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Abstract. The CLEAR 2007 acoustic speaker identification task aims
to identify speakers in CHIL seminars via the acoustic channel. The
LIMSI system for this task consists of a standard Gaussian mixture
model based system working on cepstral coefficients, with MAP adapta-
tion of a Universal Background Model (UBM). It builds upon the LIMSI
CLEAR’06 system with several modifications: removal of feature normal-
ization and frames filtering, and pooling of all speaker enrollment data
for UBM training. The primary system uses a beamforming of all audio
channels, while a single channel is selected for the contrastive system.
This latter system performs the best and improves the baseline system
by 50% relative for the 1 second and 5 seconds test conditions.

1 Introduction

Automatic person identification is a key feature of smart rooms, and in this
context the European Integrated Project CHIL1 has supported the CLEAR’06
and ’07 evaluations, where audio, video and multi-modal person identification
tasks were evaluated on CHIL seminars. Our work at LIMSI focuses on the
acoustic modality. Similar to last year, the CLEAR’07 acoustic speaker identi-
fication task is a text-independent, closed-set identification task with far-field
microphone array training and test conditions. Enrollment data of 15 and 30
seconds are provided for the 28 target speakers and test segment durations of 1,
5 10 and 20 seconds are considered2.

This paper describes the LIMSI acoustic speaker identification system, eval-
uated in the CLEAR’07 benchmark. The system is a standard GMM-UBM sys-
tem building on the LIMSI CLEAR’06 developments [2]. In the next section,
the LIMSI speaker recognition system is presented. Section 3 gives experimental
results on the CLEAR development data and evaluation data.

� This work was partially financed by the European Commission under the FP6 Inte-
grated Project IP 506909 Chil

1 CHIL – Computers in the Human Interaction Loop, http://chil.server.de/
2 http://www.clear-evaluation.org/
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2 Speaker Recognition System

In this section, the LIMSI baseline speaker recognition system used in the
CLEAR’06 evaluation and the new system developed for CLEAR’07 are
described.

2.1 Baseline System

The speaker recognition system developed for the CLEAR’06 evaluation served
as the baseline system for this year’s evaluation. It is organized as follows:

Acoustic features are extracted from the speech signal every 10ms using a
30ms window. The feature vector consists of 15 PLP-like cepstrum coefficients
computed on a Mel frequency scale, their Δ and Δ-Δ coefficients plus the Δ and
Δ-Δ log-energy. Ten percent of the frames with the lowest energy are filtered
out, and short-term feature warping [4] is performed in order to map the cepstral
feature distribution to a normal distribution.

A Gaussian mixture-model (GMM) with diagonal covariance matrices is used
as a gender-independent Universal Background Model (UBM). This model with
256 Gaussians was trained on 90 min. of speech extracted from jun’04 and dev’06
CHIL data. For each target speaker, a speaker-specific GMM is trained by Max-
imum A Posteriori (MAP) adaptation [3] of the Gaussian means of the UBM.
Target models are MAP-adapted using 3 iterations of the EM algorithm and a
prior factor τ = 10. The GMM-UBM approach has proved to be very successful
for text-independent speaker recognition, since it allows the robust estimation
of the target models even with a limited amount of enrollment data [5]. Dur-
ing the identification phase, each test segment X is scored against all targets
λk in parallel and the target model with the highest log-likelihood is chosen:
k∗ = argmaxk log f(X |λk).

Several optimizations to reduce the training and scoring computational re-
quirements were implemented in the LIMSI CLEAR’06 system in order to carry
out identification efficiently, in faster than real-time for realistic configurations.
A stochastic frame subsampling was proposed for speeding up the UBM training
using a large amount of training data. For the identification stage, top-Gaussian
scoring was used, restricting the log-likelihood estimation to the 10 top scoring
out of 256 components of the UBM for each frame and resulting in a 13 times
speed up, and an auto-adaptive pruning was introduced, resulting in a further
factor of 2 speed up for long duration segments [2].

2.2 System Development for CLEAR’07

For CLEAR’06 evaluation data, only the 4th channel out of the 64 channels of the
MarkIII microphone array was used. Rather than picking a single channel, the
ICSI beamforming software [1] was applied to the 64 channels for CLEAR’07 pri-
mary submission, with the 4th channel alone being used in a contrastive system.
For beamforming, the 1st channel was used as a reference for delay estimation,
and other settings were kept identical to the default software configuration, with
a delay estimation each 250ms on a 500ms window. In both cases the signal was
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downsampled from 44kHz to 16kHz. Neither feature normalization nor frame
selection were used. Finally, the UBM was trained by pooling all speaker enroll-
ment data instead of using external data, which amounts to 7 minutes for the 15
second training condition and 14 minutes for the 30 second training condition.
All other settings were kept unchanged.

