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LARGE VOCABULARY

SPEECH RECOGNITION

BASED ON STATISTICAL

METHODS

Introduction

Speech recognition is concerned with converting the speech waveform, an

acoustic signal, into a sequence of words. Today's most performant approaches

are based on a statistical modelization of the speech signal. The chapter pro-

vides an overview of the main topics addressed in large vocabulary speech

recognition, that is acoustic-phonetic modeling, lexical representation, lan-

guage modeling, decoding and model adaptation. Only a few years ago speech

recognition was primarily associated with a limited number of applications:

small vocabulary isolated word recognition or phrases, mid-sized vocabulary

domain speci�c spoken language systems, and dictation systems (often for

speci�c user groups). For the last decade large vocabulary, continuous speech

recognition (LVCSR) has been one of the focal areas of research in speech

recognition, serving as a test bed to evaluate models and algorithms.

This chapter focuses on methods used in state-of-the-art speaker-independent,

large vocabulary continuous speech recognition. Some of the primary applica-

tion areas for LVCSR technology are dictation, spoken language dialog, and

transcription systems for information archival and retrieval. After providing

an overview of LVCSR, detailed discussions of statistical methods for each of

the system components are given. Some outstanding issues and directions of

future research are discussed.
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Figure 1.1 LVCSR speech generation model: The word sequence W produced

by the language model is successively transformed by the pronunciation model

(P (HjW )) and the acoustic model (f(XjH;W )), resulting in the speech signal X.

LVCSR Overview

From a statistical point of view, speech is assumed to be generated by a

language model which provides estimates of Pr(W ) for all word strings W =

(w

1

; w

2

; :::) and an acoustic model encoding the message W in the signal X,

represented by a probability density function f(XjW ). The goal of speech

recognition is generally de�ned as �nding the most likely word sequence given

the observed acoustic signal. The speech decoding problem thus consists of

maximizing the probability of W given the speech signal X, or equivalently,

maximizing the product Pr(W )f(XjW ).

LVCSR systems use acoustic units corresponding to phone or phone-in-

context units,

1

where each word is described by one or more phone transcrip-

tions. Assuming that the speech signal X depends only on the underlying

phone sequence H = (h

1

; h

2

; :::), then the expression f(XjW ) can be rewrit-

ten as

P

H

Pr(HjW )f(XjH) where the summation is taken over the set pro-

nunciations corresponding to the word sequence W . (In practice the set is

reasonably small as the average number of pronunciation variants per word

is less than 2.) The underlying speech generation model is illustrated in Fig-

ure 1.1. The word sequence produced by the language model is successively

transformed by two transducers, the pronunciation model and the acoustic

model, to yield the audio signal.

This formulation of the LVCSR problem leads to the following 4 main con-

siderations:

� the language modeling problem, i.e. computing the a priori probabil-

ity Pr(W ). This is usually estimated from n-gram frequencies in text

corpora and transcriptions of speech data,

� the pronunciation modeling problem, i.e. the computation of Pr(HjW ),

which relies on a pronunciation dictionary and may include estimates of

the word pronunciation probabilities,

1

In this chapter the term phone is used instead of phoneme (refering to the elementary and

distinctive sounds in the language) or phonetic (the observed realization of the elementary

sounds). Contextual phone units (phone-in-context) implicitly model what can be consider

allophones, i.e. contextual variants of the underlying phoneme.
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Figure 1.2 System diagram of a generic speech recognizer based on statistical

models, including training and decoding processes and the main knowledge sources.

� the acoustic modeling problem, i.e. determining the structure of the

probability density function f(XjH) and estimating its statistical pa-

rameters from speech samples. The most predominant approach uses

continuous density hidden Markov models (HMM) to represent context-

dependent phones.

� the search problem, i.e. determining the best word hypothesis for the

speech data given the models. This is a big challenge for LVCSR due to

the large vocabulary and language model sizes.

The principles on which most state-of-the-art LVCSR systems are based

have been known for many years now, and include the application of the

communication theory to speech recognition[11, 78, 79], the use of a spectral

representation of the speech signal[38, 39], the use of dynamic programming

for decoding [166, 167], and the use of context-dependent acoustic models [28,

100, 153]. Despite the fact that some of these techniques were proposed well

over a decade ago, considerable progress has been made in recent years in

part due to the availability of large speech and text corpora, and improved

processing power which have allowed more complex models and algorithms to

be implemented. Compared with the state-of-the-art technology a decade ago,

advances in acoustic modeling and model adaptation have enabled reasonable

performance to be obtained on various data types and acoustic conditions.

The main components of a generic speech recognition system are shown in

Figure 1.2. The elements shown are the main knowledge sources (speech and
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textual training materials and the pronunciation lexicon), the feature analysis

(or parameterization), the acoustic and language models which are estimated

in a training phase, and the decoder. The remainder of this chapter is devoted

to discussing these main constituents and knowlegde sources.

Language modeling

Language models (LMs) capture regularities in spoken language and are used

in speech recognition to estimate the probability of word sequences. Gram-

matical constraints can be described using a context-free grammars (for small

to medium size vocabulary tasks these are usually manually elaborated) or

can be modeled stochastically, as is common for LVCSR. The most popular

statistical methods are n-gram models, which attempt to capture the syntac-

tic and semantic constraints by estimating the frequencies of sequences of n

words. The assumption is made that the probability of a given word string

W = (w

1

; w

2

; :::; w

k

) can be approximated by the following forward sequential

decomposition

P (W ) =

k

Y

i=1

Pr(w

i

jw

i�n+1

; :::; w

i�2

; w

i�1

)

therefore reducing the word history to the preceding n � 1 words. It should

be noted that other decompositions of P (W ) can also be appropriate, for

example, a backward decomposition will lead to a backward n-gram model.

A prerequisite for estimating n-gram language models is the availability of

appropriately processed text corpora. As can be seen in Figure 1.2, language

models are usually estimated from manual transcriptions of speech corpora

and from normalized text corpora. To ensure accurate models, the texts

should be as representative as possible of the expected audio input to be

transcribed. Text preparation entails locating appropriate sources of text data

and audio transcriptions, and processing them in a homogeneous manner. The

recognizer vocabulary (also called word list) is selected usually with the goal of

maximizing lexical coverage, and the n-gram probabilities are estimated using

appropriate smoothing techniques. Language models are generally optimized

and compared by measuring the likelihood of a set of left out data, referred to

as LM development texts or development data. The relevance of a language

model in terms of test set perplexity is de�ned as:

Px(T jM ) = P (T jM )

�

1

L

' (

L

Y

i=1

P (w

i

jw

i�2

; w

i�1

))

�

1

L

for a given text T = (w

1

; :::; w

L

) and a language model M . P (T jM ) denotes

the language model estimate of the text probability. The test set perplexity

depends on both the language being modeled and the model, i.e., it gives

a combined estimate of how good model is and how complex the language
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is [79]. If the text set is representative of the model, the perplexity can be

seen as a measure of the average branching factor, i.e. the vocabulary size

of a memoryless uniform language model with same entropy as the language

model under consideration.

Text preparation

Although ideal language model training data would consist of large corpora

of transcribed audio data for a particular task, in practice such data are

di�cult to obtain. Therefore a variety of other more or less closely related

text materials are usually used for language model training.

Given a large text corpus it may seem relatively straightforward to construct

n-gram language models. Most of the steps are pretty standard and make

use of tools that count word and word sequence occurrences [29]. The main

di�erences arise in the choice of the vocabulary and in the de�nition of words,

such as the treatment of compound words or acronyms, and the choice of the

back-o� strategy. There is, however, a signi�cant amount of e�ort needed to

process the texts before they can be used.

