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Abstract
The baseline approach in building phonotactic language

recognition systems is to characterize each language by a single
phonotactic model generated from all the available language-
specific training data. When several data sources are avail-
able for a given target language, system performance can be
improved using language source-dependent phonotactic mod-
els. In this case, the common practice is to fuse language
source information (i.e., the phonotactic scores for each lan-
guage/source) early (at the input) to the backend. This paper
proposes to postpone the fusion to the end (at the output) of the
backend. In this case, the language recognition score can be
estimated from well-calibrated language source scores.

Experiments were conducted using the NIST LRE 2007 and
the NIST LRE 2009 evaluation data sets with the 30s condi-
tion. On the NIST LRE 2007 eval data, a Cavg of 0.9% is ob-
tained for the closed-set task and 2.5% for the open-set task.
Compared to the common practice of early fusion, these re-
sults represent relative improvements of 18% and 11%, for the
closed-set and open-set tasks, respectively. Initial tests on the
NIST LRE 2009 eval data gave no improvement on the closed-
set task. Moreover, the Cllr measure indicates that language
recognition scores estimated by the proposed approach are bet-
ter calibrated than the common practice (early fusion).

1. Introduction
The baseline approach in phonotactic language recognition is
to build a phonotactic model for each target language in the
application. The phonotactic model is generated from phone
n-gram statistics (counts) that represent the phonotactic charac-
teristics which are considered to be language specific. These
statistics are estimated from phone lattices generated from lan-
guage training data using one or several phone recognizer(s).
The key issue in this approach is the estimation of the phone
n-gram statistics. If they are accurately estimated, a phonotac-
tic system with state-of-the-art performances can be built. The
accuracy of the estimation of the phone n-gram statistics can be
improved using various techniques, including the use of more
adequate train data [1], the use of better phone recognizers, bet-
ter optimization of the phone lattice decoding, and parameter
tuning for count estimation [3].

In practice, phonotactic language models are generated us-
ing different data sources. The data sources can be distin-
guished using different criteria, such as the nature of speech
(conversational telephone speech or broadcast data), gender
(male or female), dialect (e,g; Indian or American for the En-
glish language) and channel type. For an open-set task, the data
from each language in the out-of-set languages can be consid-

ered as a different data source.
When several data sources are available for a specific lan-

guage, the baseline approach is to merge all phone n-gram
statistics from the different sources for a given language and
generate a single phonotactic model characterizing the lan-
guage. In this case, the fusion of the language source infor-
mation is performed at the phonotactic level. It has been re-
ported that for such training conditions, using source-dependent
phonotactic models can improve system performance [4] [5]. In
this latter approach, fusing language sources information is per-
formed at the beginning of the back-end fusion module. This
kind of fusion will be referred to as within-language fusion.

When the phonotactic system makes use of the Parallel
Phone decoders followed by Language Modeling (PPRLM) ap-
proach, the language recognition score is a combination of the
language/source scores estimated by each individual PRLM.
This kind of language information fusion will be referred to as
between-prlm fusion. Depending on the way the integration of
the within-language and the between-prlm fusion techniques is
performed, several language information fusion configurations
can be envisaged.

This paper proposes a new language information fusion
technique when multiple data sources are available for some
target languages. In this technique, each language source is
considered as a separate language and the final language source
recognition score is estimated at the output of the fusion mod-
ule. The final score for each target language is the simple av-
erage of the scores of its language sources. Language infor-
mation is integrated using first between-prlm fusion followed
by within-language fusion. This paper proposes the use of an
unsupervised labeling technique to assign each segment in the
language development data to its most likely source.

The rest of this paper is organized as follows: Section 2
describes the PPRLM system used in this work. Section 3 de-
scribes several language information fusion techniques. Sec-
tion 4 describes the experimental set-up and provides an analy-
sis of the obtained results.

2. System description
The language recognition system makes use of the Parallel
Phone Recognizer followed by Language Modeling (PPRLM)i
approach [6]. A block diagram of a baseline PPRLM system is
shown in Figure (1).

