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Abstract

This paper investigates various techniques to improve the
estimation of n-gram phonotactic models for language recogni-
tion using single-best phone transcriptions and phone lattices.
More precisely, we first report on the impact of the so-called
acoustic scale factor on the system accuracy when using lattice-
based training, and then we report on the use of n-gram cut-
off and entropy pruning techniques. Several system configura-
tions are explored, such as the use of context-independent and
context-dependent phone models, the use of single-best phone
hypotheses versus phone lattices, and the use of various n-gram
orders. Experiments are conducted using the LRE 2007 eval-
uation data and the results are reported using the a posteriori
EER. The results show that the impact of these techniques on
the system accuracy is highly dependent on the training con-
ditions and that careful optimization can lead to performance
improvements.
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1. Introduction

Phonotactic approaches for language recognition rely on the as-
sumption that the way phones are arranged in words and sen-
tences is language specific [1]. This means that even if two lan-
guages have the same set of phonemes, their phonotactic char-
acteristics are different. Phonotactic approaches try to capture
these differences and to use them to discriminate between lan-
guages.

In practice, phonotactic constraints are automatically in-
ferred from the speech signal. The inference requires the avail-
ability of a well trained speech recognizer. This recognizer is
used to decode speech signals producing phone sequences or
phone lattices from which phone n-gram statistics are estimated
and an n-gram phonotactic model is built.

Work on phonotactic approaches has mainly focused on im-
proving the quality of phone recognizer with the goal of mak-
ing the recognizer more accurate and the phone n-gram counts
more reliable. Several techniques have been investigated such
as using more training data [2], phone lattice decoding [3], bet-
ter phone modeling [4] and CMLLR adaptation [4, 5]. All
these techniques have significantly improved language recog-
nition performances, in particular the use of phone lattices.

Surprisingly, little work has focused on improving the es-
timation of phonotactic model from the phone n-gram counts.
This paper investigates two ways of improving the phonotac-
tic models, one based on optimizing the acoustic scale fac-
tor with lattice-based model training and the other uses an n-

*This work has been partially supported by OSEO, French State
agency for innovation, under the Quaero program.
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gram cutoff to eliminate infrequent and presumably incorrect n-
grams. For comparison purposes, entropy pruning is also inves-
tigated. While the use of these techniques in speech recognition
is a common practice, their impact on the phonotactic language
recognition system have not yet been investigated. The paper is
organized as follows. The next section presents the main princi-
ples of the language recognition problem. Then is followed by
a description of how the phonotactic models are estimated, and
the interplay between the phone lattices and the acoustic scale
factor, and the application of n-gram cutoffs during model es-
timation. Experimental results are given in Section 4 showing
how these techniques influence the language recognition perfor-
mance.

2. Phonotactic approach

For language recognition using phonotatic models, the decision
is made by maximizing the following language score:

S(X,L)=log>»  f(X|H,L,0)P(H|L) (1)
H

where f(X|H, L, 0) is the likelihood of the speech segment X
given a phone sequence H, a language L and the acoustic model
0. The probability P(H|L) is the phone sequence probability
given by the language-dependent phonotactic model. This score
can be approximated by considering only the most likely phone
sequence H™:

S(X,H*,L) = log f(X|H*, L,0) +log P(H*|L)  (2)

In addition, under the assumption that the acoustic model
is language independent, the speech segment likelihood
f(X|H*, L,0) can be replaced by f(X|H™*,0) which is a con-
stant across all languages and does not affect the decision.
Therefore assuming that we have an n-gram phonotatic model,
the language score can be simplified as follows:

S(X,H*,L) =~ C(hi)log P(halhi™",L)  (3)

hy

where C'(h?) is the frequency of the phone n-gram hf in the
hypothesis H* and where the summation is taken over all ob-
served n-grams in H™.

If a phone lattice Lx is used instead of keeping only the
most likely phone sequence, equation (3) still holds if the n-
gram frequencies are replaced by the expectation of the n-gram
frequencies given the phone lattice as follows:

S(X,H",L,Lx) =Y E[C(h})|Lx]log P(hn|h} ™", L)
Ry

C)
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where the summation is taken over all n-grams in the phone
lattice.

One of the main problem is to get accurate estimate of the n-
gram probabilities P(h,,|h? ™!, L) for each targeted language.

