
Audio Partitioning and Transcription for Broadcast DataIndexationJ.L. Gauvain, L. Lamel, and G. AddaSpoken Language Processing GroupLIMSI-CNRS, BP 133, 91403 Orsay, Francefgauvain,lamel,gaddag@limsi.frhttp://www.limsi.fr/tlpAbstract. This work addresses automatic transcription of television and radio broadcasts. Tran-scription of such types of data is a major step in developing automatic tools for indexation and re-trieval of the vast amounts of information generated on a daily basis. Radio and television broadcastsconsist of a continuous stream of data comprised of segments of di�erent linguistic and acoustic na-tures, which poses challenges for transcription. Prior to word recognition, the data is partitioned intohomogeneous acoustic segments. Non-speech segments are identi�ed and removed, and the speechsegments are clustered and labeled according to bandwidth and gender. The speaker-independentlarge vocabulary, continuous speech recognizer makes use of n-gram statistics for language modelingand of continuous density HMMs with Gaussian mixtures for acoustic modeling. The system hasconsistently obtained top-level performance in DARPA evaluations. An average word error of about20% has been obtained on 700 hours of unpartitioned unrestricted American English broadcastdata.1 IntroductionWith the rapid expansion of di�erent media sources for information disemination, there is a need forautomatic processing of the data. For the most part todays methods for transcription and indexation aremanual, with humans reading, listening and watching, annotating topics and selecting items of interestfor the user. Automation of some of these activities can allow more information sources to be coveredand signi�cantly reduce processing costs while eliminating tedious work. Radio and television broadcastshows are challenging to transcribe as they contain signal segments of various acoustic and linguisticnatures. The signal may be of studio quality or have been transmitted over a telephone or other noisychannel (ie., corrupted by additive noise and nonlinear distorsions), or can contain speech over music orpure music segments. Gradual transitions between segments occur when there is background music ornoise with changing volume, and abrupt changes are commonly when there is switching between speakersin di�erent locations. The speech is produced by a wide variety of speakers: news anchors and talk showhosts, reporters in remote locations, interviews with politicians and common people, unknown speakers,new dialects, non-native speakers, etc. Speech from the same speaker may occur in di�erent parts ofthe broadcast, and with di�erent channel conditions. The linguistic style ranges from prepared speech tospontaneous speech. Acoustic models trained on clean, read speech, such as the WSJ corpus, are clearlyinadequate to process such inhomogeneous data.Two principle types of problems are encountered in transcribing broadcast news data: those relatingto the varied acoustic properties of the signal, and those related to the linguistic properties of the speech.Problems associated with the acoustic signal properties are handled using appropriate signal analyses,by classifying the signal according to segment type and by training speci�c acoustic models for thedi�erent acoustic conditions. In order to address variability observed in the linguistic properties, weanalyzed di�erences in read and spontaneous speech, with regard to lexical items, word and word sequencepronunciations, and the frequencies and distribution of hesitations, �ller words, and respiration noises.As a result of this analysis, these phenonema were explicitly modeled in both the acoustic and languagemodels as described in [4].2 Data PartitioningWhile it is evidently possible to transcribe the continuous stream of audio data without any prior seg-mentation, partitioning o�ers several advantages over this straight-foward solution. First, in addition tothe transcription of what was said, other interesting information can be extracted such as the division
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Fig. 1. Partitioning algorithm.into speaker turns and the speaker identities. Prior segmentation can avoid problems caused by linguisticdiscontinuity at speaker changes. By using acoustic models trained on particular acoustic conditions, over-all performance can be signi�cantly improved, particularly when cluster-based adaptation is performed.Finally by eliminating non-speech segments and dividing the data into shorter segments (which can stillbe several minutes long), reduces the computation time and simpli�es decoding.The segmentation and labeling procedure introduced in [5] is shown in Figure 1. First, the non-speech segments are detected (and rejected) using Gaussian mixture models. The GMMs, each with 64Gaussians, serve to detect speech, pure-music and other (background). The acoustic feature vector usedfor segmentation contains 38 parameters. It is the same as the recognition feature vector except thatit does not include the energy, although the delta energy