The PPRLM system uses 3 context-dependent phone recog-
nizers, for English, Spanish and French. They have 38, 36 and
27 phones, respectively. These recognizers are trained using
Conversational Telephone Speech (CTS). The acoustic mod-
els are word-position independent, and trained on 25 hours
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Figure 1: Block diagram of a baseline PPRLM system using
three phone recognizers and three target languages.

for Spanish, 116 hours for French, and 1760 hours for En-
glish. Each model covers about 2000 phone contexts, with 2000
tied states and a mixture of 32 Gaussians per state. Silence
is modeled by a single state, with a mixture of 1024 Gaus-
sians. Constrained Maximum Likelihood Linear Regression
(CMLLR) adaptation procedure is performed, prior the phone
lattices decoding [2]. Phone lattice decoding [7] is done with-
out any phonotactic constraints. The expected phone n-gram
estimated from phone lattices are used to generate an interpo-
lated Back-off 4-gram phonotactic models with the Witten-Bell
discounting using the SRILM toolkit.1 The standard approach is
for each individual PRLM and each target language, one phono-
tactic model is generated. Alternatively, a separate phonotactic
model can be generated for each language source. In this case,
each target language will be represented by one or multiple
phonotactic models, depending on the available data sources.
Both approaches are investigated in this work.

3. Language information fusion techniques

Language information fusion can be performed at dif-
ferent levels in a PPRLM system: at the phonotactic, the
within-language and the between-prlm levels. This section de-
scribes several configurations to integrate these fusion tech-
niques and estimate the language decision score. In all cases,
language/source score fusion and calibration is performed using
the widely used Gaussian back-end followed by logistic regres-
sion techniques [8]. These are implemented in the FoCal Mul-
ticlass toolkit2. For completeness these two fusion techniques
are briefly overviewed before presenting the different configu-
rations considered in this work.

3.1. Gaussian Backend (GB)

In this technique, language/source phonotactic scores of a given
speech segment, are stacked in a phonotactic score vector. The
dimension of this vector is equal to the total number of phono-
tactic models in the PPRLM system. The set of phonotactic
score vectors associated with a given language/source are used
to train a language/source dependent multivariate normal distri-
bution N(µc, Σ) (one Gaussian). All Gaussians share a com-
mon full covariance matrix.

In [9], Gaussian back-end performances are significantly
improved using maximum a posteriori (MAP) adaptation [10].

1http://www.speech.sri.com/projects/srilm/
2http://niko.brummer.googlepages.com/focalmulticlass

The mean vector of the class-dependent Gaussian was adapted
from the mean vector of a background Gaussian:

µ̂` = α`µ` + (1− α`)µ̄ (1)

where µ` and µ̂` are the mean of the class-dependent Gaus-
sian before and after adaptation, the vector µ̄ is the mean of
the background Gaussian estimated from the mean of the other
language/source dependent Gaussians. The parameter α` is de-
fined as follows:

α` =
n`

n` + τ
(2)

where n` is the number of examples for the language/source `
and τ is the relevant adaptation factor optimized using k-fold
cross-validation technique. Adapted Gaussian backend outper-
forms significantly conventional Gaussian backend in particular
when the amount of development data is small.

3.2. Multi-class Logistic Regression (MLR)

As reported in [9] and will be shown in the results, if the amount
of adequate development data is large enough then, further im-
provements can be obtained by calibrating language/source de-
pendent Gaussian likelihoods (estimated by the Gaussian back-
end) using the discriminative multi-class logistic regression
(MLR). This scheme for language score fusion and calibration
is also used in [12].

3.3. Configurations for language information fusion

The fusion module in the complete PPRLM system consists
of a GB sub-module followed by the MLR sub-module. The
number of inputs and outputs of the MLR are equal to the size
of the GB (i.e, the number of languages/sources represented in
the GB). Depending on the modeling approach and the size of
the GB, three language information fusion configurations were
explored. Figure (2) shows these configurations for a simplified
PPRLM system.

3.3.1. Configuration A

As shown in Figure (2), this configuration corresponds to the
case where each target language is represented by a single
phonotactic model for each individual PRLM component. This
model is generated using phone n-gram counts merged from all
language data sources, thereby fusing the language source infor-
mation at the phonotactic level. In the PPRLM fusion module,
each language is represented by one Gaussian and one output in
the GB and the MLR fusion sub-modules, respectively.

In this configuration, the language recognition score is es-
timated by first fusing the phonotactic information followed by
fusing language phonotactic scores (i.e, between-prlms).

