of the Table 2 is reserved for our own fea-
ture extraction. We show results for our two systems based
on Bottleneck features (BN) which outperform baseline au-
dio system. Next line is reserved for text based word em-
bedding system described in more details in Section 3.7.2.
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Fig. 1. Scatter plots of MSE vs. CCC learning objective
showing CCC scores of diverse linear systems on arousal
(left) and valence (right).

Last two lines are results from our two video features reach-
ing CCC=0.617 on arousal and CCC=0.497 on valence.

Last line of Table 2 show our best fusion results.

Scores from all subsystem were smoothed with median
filter with length 2.4 sec.

3.6. CCC as objective function

In general, regression systems should be trained with the same
objectives as those used for evaluation. CCC is fully differen-
tiable and can be easily integrated into gradient descent learn-
ing.

We trained diverse linear regressors using different regu-
larizations and feature preprocessing pipelines to assess the
effect of the objectives. We optimized the regressors using
AdaDelta algorithm [25] with mini-batches of 256 frames.
Figure 1 shows that CCC objective consistently improves
results in the emotion recognition task compared to mean
squared error loss (MSE). The average CCC improvement
for arousal and valence is 0.048 (median 0.056) and 0.062
(median 0.066), respectively. Similar trend in performance
was already reported in [24, 26].

Additionally, we compared CCC loss to mean absolute
error loss (MAE) which previous work suggests is more suit-
able for the valence estimation task [27] than MSE. In our ex-
periments CCC consistently improved results over MAE for
arousal and valence on average by 0.054 (median 0.052) and
0.081 (median 0.079), respectively. The corresponding scat-
ter plots are shown in Figure 2.

3.7. Text Based Features

3.7.1. Lexicon based approach

As for the lexicon based approach, a closer look at the
database and transcripts revealed that only two words from
the resulting lexicon appeared in the voice transcripts, and
these two apparent transcription errors. Several factors may



Table 1. Parameters of the single systems used for final fusion. The right side of the table lists the operations in the order
they were computed. PCA - number of PCA components; norm. - per feature zero and mean normalization; stack - stacks
frames from local window with temporal subsampling; stat. - computes statistics in local window per feature (min., max.,

mean, median); - shift features by n frames.

features task fusion | dev. CCC | PCA norm. stack stat. shift PCA norm.
audio BN FR 80 0.83 8 yes 201 (sub 5) - 60 - -
audio eGeMAPS 0.72 - yes - - 60 - -
audio BN 13 0.83 8 yes 60 (sub 20) - 60 - -
video appearance | g g 0.44 40 yes - - 90 - -
video geometric 2 g 0.44 64 yes - - 40 - yes
ECG s — 0.31 - yes 21 - 40 - -
HRHRF 0.39 8 yes - - 0 - -
SCL 0.13 4 yes 21 - 10 - -
SCR 0.17 - yes 41 - 40 - -
video appearance 0.39 64 yes - - 50 - yes
video geometricc 0.54 64 yes - - 90 - -
audio BN-FR ° - 0.50 8 yes 181 (sub 5) - 50 - -
audio BN-Multi Z:: b= 0.50 64 yes 161 (sub 5) - 30 - -
audio eGeMAPS § = 0.47 64 yes - - 100 - -
ECG 0.27 8 yes 40 - 60 - -
HRHRF 0.39 8 yes - - 30 - yes
SCL 0.31 - yes - - 20 - yes
audio BN-FR 0.81 4 yes 120 (sub20) 60 60 64 -
audio BN-Multi £ < 0.83 8 yes 120 (sub 20) - 90 - -
audio eGeMAPS 2 g 0.79 - yes 120 (sub 20) - 90 64 -
ECG e N 0.32 24 yes 60 (sub 10) - 30 64 -
Text ASR+WE 0.63 8 yes 120 (sub20) 10 60 64 -
EDA 0.32 - yes - 150 30 64 yes
HRHRV 51 < 0.19 - yes 120 (sub 20) - 30 - -
SCL E-) g 0.21 - yes 120 (sub 20) - 30 - -
video appearance 2 N 0.35 - yes - 150 60 64 yes
video geometric 0.58 4 yes 60 (sub20) 60 60 64 -
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Fig. 2. Scatter plots of MAE vs. CCC learning objective
showing CCC scores of diverse linear systems on arousal
(left) and valence (right).

have contributed to this: on casual examination, we observed
that the transcripts were very low in verbal expressions of
emotion and contained no apparent emotion-specific words;
the lexicon may have been too generic, not covering such
specific domain as the one from the provided corpus. More
than analyzing the context around the words, a whole profil-
ing of the domain should be done for such method to really
be beneficial.

3.7.2. Word Embedding

This approach is more promising, since we can use the fea-
tures and train classifier on the target database. The first re-
sults from this approach are in the Table 2 reaching on valence
CCC=0.278 and CCC=0.626 for arousal.