parameters are included. The GMMs wereeach trained on about 1h of acoustic data, extracted from the training data after segmentation withthe transcriptions. The speech model was trained on data of all types, with the exception of pure musicsegments and the silence portions of segments transcribed as speech over music. In order to detect speechin noisy conditions a second speech GMM was trained only on noisy speech segments. These model areexpected to match all speech segments. The music model was trained only on portions of the data thatwere labeled as pure music, so as to avoid mistakenly detecting speech over music segments. The silencemodel was trained on the segments labeled as silence during forced alignment, after excluding silences insegments labeled as containing speech in the presence of background music. All test segments labeled asmusic or silence are removed prior to further processing.A maximum likelihood segmentation/clustering iterative procedure is then applied to the speechsegments using GMMs and an agglomerative clustering algorithm. Given the sequence of cepstral vectorscorresponding to a show (x1; : : : ; xT ), the goal is to �nd the number of sources of homogeneous data(modeled by the p.d.f. f(�j�k) with a known number of parameters) and the places of source changes.The result of the procedure is a sequence of non-overlaping segments (s1; : : : ; sN ) with their associatedsegment cluster labels (c1; : : : ; cN ), where ci 2 [1;K] and K � N . Each segment cluster is assumed torepresent one speaker in a particular acoustic environment.Speaker-independent GMMs corresponding to wideband speech and telephone speech (each with 64Gaussians) are then used to label telephone segments. This is followed by segment-based gender identi�-cation, using 2 sets of GMMs with 64 Gaussians (one for each bandwidth). The result of the partitioningprocess is a set of speech segments with cluster, gender and telephone/wideband labels, as illustrated inFigure 2.



Audio Partitioning and Transcription for Broadcast Data Indexation 3
Fig. 2. Spectrograms illustrating results of data partitioning on sequences extracted from broadcasts. The uppertranscript is the automatically generated segment type: Speech, Music, or Noise. The lower transcript showsthe clustering results for the speech segments, after bandwidth (T=telephone-band/S=wideband) and gender(M=male/F=female) identi�cation. The number identi�es the cluster.We evaluated the frame level segmentation error (similar to [7]) on the 4 half-hour shows in theDARPA eval96 test data using the manual segmentation found in the reference transcriptions. The NISTtranscriptions of the test data contain segments that are not scored, since they contain overlapping orforeign speech, and occasionally there are small gaps between consecutive transcribed segments. Sincewe consider that the partitioner should also work correctly on these portions, we relabeled all excludedsegments as speech, music or other background.Show 1 2 3 4 AvgFrame Error 7.9 2.3 3.3 2.3 3.7M/F Error 0.4 0.6 0.6 2.2 1.0#spkrs/#clusters 7/10 13/17 15/21 20/21 -ClusterPurity 99.5 93.2 96.9 94.9 95.9Coverage 87.6 71.0 78.0 81.1 78.7Table 1. Top: Speech/non-speech frame segmentation error (%), using NIST labels, where missing and excludedsegments were manually labeled as speech or non-speech. Bottom: Cluster purity and best cluster coverage (%).Table 1(top) shows the segmentation frame error rate and speech/non-speech errors for the 4 shows.The average frame error is 3.7%, but is much higher for show 1 than for the others. This is due to along and very noisy segment that was deleted. Averaged across shows the gender labeling has a 1% frameerror. The bottom of Table 1 shows measures of the cluster homogeneity. The �rst entry gives the totalnumber of speakers and identi�ed clusters per �le. In general there are more clusters than speakers, asa cluster can represent a speaker in a given acoustic environment. The second measure is the clusterpurity, de�ned as the percentage of frames in the given cluster associated with the most representedspeaker in the cluster. (A similar measure was proposed in [1], but at the segment level.) The table showsthe weighted average cluster purities for the 4 shows. On average 96% of the data in a cluster comesfrom a single speaker. When clusters are impure, they tend to include speakers with similar acousticconditions. The \best cluster" coverage is a measure of the dispersion of a given speaker's data acrossclusters. We averaged the percentage of data for each speaker in the cluster which has most of his/herdata. On average, 80% of the speaker's data goes to the same cluster. In fact, this average value is a bitmisleading as there is a large variance in the best cluster coverage across speakers. For most speakers thecluster coverage is close to 100%, i.e., a single cluster covers essentially all frames of their data. However,for a few speakers (for whom there is a lot of data), the speaker is covered by two or more clusters, eachcontaining comparable amounts of data.