One motivation for normalization is to reduce lexical variability so as to

increase the coverage for a �xed size task vocabulary. Normalization deci-

sions are generally language-speci�c. Much of speech recognition research

for American English has been supported by ARPA and has been based on

text materials which were processed to remove upper/lower case distinction

and compounds. Thus, for instance, no lexical distinction is made between

Rich, rich or Brown, brown. In the French Le Monde corpus, capitalization

of proper names is distinctive with di�erent lexical entries for Pierre (proper

name), pierre (stone) or Roman (proper name), roman (novel).

The main conditioning steps are text mark-up and conversion. Text mark-

up consists of tagging the texts (article, paragraph and sentence markers)

and garbage bracketing (which includes not only corrupted text materials,

but all text material unsuitable for sentence-based language modeling, such

as tables and lists). Numerical expressions and dates are typically expanded

to approximate the spoken form and to reduce the lexical variety ($150 !

one hundred and �fty dollars, 1991 ! nineteen ninety one or one thousand

nine hundred and ninety one). Further semi-automatic processing is necessary

to correct frequent errors inherent in the texts (such as obvious mispellings

milllion, o�cals) or arising from processing with the distributed text process-

ing tools. Some normalizations can be considered as \decompounding" rules

in they modify the word boundaries and the total number of words. These

concern the processing of ambiguous punctuation markers (such as hyphen

and apostrophe), the processing of digit strings, and treatment of abbrevia-

tions and acronyms (ABCD! A. B. C. D.). While such expansions increase

lexical coverage in some languages such as English and French, in German, the

standard written form of the dates are formed by aggluinating the component

words. For example, 1991 is written as neunzehnhunderteinundneunzig. De-
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hundred<nb> =) hundred and<nb> (0.50)

one eighth =) an eighth (0.50)

corporation =) corp. (0.29)

incorporated =) inc. (0.22)

one hundred =) a hundred (0.19)

million dollars =) million (0.15)

billion dollars =) billion (0.15)

Figure 1.3 Some example transformation rules applied during text normalization

with associated probabilities.

compounding rules can be used to transform this date into the word sequence

neunzehn hundert ein und neunzig, thereby reducing lexical variety. Depend-

ing upon the target application, the recognizer hypotheses may need to be

mapped to a more appropriate written form. Other normalizations (such as

sentence initial capitalization and case distinction) keep the total number of

words unchanged, but reduce graphemic variability. In general the choice is

a compromise between producing an output close to correct standard written

form of the language and lexical coverage, with the �nal choice of normaliza-

tion being largely application-driven.

Better models of spoken language can be obtained by transforming text

data to be closer to an oral form. In the case of read speech corpora, such as

can be used for dictation tasks, the transformation rules and corresponding

probabilities can be automatically derived by aligning transcriptions with the

printed text form. Some example transformations are shown in Figure 1.3

along with the rule probabilites. For example, the word hundred followed

by a number can be replaced by hundred and 50% of the time; 50% of the

occurences of one eighth are replaced by an eighth, and 15% of the sequence

million dollars are replaced with simply the word million [58].

Vocabulary selection

In practice, the selection of words is done so as to minimize the system's out-

of-vocabulary (OOV) rate by including the words which are expected to be

most frequent in the input. These words must also be su�ciently frequent

in the available text corpora in order to be able to train a language model.

This condition is usually met by choosing the N most frequent words in the

training data. This criterion does not, however, guarantee the usefulness of

the vocabulary, since no consideration of the expected input is made. It is

therefore common practice to use the LM development data to select a word

list adapted to the expected test conditions.

Judicious selection of the development data is important in order to ensure

high lexical coverage on the test material. The best lexical coverage may be

obtained by selecting the vocabulary using only a subset of the training data
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(such as the most recent data or data on a given topic) instead of using all

the available data [24, 58]. On average, each OOV word causes more than

a single error, with rates of 1.6 to 2.0 additional errors reported [131]. An

obvious way to reduce the error rate due to OOVs is to increase the size of

the lexicon. Increasing the lexicon size to 64 k or more words has been shown

to improve performance, despite the potential of increased confusability of

the lexical entries [58], so in contradiction to the widely held belief, larger

vocabulary does not imply higher word error rates if a proper language model

is used.

N-gram Estimation

Using the maximum likelihood (ML) criterion, the n-gram probabilities can

be estimated from the frequencies of the word sequences of length n in the

training corpus (texts or speech transcriptions). For example, the ML estimate

of the trigram probability is given by:

P (w

i

jw

i�2

; w

i�1

) =

C(w

i�2

; w

i�1

; w

i

)

C(w

i�2

; w

i�1

)

where C(�) is the number of times the n-gram appears in the training data.

However, obtaining reliable probability estimates requires multiple observa-

tions of the n-gram. This requirement is usually met by only modeling word

sequences that occur at least a minimal count number of times.

Estimating the n-gram probabilities requires su�cient quantities of repre-

sentative text materials. For large vocabulary sizes, many of the possible

n-grams will not occur in even a very large training corpus. Therefore esti-

mates that rely on counts of observed n-grams will be unable to predict many

possible word sequences, and due to the sparseness of the data, the maximum

likelihood estimates are inadequate and need to be smoothed. Di�erent ap-

proaches have been investigated to smooth the estimates of the probabilities of

rare n-grams [26, 89]. The most commonlyused approach is to apply a back-o�

mechanism [85] which relies on a lower order n-gram when there is insu�cient

training data. The back-o� also provides a means of modeling unobserved

word sequences. For example, if there is not enough data to obtain a robust

estimate from the n-gram counts, a fraction of the probability mass is taken

from the observed n-grams by discounting the ML estimates [67, 89, 175]. The

probabilities of the rare n-grams are then estimated from the (n � 1)-gram

probabilities in a recursive manner shown here for a trigram model:

^

P (w

i

jw

i�2

; w

i�1

) =

^

P (w

i

jw

i�1

)B(w

i�2

; w

i�1

);

where B(w

i�2

; w

i�1

) is a back-o� coe�cient needed to ensure that the prob-

ability sum for a given context is always equal to 1. Computing the bigram

estimate

^

P (w

i

jw

i�1

) follows the same principle. Backing-o� o�ers an addi-

tional advantage in that the language model size can be arbitrarily reduced
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by increasing the cuto� frequencies below which the n-grams are not included

in the model. This property can also be used to reduce the amount of compu-

tation required during decoding. While 2-gram and 3-gram LMs are the most

widely used, small improvements have been reported with the use of longer

span 4-grams [12, 176] and 5-grams [108] or word class-based 5-grams [150].

It is often the case that di�erent types of LM training material are avail-

able in di�ering quantities, and in di�erent formats. A �rst step in combining

sources means carrying out common normalizations. There are two commonly

used approaches to estimate language models on di�erent data sources: com-

bining the models or merging the data. Model interpolation is an easy way to

combine training material from di�erent sources. A language model is trained

for each source and the resulting models are interpolated. The interpolation

weights can be directly estimated on some development data with the EM

algorithm. An alternative is to simply merge the n-gram counts and train a

single language model on these counts. If some data sources are more rep-

resentative than others for the task, the n-gram counts can be empirically

weighted to minimize the perplexity on the development data set. While this

can be e�ective, it has to be done by trial and error and cannot easily be

optimized. In addition, weighting the n-gram counts can pose problems in

properly estimating the back-o� coe�cients.

While trigram LMs are the most widely used, higher order (n>3) and word

class-based (counts are based on sets of words rather than individual lexical

items) n-grams, and adapted LMs are recent research areas aimed at improv-

ing LM accuracy. Class or category-based language models can be used to

reduce the dependency on the training data, particularly when there is no

a priori reason to believe that any member of the class is more likely than

another. This technique is often used in spoken language dialog systems for

common items such as locations, dates and times.