3.3.2. Configuration B

This configuration corresponds to the case where each target
language is represented by multiple source-dependent phono-
tactic models for each individual PRLM component as shown
in Figure (2). However in the PPRLM fusion module, each lan-
guage is represented by one Gaussian and one output in the GB
and the MLR fusion sub-modules, respectively. Therefore con-
figurations A and B have the same size of the Gaussian back-
end (i.e, the number of target languages) but they differ by the
dimension of the phonotactic score vector.

In this configuration the language recognition score is es-
timated by simultaneously integrating the within-language and
the between-prlm fusion techniques.
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Figure 2: Three fusion module configurations compared in this work. The PPRLM is composed of two PRLMs (the corresponding
phone recognizers are not shown for clarity purposes) and the set of target languages contains two languages L1 and L2. Language L1

has one data source, so only one phonotactic model is generated for that language. Language L2 has two data sources denoted L2s1
and L2s2

. So, L2 is represented by one or two phonotactic models depending on the modeling approach. These configurations differ
by the size of the Gaussian backend (2 for configurations A and B, and 3 for configuration C) and the dimension of the phonotactic
score vectors which is equal to 4 in configuration A and 6 in configurations B and C.

3.3.3. Configuration C

The third configuration shown in Figure (2) corresponds to the
case where each target language is represented by one or multi-
ple language source-dependent phonotactic models in each in-
dividual PRLM component. In the PPRLM fusion module, each
language source is represented by one Gaussian and one output
in the GB and the MLR fusion sub-modules, respectively. The
language score p(x|`) of a speech segment x can be estimated
from language-source scores p(y|`s) as follows:

p(x|`) '
∑
s∈S`

λsp(x|`s) (3)

where S` is the set of effectively modeled sources3 for the lan-
guage `, and λs is the weight (representing prior knowledge) of
the source `s.

In this configuration, the language recognition score is
estimated by first using between-prlm fusion to estimate
the language-source recognition scores followed by within-
language fusion to produce the final language score.

From practical point of view, configuration C is very attrac-
tive, as it allows the integration of prior knowledge about lan-
guage sources in the estimation of language recognition score.
These priors are application dependent and can be set before
the use of the system. For example if language sources corre-
spond to dialects, the dialect scores can be weighted according
to the origin of the audio files. Alternatively, these priors can
be estimated dynamically during system use. In this case the
weight λs will depend on the test segment. In this work, no
prior knowledge is used so the weight λs is set to be equal to

1
‖S`‖ . That is the language recognition score in (3) is equal to
the average of the language source recognition scores.

The implementation of the configuration C requires the
availability of sufficient amounts of development data for each
modeled source. If development data for a given source is not
available, then a phonotactic model for this source can be al-
ways built and its scores included in the phonotactic score vec-
tor, but this source will not be explicitly represented in the fu-
sion module.

In practical situations, the languages of the development
data are known but often the source is not known or may not

3Sources with sufficient amount of train and development data

represented in the training data. If the set of development lan-
guages are known, but the speech segments are not labeled, one
option is to automatically assign labels to the data. This paper
proposed to use unsupervised data labeling to address this issue
as described in Section 4.2.3.

The difference between configurations B and C, is that in B
all the dev data for a given target language is used to train one
language-dependent Gaussian, while in C, the same amount of
data is distributed over the modeled language sources to train
multiple language source-dependent Gaussians (i.e, the number
of parameters in the fusion module is increased). This splitting
might affect system performance, in particular when the amount
of dev data attributed to a language source is small.

4. Experimental set-up and results
The performance obtained with the three different language

information configurations was evaluated using the 30s condi-
tion of the NIST LRE 20074 (lid07e1) and the NIST LRE 2009
(lid09e1) eval data sets. For the NIST LRE 2007, experiments
are conducted for both closed-set and open-set tasks. For the
NIST LRE 2009, only closed-set task is evaluated.