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Fig. 3. Word decoding.3 Transcribing Partitioned BN DataThe speech recognizer uses continuous density HMMs with Gaussian mixture for acoustic modeling andn-gram statistics estimated on large text corpora for language modeling[4]. For acoustic modeling, 39cepstral parameters are derived from a Mel frequency spectrum estimated on the 0-8kHz band (0-3.5kHzfor telephone speech models) every 10ms. The LPC-based cepstrum coe�cents are normalized on asegment cluster basis using cepstral mean removal and variance normalization. Each resulting cepstralcoe�cient for each cluster has a zero mean and unity variance. Each context-dependent phone model isa tied-state left-to-right CD-HMM with Gaussian mixture observation densities (about 32 components)where the tied states are obtained by means of a phonemic decision tree. Gender-dependent acousticmodels were built using MAP adaptation of SI seed models for wideband and telephone band speech[3].Word recognition is performed in three steps: 1) initial hypothesis generation, 2) word graph generation,3) �nal hypothesis generation, each with two passes. The initial hypothesis are used in cluster-basedacoustic model adaptation using the MLLR technique[10] prior to word graph generation and in allsubsequent decoding passes. The �nal hypothesis is generated using a 4-gram, optionally interpolatedwith a category trigram model with automatically generated word classes[8].The acoustic models were trained on about 150 hours of Broadcast News data. Language models wereobtained by interpolation of backo� n-gram language models trained on di�erent data sets: BN transcrip-tions, NAB newspapers and AP Wordstream texts prior to Sep95 and after July96, and transcriptions ofthe BN acoustic training data. The interpolation coe�cients of these 4 LMs were chosen so as to minimizethe perplexity on the Nov96 and Nov97 evaluation test sets. The recognition vocabulary contains 65122words and has a lexical coverage of over 99% on the Nov98 evaluation test data. The pronunciations arebased on a 48 phone set (3 of them are used for silence, �ller words, and breath noises). A pronunciationgraph is associated with each word so as to allow for alternate pronunciations, including optional phones.Compound words for about 300 frequent word sequences subject to reduced pronunciations were includedin the lexicon as well as the representation of frequent acronyms as words.The word decoding procedure is shown in Figure 3. Prior to decoding, segments longer than 30s arechopped into smaller pieces so as to limit the memory required for the trigram decoding pass[4]. To doso a bimodal distribution is estimated by �tting a mixture of 2 Gaussians to the log-RMS power for allframes of the segment. This distribution is used to determine locations which are likely to correspond topauses, thus being reasonable places to cut the segment. Cuts are made at the most probable pause 15s to30s from the previous cut. Word recognition is performed in three steps: 1) initial hypothesis generation,2) word graph generation, 3) �nal hypothesis generation, each with two passes.The �rst step, carried out in two passes, generates initial hypotheses which are used for cluster-basedacoustic model adaptation. The �rst pass of this step generates a word graph using a small bigrambacko� language model and gender-speci�c sets of 5416 position-dependent triphones with about 11500tied states. This is followed by a second decoding pass with a larger set of acoustic models (27506 triphones