Given some training data and a mapping which assigns each word a unique

category C(w), the training text can tagged and the n-gram probabilities

Pr(w

i

jC(w

i�n+1

); :::; C(w

i�1

)), which are often approximated by

Pr(w

i

jC(w

i

)) Pr(C(w

i

)jC(w

i�n+1

); :::; C(w

i�1

)), can be estimated from the rel-

ative frequencies as is done for a regular word n-gram LM. The class assigne-

ment is often obtained by minimizing the perplexity of a bigram category

model for a given number of word categories [88, 113]. In order to obtain a

lower perplexity than that obtained with a regular n-gram model, it is wise

to interpolate the category LM with the n-gram LM. The resulting trigram

probability estimates are:

P

�

(w

i

jw

i�2

; w

i�1

) = �

^

P (w

i

jw

i�2

; w

i�1

) + (1� �)

^

P (w

i

jC(w

i�2

); C(w

i�1

))

Other statistical language models have been investigated which essentially

map the word history (w

1

; :::; w

i�1

) onto equivalence classes rather than (n�

1)-grams. These modeling techniques such decision tree models, maximumen-

tropy models, and linguistically motivated models such probabilistic context-
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free and link grammars, have been used with moderate success leading to

small gains over the much simpler n-gram models [148].

LM Adaptation

In most systems one or more language models are used, but these LMs are

usually static, even though the choice of which static model to use can be

dynamic, dependent for example, on the dialog state. Language model adap-

tation is of interest for improving the model accuracy and for keeping the

models up-to-date. This is of particular importance for tasks such as broad-

cast news transcription in which news topics appear suddenly, and remain

popular for variable lengths of time. Various approaches have been taken to

adapt the language model based on the observed text so far, including the

use of a cache model [80, 147], a trigger model [146], or topic coherence mod-

eling [155]. The cache model is based on the idea that words appearing in a

dictated document will have an increased probability of appearing again in

the same document. For short documents the number of words appearing is

small, and as a consequence the bene�t is small. The trigger model attempts

to overcome this by using observed words to increase the probabilities of other

words that often co-occur with the trigger word. In topic coherence modeling,

selected keywords in the transcribed speech are used to retrieve articles on

similar topics with which sublanguage models are constructed and used to

rescore N-best hypotheses. Despite the growing interest in adaptive language

models, thus far only minimal improvements have been obtained compared to

the use of very large, static n-gram models.

Pronunciation modeling

The pronunciation dictionary is the link between the acoustic-level represen-

tation and the word sequence output by the speech recognizer. Designing

a pronunciation dictionary has two main aspects: de�nition and selection of

the vocabulary items and representation of each pronunciation entry using the

basic acoustic units of the recognizer. Recognition performance is obviously

related to lexical coverage, and the accuracy of the acoustic models is linked

to the consistency of the pronunciations associated with each lexical entry.

As discussed above, recognition vocabulary is usually selected to maximize

lexical coverage for a given size lexicon. Judicious selection of the recognition

vocabulary is important since on average, each out-of-vocabulary word causes

more than one error (usually between 1.5 and 2 errors),

Associated with each lexical entry are one or more pronunciations, de-

scribed using the chosen elementary units (usually phonemes or phone-like

units). This set of unit is evidently language dependent. For example, some

commonly used phone set sizes are about 45 for English, 50 for German

and Italian, 35 for French and Mandarin (to which tones may be added),

and 25 for Spanish. In generating pronunciation baseforms, most lexicons
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Phone Example Phone Example

Vowels Fricatives

i beet s sue

* bit z zoo

e bait M shoe

� bEt ` measure

� bat f fan

� but v van

� bott S thin

= bought � that

o boat Plosives

u boot b bet

W book d debt

� bird � get

Diphthongs p pet

�

j

bite t tat

=

j

boy k cat

�

w

bout A�ricates

Reduced Vowels Q cheap

� xbout � jeep

+ dated Nasals

� butter m met

Semivowels n net

l led 8 thing

r red Syllabics

w wed jm bott om

y yet jn button

h hat

j

l bottle

Figure 1.4 Set of phone symbols for English with illustrative words.
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coupon kup�n (0.63) kyup�n (0.37)

organization =rg�n*zeM�n (0.93) =rg�n�

j

zeM�n (0.07)

hundred h�nd�d (.42) h�ndr�d (0.32) h�n�d (.17)

h�ndr(�) (.049) h�nr�d (.038) h�nr(�) (.003)

moderate m�d�*t (.82) m�d�et (.18)

i don't know �

j

donftgno

�

j

d�no �

j

dno

don't know donftgno

d^no

did you dIdyu (.65)

dIdy� (.30) dI�� (.05)

going to goj8t[u�]

g[�c]n�

Figure 1.5 Some example lexical entries and their pronunciations along with esti-

mate probabilities. For the compound words, the original concatenated pronuncia-

tion is given in the 1st line and the reduced forms are given in the 2nd line. Phones

in ( ) specify the context for the pronunciation.

include standard pronunciations and do not explicitly represent allophones.

This representation is chosen as most allophonic variants can be predicted

by rules, and their use is optional. More importantly, there often is a con-

tinuum between di�erent allophones of a given phoneme and the decision as

to which occurred in any given utterance is subjective. By using a phone-

mic representation, no hard decision is imposed, and it is left to the acoustic

models to represent the observed variants in the training data. While pro-

nunciation lexicons are usually (at least partially) created manually, several

approaches to automatically learn and generate word pronunciations have

been investigated[25, 30, 45, 142, 162]. To the best of our knowledge such

approaches, while promising, have to date, given only small performance im-

provements even when trained with manual transcriptions [143].

Pronunciation variants which are not allophonic di�erences can be observed

for a variety of words. Alternative pronunciations are evidently needed for ho-

mographs (words spelled the same, but pronounced di�erently) which re
ect

di�erent parts of speech (verb or noun) such as excuse, record, moderate. Some

frequent a�xes such as anti-, bi-, multi-, -ization can be pronounced with a

diphthong (/�

i

/) or a short vowel (/*/ or /�/). Words of foreign origin, par-

ticuarly proper names, may have di�erent pronunciations depending upon the

speaker's familiarity with the original language. It is also common for mul-

tisyllablic words to be pronounced with fewer syllables than in the full form,

such as company, interest, conference. If acoustic model training is carried

out without allowing for appropriate pronunciation variants, there will nec-

essarily be a misalignment of one or more phones, adding noise to the phone
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models. An optimal alignment with a pronunciation dictionary including all

required variants results in more accurate acoustic phone models. Experience

has shown that careful lexical design can improve speech recognition system

performance [92].

In speech from fast speakers or speakers with relaxed speaking styles it

is common to observe poorly articulated (or skipped) unstressed syllables,

particularly in long words with sequences of unstressed syllables. Although

such long words are typically well recognized, often a nearby function word

is deleted. To reduce these kinds of errors, alternate pronunciations in the

lexicon can allow schwa-deletion or syllabic consonants in unstressed sylla-

bles. Compound words have also been used as a way to represent reduced

forms for common word sequences such as \don't know" (dunno), \did you"

(dija) and \going to" (gonna). Some example compound words are shown

in Figure 1.5 along with estimates of the pronunciation probabilites for the

di�erent variants. Alternatively, such 
uent speech e�ects can be modeled

using phonological rules [128]. The principle behind the phonological rules

is to modify the allowable phone sequences to take into account such vari-

ations. These rules are optionally applied during training and recognition.

Using phonological rules during training results in better acoustic models, as

they are less \polluted" by wrong transcriptions. Their use during recognition

reduces the number of mismatches. The same mechanism has been used to

handle liaisons, mute-e, and �nal consonant cluster reduction for French [57].

As speech recognition research has moved from read speech to found audio

data, the phone set has been expanded to include non-speech events. These

can correspond to noises produced by the speaker (breath noise, coughing,

sneezing, laughter, etc.) or can correspond to external sources (music, motor,

tapping etc).