4.1. Task definition

The task of the interest is language detection. Given a speech
segment x, the detection decision is made based on the language
log likelihood ratio estimated as follows:

llr(x|`k) ' log




Ptar.p(x|`k)

Poos.p(x|`oos) +
∑

`i∈LT
`i 6=`k

Pnon−tar.p(x|`i)




(4)
where p(x|`) is the likelihood of x given the target language
`. It can be the output of the GB or the MLR. LT is the set
of target languages and oos represents the out-of-set languages.
The target language prior Ptar is equal to 0.5. The out-of-set
language prior Poos is equal to 0.0 for the closed-set task and
0.2 for the open-set task5. The Pnon−tar is equal to:

Pnon−tar = (1− Ptar − Poos)/(‖LT ‖) (5)
4http://www.nist.gov/speech/tests/lang/2007/
5These values are given by NIST.
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The llrs scores are then compared to the theoretical thresh-
old ∆ = 0. Performance is reported in terms of Cavg as defined
by NIST and the multi-class Cllr measure6.

4.2. Experiments on the NIST LRE 2007

The training datasets used in these experiments are those pro-
vided by NIST. No external sources were used.

4.2.1. Evaluation data

In the NIST LRE 2007, there are 14 target languages, and about
2509 speech segments, of which 352 segments belong to one
of the 5 out-of-set languages (French, Italian, Punjabi, Tagalog,
Indonesian). Speech segments were mainly from the Fisher,
Mixer, Callfriend and OGI corpora.

4.2.2. Training data

Three data sources are used to train language phonotactic mod-
els: the NIST LRE-96 train dataset (part of Callfriend CF
database), the LRE-07 train data set and the OHSU database.
Table (1) reports the amount of training data available per lan-
guage and source. These amounts are computed after removing
non-speech segments detected automatically by a speech activ-
ity detector.

4.2.3. Development data

The development data includes the NIST LRE 1996, 2003,
2005 dev and eval data, the NIST LRE-07 dev (lid07d1) data
and the MITDev7 data. In these data sets, the language
sources of most segments are given and they match training data
sources. For other segments, language source information was
either missing or did not match one of the training data sources.
To label these latter segments (i.e, associate each segment in the
dev data to one of the train data sources), an unsupervised la-
beling procedure is applied. For each unlabeled segment x of
a given language `, a language source recognition score is esti-
mated as the average language source phonotactic scores gener-
ated by each individual PRLM. The segment x is labeled with
the source `?

s having the highest score. Formally,

`?
s = argmax

`s

1

Nd

Nd∑
d=1

pd(x|`s) (6)

where Nd is the number of PRLMs. Because this unsupervised
labeling is not applied to all dev data segments, it will be re-
ferred to as partially-unsupervised.

As a contrast condition it was assumed that the language
source information was unavailable for all dev segments (i.e.
the provided language source information was not used). The
labels were assigned automatically to all dev data segments us-
ing Equation (6). This labeling will be referred to as fully-
unsupervised.

Table (2) reports the number of dev segments for each lan-
guage source obtained using partially (left number) and fully
(right number) unsupervised procedures.

For open-set task, additional out-of-set (OOS) data com-
prises 895 segments from 8 OGI-22 languages and French seg-
ments from LRE-96 and LRE-03 eval data sets are used. Three
of these languages are also in the eval data. For this OOS data,

6http://www.nist.gov/speech/tests/lang/2007/LRE07EvalPlan-
v8b.pdf

7Defined by MIT Lincoln Labs for their NIST LRE 2007 system.

the language source of the segment is the language itself of the
segment.

4.3. Results and discussion

The configurations described in Section 3.3 were evaluated on
a language detection task for closed- and open-set conditions.

4.3.1. Closed-set task

For this task, the decision score is estimated according to (4)
with Poos = 0.0. Table (3) reports the results for the 3 differ-
ent fusion configurations. The baseline system corresponds to
configuration A.

CONFIG FUSION Cavg% Cllr

A ADAPTED GB 2.1 0.1222
+ MLR 1.5 0.0690

B ADAPTED GB 1.5 0.0845
+ MLR 1.1 0.0528

C ADAPTED GB 1.6 0.0826
(Partially-sup) + MLR 0.9 0.0437

C ADAPTED GB 1.6 0.0842
(Fully-sup) + MLR 0.9 0.0428

Table 3: System performance for different language information
fusion configurations in terms of 100×Cavg and Cllr obtained
on the NIST LRE 2007 for the closed-set task.