Audio Partitioning and Transcription for Broadcast Data Indexation 5with 11500 tied states) and a trigram language model (about 8M trigrams and 15M bigrams) to generatethe hypotheses. Band-limited acoustic models are used for the telephone speech segments.The second step generates accurate word graphs. Unsupervised acoustic model adaptation (bothmeans and variances) is performed for each segment cluster using the MLLR technique[10]. The meanvectors are adaptated using a single block-diagonal regression matrix, and a diagonal matrix is used toadapt the variances. Each segment is decoded �rst with a bigram language model and an adapted versionof the small set of acoustic models, and then with a trigram language model (including 8M bigrams and17M trigrams) and an adapted version of the larger acoustic model set.The �nal hypothesis is generated using a 4-gram interpolated with a category trigram model with 270automatically generated word classes[8]. The �rst pass of this step uses the large set of acoustic modelsadapted with the hypothesis from Step 2, and a 4-gram language model. This hypothesis is used to adaptthe acoustic models prior to the �nal decoding step with the interpolated category trigram model.In Table 2 reports the word recognition results on the eval test sets from the last three years. All of oursystem development was carried out using the eval96 data. The results shown in bold are the o�cial NISTscores obtained by the di�erent systems. In Nov97 our main development e�ort was devoted to movingfrom a partitioned evaluation to the unpartitioned one. The Nov97 system[5] did not use focus-conditionspeci�c acoustic models as had been used in the Nov96 system[4]. This system nevertheless achieved aperformance improvement of 6% on the eval96 test data. The Nov98 system[6] has more accurate acousticand language models, and achieves a relative word error reduction of over 20% compared to the Nov97system. Test set (Word Error)System Eval96 Eval97 Eval98Nov96 system 27.1*Nov97 system 25.3 18.3Nov98 system 19.8 13.9 13.6Table 2. Summary of BN transcription word error rates. *Only the Nov96 system used a manual partition. Allother results are with an automatic partition.4 Experiments with Spoken Document RetrievalOne of the main motivations for automatic processing of the audio channels of broadcast data is to serveas a basis for automatic disclosure and indexation for information retrieval purposes. While in traditionalIR tasks, the result is an ordered set of related documents, for spoken document retrieval (SDR) the resultis a rank-ordered set of pointers to temporal excerpts[2]. SDR supports random access to relevant portionsof audio documents, reducing the time needed to locate recordings in large multimedia databases.We have assessed the performance in spoken document retrieval using state-of-the-art speech recog-nition technology. These results were obtained using hidden Markov models, with Porter stemming[12]and blind feedback, as proposed by [11]. Speci�cally we compare retrieval performance on automaticallygenerated transcripts with manually produced transcripts1 using the SDR'98 TREC-7 data. This dataconsists of about 100 hours of radio and television broadcasts (1997 LDC Hub4 Broadcast News corpus)and contains about 2800 stories with known boundaries. The ordered list of retrieved stories was scoredusing the TREC-EVAL scoring software and the NIST reference assessments. Using the automaticallygenerated transcripts our system obtains a Mean Average Precision[2] of 0.47, which is not much less thanthe Mean Average Precision of 0.52 using the manual reference transcripts. An even smaller di�erencehas been obtained using the TNO retrieval system (see [9]).5 Summary & DiscussionIn this paper we have presented our recent research in partitioning and transcribing televison and radiobroadcasts. These are neccessary processing steps to enable automated processing of the vast amounts ofaudio and video data produced on a daily basis. The data partitioning algorithm makes use of Gaussian1 Here we do not consider di�erences in retrieval from text sources and audio materials.



6 Gauvain Lamel Addamixture models and an iterative segmentation and clustering procedure. The resulting segments arelabeled according to gender and bandwidth using 64-component GMMs. The speech detection frameerror is less than 4%, and gender identi�cation has a frame error of 1%. Many of the errors occur at theboundary between segments, and can involve silence segments which can be considered as with speech ornon-speech without in
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