Acoustic Modeling

Acoustic parameterization is concerned with the choice and optimization of

acoustic features in order to reduce model complexity while trying to maintain

the linguistic information relevant for speech recognition. Acoustic modeling

must take into account di�erent sources of variability present in the speech

signal: those arising from the linguistic context and those associated with

the non-linguistic context such as the speaker (e.g., coughing, throat clear-

ing, breath noise) and the acoustic environment (e.g., background noise, mu-

sic) and recording channel (e.g., direct microphone, telephone). Most state-

of-the-art systems make use of hidden Markov models for acoustic model-

ing [139, 180], which consists of modeling the probability density function

of a sequence of acoustic feature vectors. Other approaches include segment

based models [64, 129, 186] and neural networks [5, 74] to estimate acoustic

observation likelihoods. However except for the acoustic likelihood estima-

tion, all systems make use of the HMM framework to combine linguistic and
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acoustic information in a single network representing all possible sentences.

In this section common parameterizations are described, followed by a dis-

cussion of acoustic model estimation and adaptation.

Acoustic front-end

The �rst step of the acoustic feature analysis is digitization, where the con-

tinuous speech signal is converted into discrete samples. The most commonly

used sampling rates are 16kHz and 10kHz for direct microphone input, and

8kHz for telephone signals. The next step is feature extraction (also called

parameterization or front-end analysis), which has the goal of representing

the audio signal in a more compact manner by trying to remove redundancy

and reduce variability, while keeping the important linguistic information [75].

Most recognition systems use short-time cepstral features based either on a

Fourier transform or a linear prediction model. Cepstral parameters are pop-

ular because they are a compact representation, and are less correlated than

direct spectral components. This simpli�es estimation of the acoustic model

parameters by reducing the need for modeling the feature dependency. An in-

herent assumption is that although the speech signal is continually changing,

due to physical constraints on the rate at which the articulators can move,

the signal can be considered quasi-stationary for short periods (on the order

of 10ms to 20ms).

The two most popular sets of features are cepstrum coe�cients obtained

with a Mel Frequency Cepstral (MFC) analysis [32] or with a Perceptual Lin-

ear Prediction (PLP) analysis [73]. In both cases a Mel scale short term power

spectrum is estimated on a �xed window (usually in the range of 20 to 30ms).

In order to avoid spurious high frequency components in the spectrum due to

discontinuities caused by windowing the signal, it is common to use a tapered

window such as a Hamming window. The window is then shifted (usually

a third or a half the window size), and the next feature vector computed.

The most commonly used o�set is 10ms. The acoustic parameterization con-

verts the speech signal Y into a sequence of feature vectors X, each vector

representing a 10 ms interval:

X = (x

1

;x

2

; :::;x

T

):

The Mel scale approximates the frequency resolution of the human auditory

system, being linear in the low frequency range (below 1000 Hz) and loga-

rithmic above 1000 Hz. The cepstral parameters are obtained by taking an

inverse transform of the log of the �lterbank parameters. In the case of the

MFC coe�cients, a cosine transform is applied to the log power spectrum,

whereas a root-Linear Predictive Coding (LPC) analysis is used to obtain the

PLP cepstrum coe�cients. Both set of features have been used with success

for LVCSR, but PLP analysis has been found for some systems to be more

robust in presence of background noise [87, 177]. Finding the optimal tun-

ing, which may be dependent on the language or the channel conditions, can
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result in slight performance improvements. The set of cepstral coe�cients

associated with a windowed portion of the signal is referred to as a frame or

a parameter**feature** vector. Cepstral mean removal (subtraction of the

mean from all input frames) [46] is commonly used to reduce the dependency

on the acoustic recording conditions. Computing the cepstral mean requires

that all of the signal is available prior to processing, which is not the case for

certain applications where processing needs to be synchronous with recording.

In this case, a modi�ed form of cepstral subtraction can be carried out where

a running mean is computed from the N last frames (N is often on the order

of 100, corresponding to 1s of speech). It is also common to normalize the

variance, so that each resulting cepstral coe�cient therefore has a zero mean

and unity variance. In order to capture the dynamic nature of the speech

signal, it is common to augment the feature vector with \delta" parameters.

The delta parameters are computed by taking the �rst and second di�erences

of the parameters in successive frames. As a result a typical feature vector

x

t

will include 12 cepstrum coe�cients and the normalized log-energy, along

with the �rst and second order derivatives, i.e. a total of 39 components.

**Acoustico-phonetic** Allophone modeling

**there are many repeats in this section **

Hidden Markov models are widely used to model the sequences of acoustic

feature vectors [139]. These models are popular as they are performant and

their parameters can be e�ciently estimated using well established techniques.

They are used to model the production of speech feature vectors in two steps.

First a Markov chain is used to generate a sequence of states, and second

speech vectors are drawn using a probability density function (PDF) associ-

ated to each state. The Markov chain is described by the number of states

and the transitions probabilities between states. Most recognition systems use

acoustic units corresponding to phone or phone-in-context units. However it

is possible to perform speech recognition without use of a phonemic lexicon,

either by use of \word models" or a di�erent mapping such as the fenonic

lexicon [13]. Compared to word models, subword units reduce the number of

parameters, enable cross word modeling and facilitate porting to new vocabu-

laries. Fenones o�er the additional advantage of automatic training, but lack

the ability to include a priori linguistic knowledge. Context-dependent (CD)

phone models are today the most commonly used acoustic units for LVCSR.

Compared to larger units such as diphones, demisyllables or syllables, a large

spectrum of contextual dependencies can be implemented for CD models as-

sociated with back-o� mechanisms to model infrequent contexts. The most

widely used elementary acoustic units in LVCSR systems are phone-based,

where each phone

2

is represented by a Markov chain with a small number of

2

Phones usually correspond to phonemes, but may also correspond to allophones such as


aps or glottal stop.
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Figure 1.6 A simple 3-state left-to-right HMM topology commonly used for allo-

phone modeling in LVCSR.

states. While di�erent topologies have been proposed, all make use of left-

to-right state sequences in order to capture the spectral change across time.

The most commonly used con�gurations have between 3 and 5 emitting states

per model, where the number of states imposes a minimal time duration for

the unit. Some con�gurations allow certain states to be skipped, so as to re-

duce the required minimal duration. The probability of an observation (i.e. a

speech vector) is assumed to be dependent only on the state, which is known

as a 1st order Markov assumption.

Strictly speaking, given an N -state HMM with parameter vector �, the

HMM stochastic process is described by the following joint probability density

function f(X;Sj�) of the observed signalX = (x

1

; :::;x

T

) and the unobserved

state sequence S = (s

0

; :::; s

T

),

f(X;Sj�) = �

s

0

T

Y

t=1

a

s

t�1

s

t

f(x

t

js

t

)

where �

i

is the initial probability of state i, a

ij

is the transition probability

from state i to state j, and f(�js) is the emitting PDF associated with each

state s. Figure 1.6 shows the transition structure of a 3-state left-to-right

commonly used for allophone modeling in LVCSR. Such model generate at 3

speech frames per allophone, making the minimal duration of a phone segment

equal to 30ms for frame rate of 100Hz.

The most commonlyused state output PDF for speaker-independent LVCSR

systems is a mixture of Gaussians with about 16 to 32 components, thus

f(x

t

js) =

K

X

k=1

!

k

N (x

t

jm

sk

;�

sk

)

where m

sk

, �

sk

and !

k

denotes respectively the mean vector, the covariance

matrix and the mixture weight of the k-th Gaussian component of the state

s. To reduce the number of parameters and the inherent estimation problem

linked to full covariance matrices, the covariance matrices are usually assumed

diagonal but some recent developpment have demonstrated that non diago-

nal covariance matrices can be used while keeping the estimation problem

managable [?, ?].