It can be observed that configuration B significantly outper-
forms configuration A by 27% relative. This result indicates
that modeling the training data sources separately might im-
prove the performance of the PPRLM system. The PPRLM sys-
tems corresponding to these two configurations have the same
fusion module architecture (same size GB and same number of
classes in the MLR) but they differ by the information provided
to this module. In configuration A, the dimension of the phono-
tactic score vectors is ‖LT ‖ × Nd (i.e, 14 × 3 = 42) while
in configuration B, this dimension is equal to Ns × Nd (Ns

is the total number of modeled sources, in these experiments
Ns = 25). The information provided by the phonotactic score
vector in configuration B is richer, and the fusion parameter es-
timation is expected to be better. This is particularly true when
enough dev data segments are available.

Further improvements can be obtained with configuration
C (18% relative, compared to configuration B). In configura-
tion B, the within-language fusion was done earlier in the fu-
sion module (at the input to the GB), while in configuration C,
it is delayed to the end of the fusion module (at the output of the
MLR). This result suggests that the language recognition score
(providing there is enough dev data for each source) can be bet-
ter estimated by fusing the language source recognition scores
at the decision level rather than earlier in the system. The Cavg

obtained with configuration C is equal to 0.9%. These results
obtained with a purely phonotactic system are competitive with
the best published results (Cavg = 0.87%) obtained with a lan-
guage recognition system [11] using both acoustic and phono-
tactic sub-systems.

The same trend can be also observed with the Cllr measure,
indicating that language scores estimated by configuration C are
better calibrated than those estimated by configurations A and
B. Finally, no difference in performance was observed between
the Partially and Fully unsupervised data labeling.

349



LANGUAGE LRE96-TR OHSU LRE07-TR LANGUAGE LRE96-TR OHSU LRE07-TR

ARABIC 8.3 − 3.5 BENGALI − − 3.6
CHINESE 17.4 29 11.1 ENGLISH 18.7 22.9 −

FARSI 8.9 − − GERMAN 8.8 3.8 −
HINDUSTANI 9.2 6.2 3.4 JAPANESE 8.6 16.4 −

KOREAN 7.9 17.5 − RUSSIAN − − 3.4
SPANISH 18.5 11.2 − TAMIL 7.4 8.6 −

THAI − − 3.5 VIETNAMESE 10.6 − −

Table 1: The amount of training data (in hours) for each target language and data source after removing the automatically detected
non-speech segments.

LANGUAGE LRE-TR OHSU LRE07-TR LANGUAGE LRE96-TR OHSU LRE07-TR

ARABIC 635/634 − 276/277 BENGALI − − 115/115
CHINESE 567/433 743/839 462/467 ENGLISH 1004/982 1726/1748 −

FARSI 337/337 − − GERMAN 450/447 105/108 −
HINDUSTANI 243/232 199/209 158/159 JAPANESE 252/213 689/728 −

KOREAN 196/162 452/486 − RUSSIAN − − 447/447
SPANISH 857/837 472/492 − TAMIL 264/238 249/275 −

THAI − − 80/80 VIETNAMESE 326/326 − −

Table 2: Number of dev segments for each language source using an unsupervised labeling procedure. (Left: partially-unsupervised/
Right: fully-unsupervised)

4.3.2. Open-set task

For the open-set task, the standard approach [12] is to use devel-
opment data from out-of-set (OOS) languages (i.e; languages
that are different from the set of target languages). For each
segment in the OOS dev data, a phonotactic score vector is es-
timated using the phonotactic models. The phonotactic score
vectors are then used to train an OOS Gaussian to be added to
the GB. This approach was used to compare the three configu-
rations on an open-set task. The OOS dev data consist of seg-
ments of 30s long from 9 Languages. The language detection
score is estimated according to (4) with Poos = 0.2. Results are
reported in Table (4). Before analyzing the results, it is worth
mentioning that in each configuration, the target language score
is estimated as in the closed-set task. The focus in this section
is on modeling the OOS languages and estimating their scores.
For configuration C, the partially-unsupervised labeled dev data
is used.

CONFIG FUSION Cavg[%] Cllr

A ADAPTED GB 4.3 0.2190
+ MLR 3.5 0.1472

B ADAPTED GB 3.4 0.1768
+ MLR 2.8 0.1242

C ADAPTED GB 3.7 0.2024
(Fully-unsup) + MLR 2.5 0.1309

Table 4: System performances in terms of (100 × Cavg) for
different language information fusion configurations obtained
on the NIST LRE 2007 for the open-set task.