3 Experimental Results

In this section the impact of the system changes on the CLEAR’06 evaluation
and CLEAR’07 validation data are given. Both data sets were used for system
development. Results on the CLEAR’07 evaluation data are also provided for
the primary and contrastive system.

3.1 Experiments with CLEAR’06 Evaluation Data

The results of LIMSI system in CLEAR’06 Acoustic Speaker Identification evalu-
ation are reported in Table 1. The impact of two major changes in the system are
given. Discarding feature normalization and UBM training by enrollment data
pooling provide a dramatic improvement, an over 50% relative error reduction
on the 1 and 5 seconds test conditions.

Table 1. Identification error rates on the CLEAR’06 Speaker Identification task for
the LIMSI’06 submitted system and for the modified system

Test duration 1 second 5 seconds 10 seconds 20 seconds
A: LIMSI CLEAR’06 System

Train A (15 s) 51.7 10.9 6.6 3.4
Train B (30 s) 38.8 5.8 2.1 0.0

B: A + no feature normalization
Train A (15 s) 32.8 8.0 6.2 3.9
Train B (30 s) 20.1 3.4 2.4 1.1

C: B + enrollment data pooling for UBM
Train A (15 s) 25.0 4.9 4.8 2.2
Train B (30 s) 16.2 1.9 0.7 0.0

3.2 Experiments with CLEAR’07 Validation Set

Experiments were conducted using CLEAR’07 validation set in order to assess
several settings of the system. Given the size of the validation set, only test
durations of 1 and 5 seconds were considered as they provide respectively 560
and 112 samples; fewer than 100 samples were available for other test durations.

As was shown previously, the system is very sensitive to the feature normaliza-
tion. Table 2 compares the identification error rate on the validation set for cep-
stral mean substraction (CMS), mean and variance normalization (mean+var),
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Table 2. Impact of various feature normalizations (CMS, mean+variance, feature
warping and raw features) on identification errors for beamformed and single chan-
nel audio, for the CLEAR’07 validation data

Beamforming 4th channel
Normalization Train/Test duration 1 sec. 5 sec. 1 sec. 5 sec.

CMS Train A (15 s) 38.8 6.2 46.4 11.6
Train B (30 s) 28.7 3.6 38.0 4.5

mean+var Train A (15 s) 39.6 2.7 49.8 13.4
Train B (30 s) 30.2 2.7 37.7 3.6

warping Train A (15 s) 39.6 2.7 48.6 9.8
Train B (30 s) 28.6 0.9 39.6 4.5

raw Train A (15 s) 17.9 2.7 21.1 3.6
Train B (30 s) 14.1 1.8 15.5 1.8

Table 3. Impact of UBM size and MAP prior weight on identification errors on
CLEAR’07 validation data

MAP prior τ=8 τ=10 τ=12
UBM size Train/Test duration 1 sec. 5 sec. 1 sec. 5 sec. 1 sec. 5 sec.

128G Train A (15 s) 17.7 6.2 18.2 6.2 19.1 6.2
Train B (30 s) 14.8 0.9 14.6 0.9 14.6 0.9

256G Train A (15 s) 17.9 2.7 17.9 2.7 17.7 2.7
Train B (30 s) 14.3 1.8 14.1 1.8 14.5 0.9

512G Train A (15 s) 20.7 4.5 20.7 3.6 20.7 3.6
Train B (30 s) 14.3 1.8 14.1 1.8 14.3 1.8

feature warping and raw features. Avoiding any feature normalization is by far
the best. This can be explained by a very limited channel variability per speaker
in CHIL seminars. It can also be noted that better results are obtained using
beamformed audio data for all configurations.

Keeping raw features, tests were carried out varying the number of Gaussians
in the UBM (128, 256 and 512) and the MAP adaptation weights (prior factor
τ = 8, 10 and 12) on the validation set with the beamformed audio. As shown
in Table 3, the baseline configuration with 256 Gaussians and τ=10 remains a
good compromise.

In speaker identification, the GMM-UBM approach generally outperforms a
direct training of the target models via maximum likelihood estimation (MLE).
For contrastive purposes, identification performance on the validation set for
MLE-trained models with a varying number of Gaussians are given in Table 4.
The best results are obtained with 32 Gaussians for Train A (15 s) and with 64
Gaussians for Train B (30 s). These results are inferior to those obtained with
the GMM-UBM configuration.
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Table 4. Identification errors on the CLEAR’07 validation data using direct MLE
trained models with a varying number of Gaussians

Beamforming 4th channel
GMM size Train/Test duration 1 sec. 5 sec. 1 sec. 5 sec.