3. Phonotactic model estimation

With 1-best phone decoding, the maximum likelihood estimates
of the phonotactic model probabilities P(h,,|h"™!, L) are ob-
tained by counting the number of times the phone n-gram hY
occurred and dividing the count by the number of occurrences
of the context hg"il). Several smoothing techniques are pro-
posed to get better estimates. For language recognition, Witten-
Bell smoothing was found to perform the best [8]. In this work,
an interpolated version of the Witten-Bell algorithm is used [9].

3.1. Phone lattices and acoustic scale factor

Phone lattices are graphs where nodes correspond to particular
speech frames and where edges represent the phone hypotheses
and have associated acoustic scores. Phone lattices are gener-
ated by a phone decoder using context-independent or context-
dependant acoustic models without any phonotactic constraints.
The n-gram probabilities are estimated by taking the expected
frequencies given the phone lattice £[3]:

E[C(hY)| X, 00~ > P(er,...,en|L)
h(ei)=h;

&)

where in the right hand part we compute the sum of the lat-
tice posterior probabilities of all sequences of N edges corre-
sponding to the phone n-gram (h1, ..., hx). The lattice poste-
rior probabilities in (5) are computed by means of the forward-
backward algorithm which gives us:

Pler, ...,en|L) = ale1)B(en) Hg(ei)/ﬁo (6)

where «(e) is the forward likelihood of the starting node of the
edge e, B(e) is the backward likelihood of the ending node of
edge e, Bp is the backward likelihood of the first vertex, and
&(e) is the likelihood of the edge e estimated as follows:
£(e) = 0f(Xel0e)'” @)
where f(Xe|6e) is the likelihood of the speech segment X cor-
responding the lattice edge e given the HMM phone model as-
sociated to the edge. The parameter -y is the acoustic scaling
factor used to compensate for the HMM independency assump-
tions and for the model size. The parameter § is the phone inser-
tion penalty corresponding to a uniform phone language model.
Even though «y can be seen as the inverse of the well known
language model weight, for lattice decoding the distinction is
quite important. This acoustic scaling factor is also commonly
used in speech recognition when using word lattices, in partic-
ular for MMIE training [6], consensus decoding [7], and to get
accurate confidence scores from lattices. Without this scaling
factor the best hypothesis incorrectly dominates the alternate
solutions, making the estimation of the posterior probabilities
unreliable. The role of the factor -y is to control the distribution
of the posterior over phones [10]. In this work we do not report
on tuning the parameter ¢ as we found that such tuning has lit-
tle impact on language recognition performance. It was set at a
value experimentally found to give good performance.
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3.2. N-gram cutoff and entropy pruning

Applying n-gram cutoffs is a well known technique in language
modeling that consists of excluding from the model those n-
grams that occur less than a certain number of times (typically
one or two) in the training data. These low count n-grams are
often considered to be irrelevant, but since they account for a
large part of the observed n-grams, including them increases
the memory requirements. The main purpose of applying count
cutoffs in speech recognition, is to reduce considerably the lan-
guage model size without significantly affecting its accuracy.

In language recognition, the problem is more serious, since
phone n-grams are estimated from the output of the recognizer
and not from text or manual speech transcripts. Building a
phone recognizer that can capture fine phonotactic character-
istics for several languages is a challenging task, due to the
mismatch in the (acoustic) characteristics between the language
used to train the recognizer and the target languages. This mis-
match can considerably affect the accuracy of the recognizer
and make the results of the decoding rather approximate. In
this case it is likely that low-count phone n-grams are not good
indicators of the target language and can introduce noise which
degrades the discriminability of the models. This is particu-
larly true with less accurate systems, for example when decod-
ing with context-independent phone models and using just the
1-best phone sequence rather than phone lattices to estimate the
phonotactic models. As will be seen in the results section, using
a count cutoff is found to be efficient for improving language
recognition performance for certain system configurations, in
particular when 1-best phone sequence decoding is used.

For comparison purposes, entropy pruning, which consists
of reducing the number of phone n-grams by a certain percent-
age, is also applied.

4. Experiments and Results
4.1. Experimental conditions

Language recognition systems explored in this work make use
of the PPRLM (Parallel Phone Recognizer followed by Lan-
guage Model) with 3 phone recognizers, one for English, Span-
ish and French. Both context-independent (CI) and context-
dependent (CD) phone models are explored. A more detailed
description of these systems can be found in [4] with a few
minor modifications: the English recognizer has 38 phones in-
stead of 48 and CD models cover about 2000 context rather than
3000. We find that these new systems run much faster without
affecting language recognition performances.