Configuration A is the standard open-set approach. The tar-
get languages are represented by a single phonotactic model for
each PRLM, and the OOS phonotactic score vectors are used to
train a single OOS Gaussian.

Configuration B is basically the standard open-set approach
but each target language is represented by one or multiple
source-dependent phonotactic models. The OOS phonotactic

score vectors are used to train a single OOS Gaussian. This
configuration improves system performances by 20% relative
compared to configuration A. It can also be seen that the result
obtained with the adapted Gaussians backend (Cavg = 3.4%)
is comparable to the best result obtained with configuration A
(Cavg = 3.5%).

In configuration C, each language in the OOS languages is
considered as a different source and represented by a separate
Gaussian in the GB. This means that the number of Gaussians
representing the OOS languages is 9 (i.e, the number of OOS
languages in the dev data). In this configuration, the target lan-
guage score is estimated according to (3). The OOS recognition
score p(x|`oos) is estimated as follows:

p(x|`oos) '
∑

s∈LOOS

βsp(x|`ooss) (7)

where, LOOS is the set of OOS languages, `ooss is one of the
OOS languages and βs is the OOS source weight that can be
set differently depending on the application or can be estimated
dynamically. In this work, βs is set to be equal to 1

‖LOOS‖ . A
similar modeling approach was proposed in [12] but the scoring
was done differently.

With this configuration, a further 11% relative improve-
ment in the Cavg is obtained. The obtained results (Cavg =
2.5%) is close to the best published result (2.39%) [11].

4.4. Experiments on the NIST LRE 2009

For the NIST LRE 2009 data, initial experiments were con-
ducted only for the closed-set task. The training and dev data
sets are those provided by NIST and no external sources are
used. There are 23 target languages and the eval data is com-
posed of both CTS and VOA (Voice-Of-America) data seg-
ments.

4.4.1. Training data

The training data consists of data described previously, with ad-
dional data from the mixer3 corpus and the VOA data, both
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LANGUAGE CTS OHSU VOA LANGUAGE CTS OHSU VOA
AMHARIC − − 9.7 BOSNIAN − − 5.2

CANTONESE 7.3 − 4.3 CREOLE − − 9.87
CROATIAN − − 8.0 DARI − − 9.8

ENGLISH AMERICAN 3.8 15.2 − ENGLISH INDIAN 3.9 7.7 −
FARSI 12.8 − 10.0 FRENCH 9.6 − 9.9

GEORGIAN − − 4.6 HAUSSA − − 9.7
HINDI 12.8 6.2 9.8 KOREAN 11.5 17.5 9.6

MANDARIN 24.9 29 9.7 PASHTO − − 9.9
PORTUGUESE − − 9.8 RUSSIAN 6.7 − 9.9

SPANISH 18.5 11.2 9.7 TURKISH − − 7.4
UKRAINIAN − − 3.9 URDU 6.9 − 9.9

VIETNAMESE 14.2 − 9.9 - − − −

Table 5: The amount of training data (in hours) for each target language and data source after removing the automatically detected
non-speech segments.

LANGUAGE CTS OHSU VOA LANGUAGE CTS OHSU VOA
AMHARIC − − 300/300 BOSNIAN − − 100/100

CANTONESE 80/106 − 90/64 CREOLE − − 300/300
CROATIAN − − 168/168 DARI − − 300/300

ENGLISH AMERICAN 557/111 338/784 − ENGLISH INDIAN 160/103 215/272 −
FARSI 318/356 − 300/262 FRENCH 316/318 − 300/298

GEORGIAN − − 132/132 HAUSA − − 300/300
HINDI 393/383 143/200 300/356 KOREAN 314/267 314/399 241/276

MANDARIN 877/585 644/1008 300/228 PASHTO − − 300/300
PORTUGUESE − − 300/300 RUSSIAN 320/333 − 300/287

SPANISH 976/576 259/526 300/253 TURKISH − − 186/186
UKRAINIAN − − 78/78 URDU 160/175 − 300/285

VIETNAMESE 391/426 − 258/223 - − − −

Table 6: Number of dev segments for each language source with both supervised and unsupervised labeling. (Left: supervised/ Right:
unsupervised)

provided by NIST. The VOA data was further processed to
select telephone segments with high inter-speaker variability.
This processing is done via the use of an incremental open-set
speaker verification procedure. The result of this procedure is
a set of speakers with their associated speech segments. The
set of speakers is divided into two non-overlapping sub-sets.
The VOA train data was selected from one subset and the dev
data from the other. For each target language, a maximum of
10 hours of VOA speech was selected for training. To increase
the speaker variability and the generalization capabilities of the
VOA phonotactic models a maximum of 15 minutes of speech
data per speaker was used.