16G Train A (15 s) 25.4 6.2 32.1 10.7
Train B (30 s) 19.8 3.6 24.3 3.6

32G Train A (15 s) 24.6 6.2 28.2 9.8
Train B (30 s) 17.3 1.8 20.5 0.9

64G Train A (15 s) 25.2 9.8 29.8 15.2
Train B (30 s) 16.1 0.9 19.1 0.9

128G Train A (15 s) 35.4 25.0 36.1 21.4
Train B (30 s) 17.9 0.9 20.7 1.8

Table 5. Identification errors on the CLEAR’07 validation data with and without 10%
low-energy frame filtering

Beamforming 4th channel
Filtering Train/Test duration 1 sec. 5 sec. 1 sec. 5 sec.

0% Train A (15 s) 19.5 0.9 21.8 2.7
Train B (30 s) 13.0 1.8 14.3 1.8

10% Train A (15 s) 17.9 2.7 21.1 3.6
Train B (30 s) 14.1 1.8 15.5 1.8

The improvement provided by the frame selection was also assessed. Table 5
gives the identification error rate with and without 10% low energy filtering on
the validation set. Frame filtering does not seem to significantly help, except for
the 15 sec. training / 1 sec. test condition and was thus discarded from the final
2007 system.

3.3 CLEAR 2007 Evaluation Results

Table 6 reports the LIMSI results for the CLEAR’07 evaluation for the primary
and contrastive systems, along with CLEAR’06 results, on the corresponding
evaluation sets, expressed in terms of accuracy. It can be observed that data
beamforming, which was effective on validation set, did not work as expected in
the test condition. There may be some differences between validation and test
data, and the settings of the beamforming were not optimized on the specific
task configuration: given that a single speaker can be expected to be found in a
segment, a single delay estimation on the whole segment between the reference
and the other channels, as was done in [6], may have been a better choice.

There is less degradation for the contrastive system between the validation
and test phases, between 25 and 30% relative. In CLEAR’06 evaluation, LIMSI
system had rather low identification rates on 1 sec. test segments, below 50% for
15 seconds training and near 60% for 30 seconds training. In CLEAR’07 con-
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Table 6. Accuracy rates for the LIMSI CLEAR’06 and ’07 Acoustic Speaker Identifi-
cation task on their respective evaluation data sets

Test duration 1 second 5 seconds 10 seconds 20 seconds
’06 Primary

Train A (15 seconds) 48.3 89.1 93.4 96.6
Train B (30 seconds) 61.2 94.2 97.9 100.0

’07 Primary (beamforming)
Train A (15 seconds) 62.4 90.8 93.8 97.3
Train B (30 seconds) 69.4 92.2 95.1 95.5

’07 Contrastive (4th channel)
Train A (15 seconds) 75.0 94.9 96.9 98.2
Train B (30 seconds) 80.0 96.2 97.3 98.2

 50

 20

 10

 5

 2

 20 10 5 1

Id
en

tif
ic

at
io

n 
er

ro
r 

ra
te

 (
lo

g-
sc

al
e)

Test duration in seconds (log-scale)

’06 system, A (15 sec.)
’06 system, B (30 sec.)

’07 contrastive, A (15 sec.)
’07 contrastive, B (30 sec.)

Fig. 1. Identification error rates by training and test duration for LIMSI ’06 and ’07
contrastive systems for CLEAR Acoustic Speaker Identification task

trastive system, these figures have been increased to 75% and 80% respectively.
Both evaluations having a similar number of speakers (28 in CLEAR’07 vs. 26
in CLEAR’06), this allows a direct comparison of the results. Figure 1 shows
the improvement between the LIMSI ’06 and ’07 systems, as a function of the
training and test durations in a log-log scale.

4 Conclusions

LIMSI submitted two systems to the CLEAR’07 Acoustic Speaker Identification
task. The contrastive system provides a 50% relative reduction of the error rate
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compared to previous year results for the 1 and 5 seconds test conditions, re-
sulting in 75% and 80% identification rate for 15 and 30 second training data,
respectively.

This improvement is mainly due to modifications in the cepstral feature nor-
malization step and in the UBM training. Feature warping usually improves
speaker identification in telephone speech domain, and is also of interest for
speaker diarization in broadcast news and meetings. However, discarding any
feature normalization proved to be the most successful choice. This may be be-
cause a given speaker was generally recorded in a stable acoustic configuration
for this evaluation. Training the UBM by pooling all enrollment data was cho-
sen instead of using other available training data. This can only be considered
in a closed-set speaker identification context, where the set of possible impostors
is fully known in advance. This configuration also outperformed a direct MLE
training of the target models.

The primary system, taking advantage of a beamforming of all available 64
channels, performs substancially less well than the contrastive system where
only a single channel is selected. This observation is different from the behavior
of both systems observed on the validation data, where beamforming always
outperformed a single channel. But the beamforming settings we used were not
optimized for an array of distant microphones and for the specific evaluation
conditions, so there is probably still room for system improvement in this area.

In conclusion, the CLEAR’07 has provided better insight into the speaker
identification goals and constraints in the seminar meeting domain. This resulted
in a dramatic improvement of the performances of our system for the short test
conditions.
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