Table 2. Comparison of single systems of different modali-
ties, AV+EC 2016 baseline results are in brackets [1].

Development
CCC Arousal Valence
Audio 0.791 (0.796)  0.470 (0.455)
Video geometric 0.539 (0.379) 0.623 (0.612)

Video appearance

ECG
EDA
SCL
SCR
HRHRV

0.541 (0.483)
0.323 (0.271)
0.123 (0.077)
0.134 (0.101)
0.167 (0.071)
0.391 (0.382)

0.475 (0.474)
0.272 (0.153)
0.316 (0.194)
0.310 (0.124)
0.194 (0.110)
0.388 (0.293)

Audio BN-Multi

Audio BN-FR

Text ASR+WE
Video CNN-L4
Video CNN-L5

0.833
0.830
0.626
0.595
0.617

0.503
0.497
0.278
0.497
0.467

Fusion-Multimodal

0.855 (0.821)

0.713 (0.683)

Table 3. Analysis of training and evaluating the system on all
data, Defined region( speech or face detected) and notDefined
region (silence/unrecognized face).

Arousal CCC on Dev

train test Audio Video
all all 0.836 0.448
all Defined 0.837 0.464
all notDefined 0.761 0.348
Defined all 0.830 0.541
Defined Defined 0.754 0.576
Defined notDefined 0.770 0.327

3.8. Undefined regions

There is about 50% of speech in each audio file, the rest is
silence. There is about 60% of detected face in video, the
rest is unrecognized. It is obvious that we can not recog-
nize emotion from audio if there is silence, and similar re-
mark is applicable for video too. We present an analysis of
training and evaluation of the system on all data, then Defined
region (speech or face is detected) and notDefined) regions
(silence/unrecognized face). Table 3 present results of such
experiment for arousal. The system for video fulfilled our
expectation that training and testing on matched data is bet-
ter and provides performance gain, whereas scoring in not-
Defined region yield to poor performance. The audio system
does not behave the same way and we are currently investi-
gating on the reasons of this.

Table 4. Results of final fusions submitted to AV+EC 2016.

Development Test
CCC Arousal Valence Arousal Valence
Baseline [1] 0.820 0.702 0.682 0.638
Fusion 1 0.851 0.656 0.706 0.584
Fusion 2 0.852 0.589 0.708 0.505
Fusion 3 0.855 0.713 0.719 0.596

3.9. Fusion

Table 4 presents the results of our best fusions and submitted
systems. We have submitted 3 systems to the challenge. All
of them are fusions of several subsystems of different modal-
ities. Table 1 gives the lists of subsystems belonging to each
submission. Fusion 1 for arousal is from first block from the
Table 1 and for valence from the second block. Fusion 2 is
from third block for arousal and fourth for valance. The last
Fusion for arousal contain all subsystems from Fusion 1 and
2 and the same apply for valence. All our fusions consists
of many systems and we will continue to work on analyzes
which subsystems contribute the most.

Our fusion is better than the baseline from [1] except the
results for valence on test set. We trained our systems and fu-
sion on the train part of the AVEC database. Our fusion is not
able to get the same gain as the baseline fusion for valence.

All systems are trained with only one output which is gold
standard. We have experimented with other settings, separate
raters etc, but did not get any improvement. The objective
function is CCC.

Median filter from 100 frames (4 second) is applied on the
top of the fusion scores.

Last thing which, unfortunately did not end up in the final
fusion, are the statistics of notDefined regions. Easiest way of
incorporating such statistics was to define a confidence vector
for each single system with such statistics. This confidence
vector is a binary vector with 1 at Defined regions and 0 at
notDefined regions. Such confidence vector can be used in
the fusion and tells us which system produce meaningful re-
sult for particular frame. We got a slight improvement (2%
relative) on development set if such vectors are input vectors
to the fusion. We are still experimenting how to use this in-
formation in the fusion and improve overall results.

4. CONLUSION

We substantially improved our system from last year submis-
sion [8]. This year we experimented again mainly with the
audio modality. We improved our bottleneck feature system
from CCC=0.699 [8] to CCC=0.833 on development set.

We also newly experimented with text based features. The
automatic speech recognition was used to get text transcrip-



tions. First results CCC=0.278 for valence and CCC=0.626
for arousal was obtained with word embedding approach.
This modality is new to this field and our plan is to exper-
iment more in that direction: comparing different speech
transcription systems, applying sentiment recognition to the
French corpus by building a French sentiment model, or else
translating the text into English in order to use one of the
main English sentiment detector tools available.

To summarize our effort and compare it to baseline sys-
tem, our single best system for both modalities are better than
the baseline single best systems, for arousal it is even better
then the baseline fusion. The CCC of our single best systems
is 0.833 for arousal and 0.623 for valence on development
set. Our final linear fusion reached CCC 0.855 and 0.713 on
Arousal and Valence on development set and 0.713 and 0.596
on test set respectively for Arousal and Valence.
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