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Abstract. This paper summarizes the LIMSI participation in the
CLEAR’06 acoustic speaker identification task that aims to identify
speakers in CHIL seminars via the acoustic channel. The system con-
sists of a standard Gaussian mixture model based system similar to
systems developed for the NIST speaker recognition evaluations and in-
cludies feature warping of cepstral coefficients and MAP adaptation of a
Universal Background Model. Several computational optimizations were
implemented for real-time efficiency: stochastic frame subsampling for
training, top-Gaussians scoring and auto-adaptive pruning for the tests,
speeding up the system by more than a factor of ten.

1 Introduction

The European Integrated Project CHIL1 is exploring new paradigms for human-
computer interaction and developing user interfaces which can track and identify
people and take appropriate actions based on the context. One of the CHIL ser-
vices aims to provide support for lecture and meeting situations, and automatic
person identification is obviously a key feature of smart rooms. CHIL has sup-
ported the CLEAR’06 evaluation, where audio, video and multi-modal person
identification tasks were evaluated in the context of CHIL seminars. Our work at
LIMSI focuses on the acoustic modality. The CLEAR’06 acoustic speaker iden-
tification task is a text-independent, closed-set identification task with far-field
microphone array training and test conditions. Enrollment data of 15 and 30
seconds are provided for the 26 target speakers and test segment durations of 1,
5 10 and 20 seconds are considered [5].

This paper describes the LIMSI acoustic speaker identification system, evalu-
ated in the CLEAR’06 benchmark. The system is a standard GMM-UBM system
based on technology developed for use in NIST speaker recognition evaluations.
In the next section, the LIMSI speaker recognition system is presented along with
specific computation optimizations that were developed for this system. Section
3 gives experimental results on the CLEAR development data and evaluation
data.
� This work was partially financed by the European Commission under the FP6 Inte-

grated Project IP 506909 Chil.
1 CHIL – Computers in the Human Interaction Loop, http://chil.server.de/
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2 Speaker Recognition System

In this section, the LIMSI speaker recognition system and several computational
optimizations that were implemented for real-time efficiency are described.

2.1 Front-End

Acoustic features are extracted from the speech signal every 10ms using a 30ms
window. The feature vector consists of 15 PLP-like cepstrum coefficients com-
puted on a Mel frequency scale, their Δ and Δ-Δ coefficients plus the Δ and
Δ-Δ log-energy for a total of 47 features. Ten percent of the frames with the
lowest energy are filtered out, on the assumption that they carry less informa-
tion characteristic of the speaker. No speech activity detection (SAD) module is
used in this configuration since silences longer than one second according to the
reference transcriptions are a priori removed from evaluation data.

Feature warping [6] is then performed over a sliding window of 3 seconds, in
order to map the cepstral feature distribution to a normal distribution and reduce
the non-stationary effects of the acoustic environment. In the NIST speaker
recognition evaluations, feature warping was shown to outperform the standard
cepstral mean substraction (CMS) approach [1].

2.2 Models and Identification

A Gaussian mixture-model (GMM) with diagonal covariance matrices is used
as a gender-independent Universal Background Model (UBM). For each target
speaker, a speaker-specific GMM is trained by Maximum A Posteriori (MAP)
adaptation [3] of the Gaussian means of the UBM. The GMM-UBM approach
has proved to be very successful for text-independent speaker recognition, since
it allows the robust estimation of the target models even with a limited amount
of enrollment data [7]. During the identification phase, each test segment X is
scored against all targets λk in parallel and the target model with the highest
log-likelihood is chosen: k∗ = argmaxk log f(X |λk).

2.3 Optimizations

In the CHIL framework, target model training and speaker identification need to
be performed efficiently, in faster than real-time for realistic configurations. Several
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optimizations have thus been implemented addressing training and scoring com-
putational requirements.

Stochastic Frame Subsampling. For speaker recognition, the reduction of
the number of frame by a decimation factor up to 10 on the test segment only
results in a limited loss of accuracy [4]. This can be explained by the high cor-
relation of neighboring frames and the fact that a temporal context of several
frames is already taken into account by the delta and delta-delta coefficients. It
can be also of interest to speed up the training of the models. The UBM needs
to account for the largest possible speaker variability in the acoustic context
of the application; but the amount of training data needs to be put in relation
with the number of parameters in the UBM. For training a GMM with diagonal
covariance matrices, a few hundred frames per Gaussian should be enough for a
reliable estimation of the means and variances. A possible solution can be a fixed
rate subsampling as described above; in this situation, a subset of the frames
is selected once for all. We have experimented with another schema. For each
Expectation-Maximization (EM) iteration of the GMM reestimation, a random
selection of frames is applied according to a target ratio. This way, each frame
can possibly impact the training. Also, if we train the GMM using a splitting
algorithm starting with a single Gaussian, the stochastic frames sampling dra-
matically speeds up the initial training phases by adapting the number of frames
to the number of components.