Phone based models o�er the advantage that recognition lexicons can be

described using the elementary units of the given language, and thus bene�t
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SISTER /sIstX/

triphones: s(*,I) I(s,s) s(I,t) t(s,X) X(t,*)

quinphones: s(*,Is) I(s,st) s(sI,tX) t(Is,X) X(st,*)

Figure 1.7 Exemples of allophonic transcriptions for intra-word triphones and

quinphones. Each contextual unit is de�ned by the central phone followed by its

phonemic context shown in parentheses (left-context, right-context).

from many linguistic studies. It is of course possible to perform speech recog-

nition without using a phonemic lexicon, either by use of \word models" (as

was the more commonly used approach 10 years ago) or a di�erent mapping

such as the fenones [13]. Compared with larger units (such as words, sylla-

bles, demisyllables), small subword units reduce the number of parameters,

enable cross word modeling, facilitate porting to new vocabularies and most

importantly, can be associated with back-o� mechanisms to model rare con-

texts. Fenones o�er the additional advantage of automatic training, but lack

the ability to include a priori linguistic models.

A given HMM can represent a phone without consideration of its neighbors

(context-independent or monophone model) or a phone in a particular context

(context-dependent model).

***some duplicate text around**

Various types of contexts have been investigated from a single phone con-

text (right- or left-context), left and right-context (triphone), generalized tri-

phones [100], position-dependent triphones (cross-word and within word tri-

phones), function word triphones, and quinphones [176]. The context may

or may not include the position of the phone within the word (word-position

dependent), and word-internal and cross-word contexts may be merged or

considered separated models. The use of cross-word contexts complicates

decoding, as discussed below. Di�erent approaches are used to select the con-

textual units based on frequency or using clustering techniques, or decision

trees, and di�erent context types have been investigated: single-phone con-

texts, triphones, generalized triphones, quadphones and quinphones, with and

without position dependency (within or cross word).

While di�erent approaches are used to select the phone contexts (often

based on frequency of occurrence or phonetic decision trees), the optimal

set of modeled contexts is usually the result of a tradeo� between resolution

and robustness, and is highly dependent on the available training data. This

optimization is generally done by minimizing the recognizer error rate on

development data. In fact, more than the number of CD phone models, what

is really important is to match the total number of model parameters to the

amount of available training data.

Using contextual phone models can be seen as replacing the phonemic tran-

scriptions from the pronunciation dictionary by allophonic transcriptions. Fig-
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ure 1.7 gives the triphone and quinphone transcriptions for the word SISTER

assuming only word internal units are used, i.e. the allophonic transcription

are independent of the word context. When using cross-word triphones the

models used for the �rst and last phone of each word (this is extended to the

�rst and last two phones in the case of quinphones) will depend on the word

context making the decoding problem signi�cantly more complex.

The model states are often clustered so as to reduce the model size, resulting

in what are referred to as \tied-state" models. **to be developped (see IEEE

paper and French paper)***

A powerful technique to keep the models trainable without sacri�cing model

resolution is to take advantage of the state similarity among di�erent models

of a given phone by tying the HMM state distributions. This basic idea is

used in most current systems although there are slight di�erences in the imple-

mentation and in the naming of the resulting clustered states (senones [76],

genones [35], PELs [16], tied-states [184]). Numerous ways of tying HMM

parameters have been investigated [163, 179] in order to overcome the sparse

training data problem and to reduce the need for distribution smoothing tech-

niques.

In practice both agglomerative clustering and divisive clustering have been

found to yield model sets with comparable performance. Divisive decision

tree clustering is particularly interesting when there are a very large number

of states to cluster since it is at the same time both faster and is more robust

than a bottom-up greedy algorithm, and therefore much easier to tune. In

addition, HMM state tying based on decision tree clustering has the advantage

of providing a means to build models for unseen contexts, i.e., those contexts

which do not occur in the training data [77, 183]. The set of questions typically

concern the phone position, the distinctive features (and identities) of the

phone and the neighboring phones [123].

Many state-of-the-art recognizers make use of continuous density HMM

with Gaussian mixture for acoustic modeling. The main advantage continu-

ous density modeling o�ers over discrete or semi-continuous (or tied-mixture)

observation density modeling is that the number of parameters used to model

an HMM observation distribution can easily be adapted to the amount of

available training data associated to this state. As a consequence, high pre-

cision modeling can be achieved for highly frequented states without the ex-

plicit need of smoothing techniques for the densities of less frequented states.

Discrete and semi-continuous modeling use a �xed number of parameters to

represent a given observation density and therefore cannot achieve high pre-

cision without the use of smoothing techniques or tying techniques mentioned

above.

The choice of the model structure is highly dependent on the constraints

of the application such as limitations on available memory or computational

capacity.
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HMM Parameter Estimation

Acoustic model training consists of estimating the parameters of each HMM.

For continuous density Gaussian mixture HMMs, this requires estimating the

means and covariance matrices, the mixture weights and the transition prob-

abilities. The most popular approaches make use of the MaximumLikelihood

(ML) criterion, ensuring the best match between the model and the training

data (assuming that the size of the training data is su�cient to provide robust

estimates).

Estimation of the model parameters is usually done with the Expectation-

Maximization (EM) algorithm [33] which is an iterative procedure starting

with an initial set of model parameters. The model states are then aligned

to the training data sequences and the parameters are reestimated based on

this new alignment using the Baum-Welch reestimation formulas [17, 105, 83].

This algorithm guarantees that the likelihood of the training data given the

models increases at each iteration. In the alignment step a given speech

frame can be assigned to multiple states (with probabilities summing to 1)

using the forward-backward algorithm or to a single state (with probability

1) using the Viterbi algorithm. This second approach yield to slightly lower

likelihood but in practice there is very little di�erence in accuracy especially

when large amounts of data are available. It is important to note that the EM

algorithm does not guaranty �nding the true ML parameter values, and even

when the true ML estimates are obtained they may not be the best ones for

speech recognition. Therefore, some implementation details such as a proper

initialization procedure and the use of constraints on the parameter values

can be quite important.

Since the goal of training is to �nd the best model to account of the ob-

served data, the performance of the recognizer is critically dependent upon

the representativity of the training data. Some methods to reduce this depen-

dency are discussed in the next subsection. Speaker-independence is obtained

by estimating the parameters of the acoustic models on large speech cor-

pora containing data from a large speaker population. There are substantial

di�erences in speech from male and female talkers arising from anatomical

di�erences (on average females have a shorter vocal tract length resulting in

higher formant frequencies, as well as a higher fundamental frequency) and

social ones (female voice is often \breathier" caused by incomplete closure of

the vocal folds). It is thus common practice to use separate models for male

and female speech in order to improve recognition performance. The sex-

dependent models are often obtained from speaker-independent seed models

using Maximum A Posteriori estimators [60], or may be trained on the in-

dependent data subsets if su�cient training data are available. This choice

evidently requires automatic identi�cation of the gender.

***MMIE***
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HMM Adaptation

In this section we discuss techniques that have been used with continuous

density HMMs, although similar techniques have been developed for discrete

and semi-continuous HMMs.

The performances of speech recognizers drop substantially when there is a

mismatch between training and testing conditions. Several approaches can be

used to minimize the e�ects of such a mismatch, so as to obtain a recogni-

tion accuracy as close as possible to that obtained under matched conditions.

Acoustic model adaptation can be used to compensate mismatches between

the training and testing conditions, such as due to di�erences in acoustic envi-

ronment, to microphones and transmission channels, or to particular speaker

characteristics. The techniques are commonly referred to as noise compen-

sation, channel adaptation, and speaker adaptation respectively. Since in

general no prior knowledge of either the channel type, the background noise

characteristics or the speaker is available, adaptation is performed using only

the test data in an unsupervised mode.

The same tools can be used in acoustic model training in order to com-

pensate for sparse data, as in many cases only limited representative data

are available. The basic idea is to use a small amount of representative data

to adapt models trained on other large sources of data. Some typical uses

are to build gender-dependent, speaker-speci�c or task-speci�c models, or to

use speaker adaptive training (SAT) to improve performance. When used for

model adaption during training it is common to use the true transcription of

the data, known as supervised adaptation.