The language training data are selected from several
sources' (LRE-96 train and Dev. NIST LRE’07 train, Call-
home, Mixer and Ficher databases) and performance is eval-
vated using the NIST LRE’07 eval data, containing 14 lan-
guages®. The acoustic feature vector has 39 dimensions (12
PLP + energy + A + AA). Phonotactic models with different
orders (2-gram, 3-gram and 4-gram) are generated from both
1-best hypothesis and phone lattices.

The language detection decision is made based on the av-
erage posterior probability estimated from language likelihoods
and target and non-target language priors using Bayes rule. For
better analysis of the results, performances are reported in terms
of a posteriori Equal Error Rate (EER).

Defined by MIT Lincoln Labs.
Zhttp://www.nist.gov/speech/tests/lang/2007/LREO7EvalPlan-
v8b.pdf



4.2. Impact of the acoustic scale factor

In this section, all phonotactic models are generated from phone
lattices without cutoffs or entropy pruning. Figures (1) and (2)
plot the EER as a function of the scaling factor for different
phonotactic model orders using CI and CD phone models, re-
spectively. Optimal scaling factors with their corresponding
EER are reported in Table (1) for both CI and CD phone models.
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Figure 1: EER[%] as a function of the scaling factor using
phone lattices generated with CI phone models.
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Figure 2: EER[%] as a function of the scaling factor using
phone lattices generated with CD phone models.

| Models [ 2-gram [ 3-gram [ 4-gram ‘
CI | EER[%] 8.6 4.9 4.5
¥ 1.1 2.2 3.0
CD | ERR[%] 7.3 3.6 2.7
y 1.3 2.6 3.9

Table 1: EER with the optimal acoustic scale factor () using
CI and CD phone models.

From the two figures, it is clear that optimizing the scal-
ing factor with phone lattices can significantly improve lan-
guage recognition performance. The gain is dependent upon
the phonotactic model order and the acoustic model type. It can
be seen that while there is almost no effect of the scaling factor
with the 2-gram models, it is more important with the 3-gram
and 4-gram models. One possible explanation is that since the 3
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vocabularies associated with phone recognizers are small®, us-
ing the few best hypotheses only (corresponding to v = 0.4),
is sufficient to accurately estimate 2-gram statistics from sev-
eral hours of speech. Indeed all 2-grams have high expected
counts. In contrast, to reliably estimate the expected counts of
the higher order n-grams, phone lattices need to be explored
deeply to extract as much information as possible. The con-
tribution of the alternative phone hypotheses becomes more im-
portant and the value of the scaling factor needs to be increased.
High order n-grams are more language-specific and therefore
more discriminant, estimating them reliably leads to a signifi-
cant improvement. The superiority in terms of consistency of
CD phone models over CI phone models was demonstrated and
largely discussed in a previous work [4].

It can be observed also that, the value of the scaling factor
is not so high. In fact, The scaling factor controls the sharpness
of the posterior probability distribution. Without this factor, the
distribution will be very sharp, reducing the generalization ca-
pabilities of the phonotactic models. However, a high value will
result in a very flat distribution. In this case, phonotactic models
for different languages will have almost the same distribution,
reducing their discriminant capabilities. Therefore, the value of
the scaling factor is a trade-off between the generalization and
the discriminant capabilities of the estimated models.

Finally, the optimal values of the scaling factor obtained
with CD models are generally higher compared to their cor-
responding values obtained with CI models. This can be ex-
plained by the difference in the model size between CI and CD
models.

4.3. Effect of count cutoffs and entropy pruning
4.3.1. Using 1-best hypothesis

Table (2) reports on the results of using entropy pruning and
count cutoffs for n-grams generated from 1-best hypothesis.
The parameters of the cutoff model (N2, N3, ..., N;) corre-
sponding to the minimum count for all possible n-gram orders
in the phonotactic models are given in brackets. All unigrams
are kept in the phonotactic model (N1 = 1).

l Models [ Conditions [ 2-gram [ 3-gram [ 4-gram ‘

CI no cutoff 8.7 7.9 18.1
cutoffs (1) (1,4) | (1,2,4)

8.7 5.2 5.2

entropy pruning 10.1 6.7 6.3

CD no cutoff 7.4 5.7 14.0
cutoffs (1) (1,4) | (1,3,4)

7.4 4.2 3.7

entropy pruning 8.3 5.6 4.9

Table 2: Effect of the n-gram cutoffs and entropy pruning on
the EER for CI and CD phone models using 1-best hypothesis.