Top-Gaussian Scoring. The top-Gaussian scoring is an optimization used for
speaker verification in the context of the parallel scoring of a set of target models
MAP-adapted from the same GMM-UBM [4]. For each frame, the top scoring
components of the UBM are selected; then the log-likelihood estimation for all
target models is restricted to the same set of components. The speedup increases
along with the size of the models and with the number of target speakers.

Auto-Adaptive Pruning. During scoring, it is usual to exclude models with
a too low likelihood relative to the best current hypothesis. However in the
context of top-Gaussian scoring, the computation is dominated by the UBM
initial likelihood estimation and a reduction in the number of target candidates
only provides a minor improvement; the major gain is observed when a single
model remains and the end of the test segment can thus be discarded. Taking an
early decision about the current speaker is also of interest in the context of an on-
line system as required for some CHIL applications. In this situation, an a priori
fixed threshold is not precise enough for such an aggressive pruning because of
the acoustic variability. We have thus implemented an auto-adaptive pruning,
which takes into account the distribution of the best hypothesis log-likelihood:

– at each frame xt, for each model λk, compute its cumulated log-likelihood:
lk(t) = 1

t log f(x1 . . . xt|λk)
– choose the best cumulated score up to the current frame: l∗(t) = maxk lk(t)
– compute the statistics (μl(t),σl(t)) of l∗(t) with an exponential decay factor

α ∈]0; 1] in order to focus on the most recent acoustic context:
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μl(t) =
1

∑t
i=0 αi

t∑

i=0

αil∗(t− i) and σl(t)2 =
1

∑t
i=0 αi

t∑

i=0

αil∗2(t− i)−μl(t)2

– initialize l∗(t) on a minimal count dminof a few tens to a few hundreds frames
– during scoring, cut model λk if lk(t) < μl(t) − λ(t)σl(t) with the standard

deviation factor λ(t) either constant or decreasing in time.

3 Experiments

In this section the experimental conditions are described, and the impact of
the optimization and development work using the CHIL’05 evaluation data are
given. Results on the CLEAR’06 evaluation data are also provided.

3.1 Experimental Setup

Seminars recorded for the CHIL project were used for building the system. All
processing were performed on 16 kHz, 16 bits single channel audio files in far-field
microphone condition. CHIL jun’04 data (28 segments from 7 seminars recorded
by UKA for a total of 140 min.) and dev’06 data (another 140 min. from UKA
plus 45 min. from AIT, IBM and UPC partners) were used for training a generic
speaker model. Beamformed data were supplied by our CHIL partner ISL/UKA
for both the jun’04 and dev’06 data sets. The data from CHIL 2005 speaker
identification evaluation (jan’05) was used for the development of the system.
For CLEAR’06 evaluation data, the 64 channels of a MarkIII microphone array
were provided. However, only the 4th channel of the MarkIII microphone array
as extracted and downsampled to 16kHz by ELDA was used.

A gender-independent UBM with 256 Gaussians was trained on speech ex-
tracted from jun’04 and dev’06 CHIL data. The amount of data was limited to
2 min. per speaker in order to increase the speaker variability in the UBM, for
a total duration of about 90 min. Target models were MAP-adapted using 3
iterations of the EM algorithm and a prior factor of 10. Computation times were
estimated on a standard desktop PC/Linux with a 3GHz Pentium 4 CPU and
are expressed in Real-Time factor (xRT) when relevant.

3.2 Optimization Results

The effect of the stochastic frame subsampling was studied on the 90 min. of
training data, which account for d � 500.000 frames after filtering of low-energy
frames. With M = 256 components in the GMM and f = 200 frames kept in av-
erage per Gaussian, the gain relative to the standard training using all the frames
at each step of the EM estimation is: g(f) = d