Three commonly used schemes to adapt the parameters of an HMM can be

distinguished: Bayesian adaptation [60]; adaptation based on linear transfor-

mations [102]; and model composition techniques [48]. Bayesian estimation

can be seen as a way to incorporate prior knowledge into the training proce-

dure by adding probabilistic constraints on the model parameters. The HMM

parameters are still estimated with the EM algorithm but using maximum

a posteriori (MAP) reestimation formulas [60]. This leads to the so-called

MAP adaptation technique where constraints on the HMM parameters are

estimated based on parameters of an existing model. Speaker-independent

acoustic models can serve as seed models for gender adaptation using the

gender speci�c data. MAP adaptation can be used to adapt to any desired

condition for which su�cient labeled training data are available. Linear trans-

forms are powerful tools to perform unsupervised speaker and environmental

adaptation. Usually these transformations are ML trained and are applied to

the HMM Gaussian means, but can also be applied to the Gaussian variance

parameters. This ML linear regression (MLLR) technique is very appropri-

ate to unsupervised adaptation because the number of adaptation parameters

can be very small. MLLR adaptation can be applied to both the test data

and training data. Model composition is mostly used to compensate for addi-

tive noise by explicitly modeling the background noise (usually with a single
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Gaussian) and combining this model with the clean speech model [47]. This

approach has the advantage of directly modeling the noisy channel as opposed

to the blind adaptation perform by the MLLR technique when applied to the

same problem.

The chosen adaptation method depends on the type of mismatch and on the

amount of available adaptation data. The adaptation data may be part of the

training data, as in adaptation of acoustic seed models to a new corpus or a

subset of the training material (gender, dialect, speaker or acoustic condition

speci�c) or can be the test data (i.e., the data to be transcribed). In the

former case supervised adaptation techniques can be applied, as the reference

transcription of the adaptation data can be readily available. In the latter

case only unsupervised adaptation techniques can be applied.

IEEE section on Adaptation **JL to merge this in**

One of the main challenges in LVCSR is building robust systems that keep

high recognition accuracy when testing and training environmental conditions

are di�erent. At the acoustic level, two classes of techniques to increase sys-

tem robustness can be identi�ed: signal processing techniques which attempt

to compensate for the mismatch between testing and training by correcting

the speech signal to be decoded; and model adaptation techniques which at-

tempt to modify the model parameters to better represent the observed signal.

Signal processing based approaches include normalization techniques that re-

move variability, thereby increasing the system accuracy under mismatched

conditions but often resulting in reduced word accuracy under matched condi-

tions, and compensation techniques which rely on a mismatch model and/or

speech model. Model adaptation is a much more powerful approach, espe-

cially when the signal processing relies on a speech model. Therefore when

computational resources are not an issue, model adaptation is the preferred

approach to compensate for mismatches. Model adaptation can be used to re-

duce the mismatch between test and training conditions or to improve model

accuracy based on the observed test data. Adaptation can be of the acoustic

models or the language models, or even of the pronunciation lexicon.

Acoustic model adaptation can be used to compensate mismatches of vari-

ous natures due to new acoustic environments, to new transducers and chan-

nels, or to particular speaker characteristics, such as the voice of a non-native

speaker. The most commonly used techniques for acoustic model adapta-

tion are parallel model combination (PMC), maximum a posteriori (MAP)

estimation, and transformation methods such as maximum likelihood linear

regression (MLLR). PMC is essentially used to account for environmental mis-

match due to additive noise whereas MAP estimation and MLLR are general

tools that can be used for speaker adaptation and environmental mismatch.

PMC approximates a noise corrupted model by combining a clean speech

model with a noise model [47]. For practical reasons, it is generally assumed

that the noise density is Gaussian and that the noise corrupted speech model
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has the same structure and number of parameters as the clean speech model

{ typically a continuous density HMM with Gaussian mixture. Various tech-

niques have been proposed to estimate the noisy speech models, including the

log-normal approximation approach, the numerical integration approach, and

the data driven approach [48]. The log-normal approximation is crude espe-

cially for the derivative parameters, and all three approaches require making

some approximations to estimate derivative parameters other than �rst order

di�erences.

MAP estimation can be used to incorporate prior knowledge into the CDHMM

training process, where the prior information consists of prior densities of the

HMM parameters [59, 99]. In the case of speaker adaptation, MAP estima-

tion may be viewed as a process for adjusting speaker-independent models

to form speaker-speci�c ones based on the available prior information and

a small amount of speaker-speci�c adaptation data. The joint prior density

for the parameters in a state is usually assumed to be a product of Normal-

Gamma densities for the mean and variance parameters of the Gaussian mix-

ture components and a Dirichlet density for the mixture gain parameters.

MAP estimation has the same asymptotic properties as ML estimation but

when independent priors are used for di�erent phone models the adaptation

rate may be very slow, particularly for large models. It is therefore advanta-

geous to represent correlations between model parameters in the form of joint

prior distributions [156, 185].

MLLR is used to estimate a set of transformation matrices for the HMM

Gaussian parameters in order to maximize the likelihood of the adaptation

data [36, 102], each transform being apply to a subset of the Gaussian pdfs.

This adaptation method was originally used for speaker adaptation, but it

can equally be applied to environmental mismatch [177]. Since the number of

transformation parameters is small, large models can be adapted with small

amounts of data. To obtain ML asymptotic properties it is necessary to adjust

the number of linear transformations to the amount of available adaptation

data. This can be done e�ciently by arranging the mixture components into

a tree and dynamically de�ning the regression classes. MLLR adaptation is

particularly suited to unsupervised adaptation since the transforms may have

a very small number of parameters shared by the di�erent phonetic units

and therefore is very robust to recognition errors. In practice only a few re-

gression matrices are used for unsupervised adaptation, usually one or two

(corresponding, for example, to speech and non-speech). As a natural exten-

sion of this approach, speaker adaptive training (SAT) incorporates supervised

MLLR in the SI training procedure and jointly estimate the training speaker

MLLR transforms and the HMM parameters [7]. The SAT models which are

better suited to MLLR speaker adaptation result in a signi�cant reduction

in the error rate by enhancing or boosting the adaptation in particular for

supervised adaptation on clean data.

Vocal tract length normalization (VTLN) is another technique which has

been proposed to perform some kind of speaker normalization [6]. The ap-
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proach consists in performing a frequency warping to account for di�erence in

vocal track length, where the appropriate warping factor is chosen from a set

of candidate values (typically 13 in the range 0.88 to 1.12 [101]) by maximiz-

ing the test data likelihood based on a �rst decoding pass transcription. Like

MLLR adaptation, VTLN can also be applied during the training process to

obtain models better suited to decode the normalized test data. VTLN has

been shown to give small but signi�cant error rate reduction in particular on

telephone conversational speech [164].

Decoding

Speech/nonspeech detection

**to be done**

When transcribing continuous audio streams such as broadcast data, it is

advantageous to �rst partition the data into homogeneous acoustic segments

prior to word recognition. Partitioning consists of identifying and removing

non-speech segments, and then clustering the speech segments and assign-

ing bandwidth and gender labels to each segment. While it is possible to

transcribe the continuous stream of audio data without any prior segmenta-

tion, partitioning o�ers several advantages over this straight-forward solution.

First, in addition to the transcription of what was said, other interesting in-

formation can be extracted such as the division into speaker turns and the

speaker identities, and background acoustic conditions. Second, by clustering

segments from the same speaker, acoustic model adaptation can be carried out

on a per cluster basis, as opposed to on a single segment basis, thus providing

more adaptation data. Third, prior segmentation can avoid problems caused

by linguistic discontinuity at speaker changes. Fourth, by using acoustic mod-

els trained on particular acoustic conditions (such as wide-band or telephone

band), overall performance can be signi�cantly improved. Finally, eliminating

non-speech segments and dividing the data into shorter segments (which can

still be several minutes long), substantially reduces the computation time and

simpli�es decoding.