It can be seen that while the best results for 2-grams are ob-
tained without cutoffs (for the same reasons explained in Sec-
tion (4.2)), for 3-gram and 4-gram models, significant improve-
ments are obtained using count cutoffs for CI and CD models.
With CI models, the relative improvements are 28% and 71%
for the 3-gram and 4-gram models, respectively. With CD mod-
els, these improvements are 26% and 74%, respectively. The

3The size of English, French and Spanish vocabularies are 38, 36
and 27 phones, respectively.



relatively high values of the cutoff parameters associated with
3-gram and 4-gram (e.g. using CD models, phone 3-grams and
4-grams with counts less than 3 and 4, respectively, are not in-
cluded in the 4-gram phonotactic models) indicate that most of
these n-grams are not estimated reliably. As explained in Sec-
tion (3.2) and unlike speech recognition where these irrelevant
n-grams do not affect system performance, in language recog-
nition they can be considered as noise. It is interesting to note
here, that for 4-gram phonotactic model, in particular those gen-
erated with CI models, the irrelevant phone n-grams represent
most of the model size.

More interestingly, comparing results in Table (2) to those
plotted in Figures (1) and (2), language recognition system us-
ing 1-best phone hypothesis with count cutoffs technique per-
forms significantly better than those using phone lattices with-
out scaling factor optimized (except for 2-gram model where
performances are equivalent).

Improvements with entropy pruning of the phonotactic
models are not as significant as those obtained with count cut-
offs. The entropy pruning technique applied in this work con-
sists of reducing the size of the model by a certain percentage.
This implies removing those n-grams that less affect the per-
plexity of the model. While these technique works relatively
well with 4-gram, it degrades performances with 2-gram mod-
els.

4.3.2. Using phone lattices

We have applied count cutoffs and entropy pruning techniques
to phone n-gram counts estimated from phone lattices with dif-
ferent values of . Table (3) reports the results.

| Models [ Conditions [ 2-gram [ 3-gram [ 4-gram ‘

CI no cutoff 8.6 4.9 4.5
cutoffs (0) (0,0) | (0,0,0)

~ 1.1 2.2 3.0

8.6 4.9 4.5

entropy pruning 9.6 4.9 4.5

CD no cutoff 7.3 3.6 2.7
cutoffs (0) (0,0) | (0,0,0)

y 1.2 2.6 3.9

7.3 3.6 2.7

entropy pruning 8.3 3.7 2.8

Table 3: Effect of the n-gram cutoffs and entropy pruning on
the EER for CI and CD phone models using phone lattices. The
optimal values of the cutoffs and scaling factor are given model
order.

Surprisingly, the best performances are obtained without
cutoffs*. This means that all n-grams are important and remov-
ing some of them degrades system performance. For a possible
explanation, it is worth remembering that the expected n-gram
counts estimated from phone lattices are based on posteriori
probabilities which are a more reliable measure than using n-
gram frequencies. As + is increased to its optimal value, more
sources (in terms of number of phone sequences) are used. This
makes the expected n-gram counts more precise and more ac-
curate. Even those with low counts are language specific and
contribute to the quality of the phonotactic model.

4Since the n-gram counts generated from phone lattices are float, we
have to take into account counts less than one.
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The same observations can be made for entropy pruning.
The reported results are usually obtained by reducing the model
size with only 1%.

5. Conclusion

This paper has explored the optimization of the acoustic scale
factor in the phone lattice decoding framework, and the use
of count cutoff and entropy pruning to reduce the phone n-
gram model size, with the aim of improving the accuracy of the
phonotactic language recognizer. The importance of optimiz-
ing the acoustic scale factor with lattice-based decoding was
demonstrated. Concerning LM pruning, applying low count
cutoffs significantly improved the language recognition perfor-
mance with 1-best decoding, while entropy pruning was not
very effective. Neither pruning method was found to be ef-
fective with lattice-based decoding, showing that phone lattices
provide reliable phone n-gram estimates for phonotactic lan-
guage recognition.
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