The entire training data was separated in three subsets:
CTS, OHSU and VOA sources. Although OHSU is a CTS data
type, it has different characteristics compared to the other CTS
data sets provided by NIST and was therefore not combined
with the other CTS data. The total number of modeled sources
for all target languages was 39. Table (5) reports the amount of
data (in hours) for each source and target language.

4.4.2. Development data

The development data is composed of CTS, OHSU and VOA
data segments. The CTS segments are extracted from eval and
dev data sets of the NIST LRE 1996, 2003, 2005 and 2007. The
OHSU segments are extracted from the eval and dev data sets
of the NIST LRE 2005. The speakers in the VOA segments
are from a separated set than those used for training, with a
maximum of 300 segments per target language is used.

For these experiments, supervised (the source -CTS, OHSU
or VOA- for each segment in the dev data is already given) and
unsupervised (as described in section 4.2.3) labeling are com-
pared. Table (6) reports the number of dev segments per data
source and language for both supervised and unsupervised la-
beling.

4.5. Results and Discussion

Table (7) reports the obtained results.

CONFIG FUSION Cavg[%] Cllr

A ADAPTED GB 2.99 0.1854
+ MLR 2.1 0.0879

B ADAPTED GB 2.99 0.1904
+ MLR 1.99 0.0851

C ADAPTED GB 2.99 0.2005
(Supervised) + MLR 1.98 0.0819

C ADAPTED GB 2.99 0.2046
(Unsupervised) + MLR 1.99 0.0858

Table 7: System performance in terms of (100 × Cavg) and
Cllr for different language information fusion configurations
obtained on the NIST LRE 2009 for closed-set task.

It can be observed that configurations B and C outperform
configuration A in terms of both Cavg (small improvements)
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and Cllr measures. There is no difference between configura-
tion B and C in terms of Cavg measure, but the language score is
better calibrated with configuration C when supervised labeling
of the dev segments is used.

It should be mentioned here that configuration B and C use
the same set of phonotactic score vectors (same dev data) to
train the fusion module. But in configuration C, the fusion mod-
ule has more parameters than in B. In configuration C there are
39 Gaussians in the GB (compared to 23 in configuration B),
and the same holds for the number of MLR classes. In both
configurations, the dimension of the phonotactic score vector is
39∗3 = 117. In configuration C and for a given target language,
the phonotactic score vectors are split over the modeled target
language sources. As a result, the number of dev segments at-
tributed to one or more sources may not be large enough (see
Table 6 for Cantonese) to better estimate the source-dependent
Gaussian. This might affect the effectiveness of configuration
C. One possible simple solution to this problem is to model only
sources with a number of dev data segments that is higher than
a fixed threshold.

5. Conclusions
This paper has investigated several techniques to fuse language
information when multiple training data sources for all or some
target languages are available. Experimental results on the
NIST LRE 2007 and NIST LRE 2009 data sets suggest that
instead of merging all data sources and creating a single phono-
tactic model, better performance can be obtained by model-
ing language sources separately, provided that enough dev data
are available for each source. When multiple source-specific
phonotactic models are used, the results show that the language
recognition score can be better estimated by fusing well cali-
brated language source scores (configuration C), rather than at
the input to the fusion model (configuration B). These experi-
ments indicate that unsupervised labeling of the dev segments
according to language source performs as well as known lan-
guage source labels.

In the proposed technique, the language recognition score
is estimated by taking the average of the language source scores
(Equation 3). That is, all sources are equally important. Better
optimization of the weights can be expected to improve system
performances.

For a language with a relatively high number of data
sources, modeling each data source separately might not be pos-
sible since there may be insufficient data for each source. In this
case, two or more data sources can be merged, however what
criteria should be used to decide which data sources to merge is
an open question that needs to be addressed.
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