Various approaches have been proposed to partition the continuous stream

of audio data. Most of these approaches rely on a two step procedure,

where the audio stream is �rst segmented in an attempt to locate acoustic

changes (associated with changes in speaker, background or environmental

condition, and channel condition). The segmentation procedures can be clas-

si�ed into three approaches: those based on phone decoding [70, 107, 171],

distance-based segmentations [91, 159], and methods based on hypothesis test-

ing [27, 172]. The resulting segments are then clustered (usually using Gaus-

sian models), where each cluster is assumed to identify a speaker or more

precisely, a speaker in a given acoustic condition. The partitioning approach

used in the Limsi BN transcription system is not based on such a two step

procedure, but instead relies on an audio stream mixture model [55]. Each
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component audio source, representing a speaker in a particular background

and channel condition, is in turn modeled by a mixture of Gaussians. The

segment boundaries and labels are jointly identi�ed using an iterative max-

imum likelihood segmentation/clustering procedure using Gaussian mixture

models and agglomerative clustering. In contrast to partitioning algorithms

that incorporate phoneme recognition, this approach is language independent.

(The same models have been used to partition English, French and German

data.) The result of the partitioning process is a set of speech segments with

speaker, gender and telephone/wide-band labels.

Decoding strategies

In this section we discuss the LVCSR decoding problem, which is the design

of an e�cient search algorithm to deal with the huge search space obtained

by combining the acoustic and language models. Strictly speaking, the aim

of the decoder is to determine the word sequence with the highest likelihood

given the lexicon and the acoustic and language models. In pratice, however,

it is common to search for the most likely HMM state sequence, i.e. the best

path through a trellis (the search space) where each node associates an HMM

state with given time. Since it is often prohibitive to exhaustively search for

the best path, techniques have been developed to reduce the computational

load by limiting the search to a small part of the search space. Even for

research purposes, where real-time recognition is not needed there is a limit on

computing resources (memory and CPU time) above which the development

process becomes too costly. The most commonly used approach for small

and medium vocabulary sizes is the one-pass frame-synchronous Viterbi beam

search which uses a dynamic programming algorithm. This basic strategy has

been extended to deal with large vocabularies by adding features such as

dynamic decoding, multipass search and N-best rescoring.

The most commonly used approach for small and medium vocabulary sizes

is the one-pass frame-synchronous Viterbi beam search [120] which relies on

a dynamic programming procedure. This basic strategy has been extended

to deal with large vocabularies by adding features such as fast match [15,

62], word-dependent phonetic trees [121], forward-backward search [10], N-

best rescoring [152], progressive search [119] and simple one-pass dynamic

network decoding [124]. An alternative to the frame-synchronous Viterbi

beam search is an asynchronous search based on the A

�

algorithm such as

stack decoding [14, 136] or the envelope search [68].

Dynamic decoding can be combined with e�cient pruning techniques in or-

der to obtain a single pass decoder that can provide the answer using all the

available information (i.e. that in the models) in a single forward decoding

pass over of the speech signal. This kind of decoder such as the stack de-

coder [136] or the one-pass frame synchronous dynamic network decoder [124],

is very attractive for real-time applications.

Static decoders require much more memory than dynamic decoders when
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Figure 1.8 Example word lattice generated by a speech recognizer using a bigram

language model for a 2.1s utterance. Each graph edge corresponds to a word hy-

pothesis and a time interval (as speci�ed by the time information on the nodes). In

this example the word transcription with the highest likelihood is \sil IT WAS A

GOOD PROGRAM sil" which happen to be what was said. (Acoustic and language

model likelihoods are not given on the �gure.)

used with long span language models (3-gram or higher order), and as a

consequence they are mostly used with smaller language models (usually 2-

grams or constrained grammars). It has been recently shown that by proper

optimization of a �nite-state automaton

3

corresponding to a recognizer HMM

network, substantial reduction of the overall network size can be obtained,

enabling static decoding with long span LMs [118]. Evidently, the size of the

optimized network remains proportional to the LM size.

Multi-pass decoding is used to progressively add knowledge sources in the

decoding process and allows the the complexity of the individual decoding

passes to be reduced *from ieee* and often results in a faster overall de-

coder [122]. For example, a �rst decoding pass can use a 2-gram language

model and simple acoustic models, and later passes will make use of 3-gram

and 4-gram language models with more complex acoustic models. This mul-

tiple pass paradigm requires a proper interface between passes in order to

avoid losing information and engendering search errors. Information is usu-

ally transmitted via word lattices or word graphs

4

, although some systems use

N-best hypotheses (a list of the most likely word sequences with their respec-

tives scores). This approach is not well suited to real-time applications since

no hypothesis can be returned until the entire utterance has been processed.

*from ieee* However if a small delay is acceptable, then with appropriate

synchronization, multipass strategies can be envisioned. Evidently, the �rst

3

An HMM-based speech recognizer can be seen as a transduction cascade which converts

the observed feature vectors to a word string, where to some approximation, each trans-

duction (phone model, word model or language model) can be represented as a �nite-state

automaton.

4

Lattices are graphs where nodes correspond to particular frames and where arcs represent-

ing word hypothesis have associated acoustic and language model scores.
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pass used to generate the initial word lattice must be accurate enough to not

introduce lattice errors which are unrecoverable with further processing.

It can sometimes be di�cult to add certain knowledge sources into the

decoding process especially when they do not �t in the Markovian framework

(i.e. short distance dependency modeling). For example, this is the case

when trying to use segmental information or to use grammatical information

for long term agreement. Such information can be more easily integrated in

multipass systems by rescoring the recognizer hypotheses after applying the

additional knowledge sources.

E�ciency

** in this section, remove everything which is LIMSI speci�c, add lantency

stu� from ATT **

E�ciency of the speech recognizer is not usually a high priority for labo-

ratory systems, where it is typical to develop on loaded (lots of memory and

disk space), high powered workstations. The performances of laboratory sys-

tems are usually optimized so as to obtain the lowest word error given the

training data and the facilities available. However, for commercial products

cost is often an important factor which means that the e�ciency of the recog-

nizer becomes a higher priority, both in terms of memory and computational

requirements, as does the cost of the recognition platform.

Fast decoding techniques are of primary interest, and their requirements

in
uence the choice of model structure and size, and as a result have an impact

on the memory needs. For speaker-independent LVCSR based on Gaussian

mixture HMM, between 30 and 50% of the recognition time can be spent in

computing the HMM state likelihoods, with the remaining time corresponding

to the search procedure itself. This is due to the large number of states needed

to represent the context-dependent phone models, even when state tying is

used. This computation can be reduced either by implementing a fast state

likelihood computation which usually requires making some approximations,

or by reducing the model size which has the additional advantage of reducing

the memory requirements. A widely used technique for speeding up the state

likelihood computation is vector quantization of the feature vector space in

order to prepare a Gaussian short list for each HMM state and each region of

the quanti�ed feature space [21]. With this technique the number of Gaussian

likelihoods to be computed during decoding for each input frame and each

state can be reduced to a fraction of the number of Gaussians corresponding

to the active states with only a small loss in accuracy.

As discussed in section 1 there are many e�cient solutions to the search

problem, however �nding the optimal solution is always a trade-o� between

the model accuracy and e�cient pruning. In general better models have more

parameters, and therefore require more computation. However since the mod-

els are more accurate, it is often possible to use a tighter pruning level (thus

reducing the computational load) without any loss in accuracy. In fact, lim-
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itations on the available computational resources can signi�cantly a�ect the

design of the acoustic and language models. For each operating point, the

right balance between model complexity and pruning level must be found.