M∗f = 500.000/(256 ∗ 200) ≈ 10.
Figure 2 shows the likelihood of the UBM on the training data as a function
of the computation time for the stochastic subsampling with an average count
of 200 frames per Gaussian, compared to the standard training and to a fixed-rate
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subsampling with the corresponding 10% ratio; it was obtained by varying the
number of EM iterations from 1 to 9. For a given computation time, the sto-
chastic subsampling outperforms the standard training, and also the fixed-rate
decimation, due to the faster initialization procedure. For a given EM itera-
tion count, we also observed that the stochastic subsampling even outperforms
the full training up to 5 EM iterations, and the fixed-rate subsampling in all
configurations.
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Fig. 2. Likelihood of UBM on training data as a function of computation time and
of EM iteration count for standard training, stochastic subsampling and fixed-rate
subsampling

The scoring was performed with the top Gaussians. With M = 256 compo-
nents in the GMMs, T = 10 top components and N = 26 target models, the
gain in computation is g(T ) = M∗N

M+T∗N = (256 ∗ 26)/(256 + 10 ∗ 26) ≈ 13. The
pruning with α = 0.995, dmin = 200 frames and λ(t) linearly decreasing from
4 to 2 along the test segment, brings an addition factor of 2 speed-up for the
5-20 sec. test conditions, with no difference on the development results. Figure 3
illustrates the evolution of the auto-adaptive pruning threshold on a test sample,
in a case where an impostor provides a better likelihood than the true speaker
at the beginning of the segment.

Overall, the cepstral features were computed at 0.1xRT. Target model adap-
tation was performed at 0.1xRT, and test identification at 0.08xRT down to
0.04xRT with pruning.

3.3 Developments Results

Developments were conducted on CHIL’05 Speaker Identification evaluation data-
base, restricted to the microphone array matched condition, for the 30 seconds
training condition and 1 to 30 seconds test segments. These are the most simi-
lar to CLEAR’06 conditions, despite the use of only 11 target speakers instead
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Fig. 3. Example of the evolution of the auto-adaptive pruning threshold during the
recognition of a test segment

of 26. Results of LIMSI’05 system for CHIL’05 evaluation under these restricted
conditions are reported Table 1. The system used an UBM with 2048 Gaussians
trained on meeting data from various sources (ICSI, ISL, NIST) recorded using
close-talkingmicrophones, and cepstral mean and variance normalization was per-
formed instead of feature warping [8]. The LIMSI’06 system provides a dramatic
improvement for all segment durations, due mainly to better matched training
data for the UBM. Contrastive experiments on feature normalization show that
mean and variance normalization very significantly improve upon standard CMS,
while feature warping is still slightly better. Other improvements to the system
were mainly computation optimizations which do not show into the recognition
scores.

3.4 CLEAR’06 Evaluation

Table 2 reports the LIMSI results for the CLEAR’06 evaluation. Note that for a
few hundred trials, the precision of the identification error rates remain limited

Table 1. Identification error rates on the CHIL’05 Speaker Identification task restricted
to microphone-array matched conditions, for the LIMSI’05 and the LIMSI’06 system
associated with different feature normalizations

Test duration 1 second 5 seconds 10 seconds 30 seconds
# trials 1100 682 341 110

LIMSI’05 52.8 11.3 4.7 0.0
LIMSI’06 with CMS 33.4 5.6 1.8 0.9

LIMSI’06 with mean+variance 30.5 2.3 0.6 0.0
LIMSI’06 with feature warping 29.6 2.6 0.0 0.0
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Table 2. LIMSI’06 system error rates for CLEAR’06 Acoustic Speaker Identification
task

Test duration 1 second 5 seconds 10 seconds 20 seconds
# trials 613 411 289 178

Train A (15 seconds) 51.7 10.9 6.6 3.4
Train B (30 seconds) 38.8 5.8 2.1 0.0
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Fig. 4. LIMSI’06 system identification error rates by training and test duration for
CLEAR’06 Acoustic Speaker Identification task

to ∼ 1%. The difference in speaker count does not allow a direct comparison
with development results, but we can observe that the trends are similar. We
observe especially high error rates on 1 sec. test segments. The effect of training
and test durations are illustrated on a log-log scale in Figure 4.

4 Conclusions

The LIMSI CLEAR’06 system provides an over 50% relative reduction of the
error rate compared to CHIL’05 Speaker Identification LIMSI results for a com-
parable configuration (matched array condition, 30 sec. training, 5 and 10 sec.
test). Several optimizations were implemented and provided 10–20 acceleration
factor in model training and speaker identification. The stochastic subsampling
was shown to perform very efficiently compared to other existing approaches.
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With the current system, no errors were measured for 30 sec. training and 20
sec. test segments; a larger test database would be necessary to increase the
precision of the measure. However, identification rate of 1 second test segments
remains poor compared to other results in the CLEAR’06 evaluation; our system
would need specific tuning for very short segments.
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