Therefore recognizers must be compared at the targeted speed. Aggressive

pruning is generally needed to achieve real-time operation for LVCSR tasks on

currently available platforms. This inevitably is a source of search errors, and

as such, many techniques have been proposed to reduce these search errors

and to limit their e�ect on the recognizer accuracy. One of the most attractive

decoding strategies for real-time operation is the one-pass frame-synchronous

dynamic network decoder which relies on a phonetic tree organization of the

decoding network using LM state conditioned tree copies [9, 121, 124]. The

success of such a single pass approach is highly dependent on the use of e�cient

pruning strategies associated with a language model lookahead [127, 151].

Multipass approaches can also be used successfully for close to real-time op-

eration by chunking the data and running the di�erent pass in parallel with

a slight delay.

As explained in section 1 model and state tying are commonly used to im-

prove the model accuracy but optimal tying (from the accuracy point of view)

can still result in a very large model with 5 k to 30 k states when large amounts

of training data are available. Parameter tying is also powerful technique to

reduce the number of parameters, and can be applied to all the levels of the

model structure (allophone model, state and Gaussian) [163]. However, more


exibility is available for Gaussian pdf tying in that large model reductions

can be obtained without sacri�cing too much in terms of system accuracy.

This is exempli�ed by the subspace distribution tying approach [110, 163],

which in its most elementary implementation can be seen as a quantization

of the model parameters.

Processing time constraints signi�cantly a�ect the way the acoustic mod-

els are selected. For each operating point, the right balance between model

complexity and search pruning level must be found. To illustrate this point,

Figure ?? plots the word error rate as a function of processing time for 3

sets of acoustic models, which taken together minimize the word error rate

over a wide range of processing times (from 0.3xRT to 20xRT) for the Limsi

broadcast news transcription system. (Transcribing such inhomogeneous data

requires signi�cantly higher processing power than for speaker adapted dic-

tation systems, due to the lack of control of the recordings and linguistic

content, which on average results in lower SNR ratios, a poorer �t of the

acoustic and language models to the data, and as a consequence, the need

for larger models.) These results on a representative portion of the Hub4-98

data set are obtained on a Compaq XP1000 500 MHz machine with a 3-gram

language model, and without acoustic model adaptation. The large model

set (350 k Gaussians, 11 k tied states, 30 k phone contexts) provides the best

performance/speed ratio for processing times over 5xRT. The 92 k model set

(92 k Gaussians, 6 k tied states, 5 k phone contexts) performs better in the

range 0.9xRT to 5xRT, whereas a much smaller model set (16 k Gaussians)
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is needed to go under real-time.

The language model, usually a 3-gram or 4-gram back-o� LM in state-

of-the-art systems, can have a very large number of parameters (i.e., more

than 10 million), and therefore may require prohibitive amounts of memory

for commercially viable platforms. One of the attractive properties of n-

gram models is the possibility of relying more on the back-o� components

by increasing the cuto�s on the n-gram counts, thus reducing signi�cantly

the LM size. More elaborate n-gram pruning have also been proposed [158,

161] to substantially reduce the LM size with negligible loss in accuracy. An

alternative approach to limit the memory requirements is to keep most of the

LM parameters on the disk, since most n-grams are never used, combined

with a cache of the scores for accessed LM states [140].

Con�dence Measures

**expand idea of lattice based CM, plus consensus decoding con�dence ***

Con�dence measures have been proposed as a way of detecting those hy-

pothesized words that are likely to be erroneous by estimating word and sen-

tence correctness [23, 63, 160, 173, 174]. At the sentence level the goal is to

get an estimate of Pr(wjx) for the hypothesized word string w. One com-

mon approach consists of using the posterior Pr(wjx; �) as an estimate. This

assumes that the recognizer models (acoustic model, language model and lex-

icon designated by �) are correct and that the decoder does not make any

search errors. Further approximations may use simpler acoustic and language

models to speed up the computation, for example, the word language model

can be replaced by a phone language model [53]. For most LVCSR tasks we

are essentially interested by a word level con�dence measure, i.e., the goal is

to obtain an estimate of Pr(w

i

jx) the posterior probability of the i-th word

in the hypothesized word string, or alternatively Pr(w

i

jx; �). An estimate of

this latter probability can be e�ciently computed by applying the Forward-

Backward algorithm to a word graph generated by the speech recognizer [173].

However since this posterior probability relies on incorrect models, it is also

common to use additional features such as word and phone durations, speak-

ing rate, and signal-to-noise ratio to better approximate the word posterior

probability Pr(w

i

jx). All these predictors can be combined and mapped to

the con�dence score by using either a logistic regression [63], a generalized

additive model [160], or a neural-network [174]. These models are trained

on development data by maximizing a con�dence score metric such the nor-

malized cross entropy. The proper set of features depends on the particular

application.

Indicative Performance levels

** maywant subsections here for di�erent tasks** **dictation systems, spoken

language dialog systems, and transcription systems for audio indexation**
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**add section on audio indexing??**

This section provides somes indicative measures of recognizer performance

for a few LVCSR tasks, but does not attempt to be exhaustive. Essentially

all of todays state-of-the-art systems make use of the statistical modeling pre-

sented in this chapter. Speech recognition technology has advanced greatly

over the last decade. These advances can be clearly seen in the context of

DARPA supported benchmark evaluations. This framework, known in the

community as the DARPA evaluation paradigm, has provided the training

materials (transcribed audio and textual corpora for training acoustic and

language models), test data and a common evaluation framework. In re-

cent years the data have been provided by the Linguistics Data Consortium

(LDC) and the evaluations organized by the National Institute of Standards

and Technology (NIST) in collaboration with representatives from the par-

ticipating sites and other government agencies. It is widely acknowledged

that the performance of a speech recognizer is strongly dependent upon the

task, which in turn is linked to the type of user, speaking style, environmental

conditions etc.

The commonly used metric for speech recognition performance, the \word

error" rate, is a measure of the average number of errors taking into account

three error types with respect to a reference transcription: substitutions (the

reference word is replaced by another word), insertions (a word is hypoth-

esized that was not in the reference) and deletions (a word in the reference

transcription is missed). The word error rate is de�ned as

#subs+#ins+#del

# reference words

, and is generally computed aligning the reference and hypothesized transcrip-

tions using a dynamic programmingalgorithm,where costs are associated with

the di�erent error types. Given this de�nition the word error can be more

than 100%.

While this chapter addresses speech transcription (i.e., going from the au-

dio signal to words), it should be kept in mind that additional information

can be extracted from the audio signal. Extraction of some of this so-called

\metadata", is discussed in Chapters **schwartz and **Allen. The metadata

can be of an acoustic nature (speaker and gender information [96], audio type

information [51, 157]) or linguistic nature (case-sensitive texts, punctuation,

named entities (names of persons, places, organizations), topics, or other se-

mantic tags. The same HMM-based probabilistic framework has been used

to assign tags [115, 170, 178]. Detailed semantic tagging is often required for

dialog tasks where it is common to use task-dependent representations such

as semantic frames, with prede�ned semantic slots and values.

Dictation is the most obvious automatic speech recognition task, and has

a long history of research and product development, resulting in the low-

cost, o�-the-shelf systems for a variety of platforms and languages. While

from the technological viewpoint, dictation is usually thought of as a \simple"
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transformation from speech to text, this view overlooks a variety of formatting

and integration issues which are important for usability. Perhaps the most

notable characteristic of the dictation task is that the speech data is produced

with the explicit goal of being transcribed by a machine. The speech data in a

dictation session comes from a single speaker and is recorded with a controlled

signal acquisition setup. The linguistic content is usually somewhat limited

and the word stream is quite close to the written form.

Although benchmarks of commercial dictation systems are not publicly

available, dictation has served as a baseline performance measure in LVCSR,

most notably in the benchmark tests sponsored by the US Darpa programs

and coordinated by NIST. This close relation between system development

and evaluation, which has been referred to as \assessment driven technology

development" had led to large performance improvements in spite of increas-

ing task di�culty. For read speech tasks, the state-of-the-art in speaker-

independent continuous speech recognition is exempli�ed by the 1995/1996

benchmark tests on North American Business News task [131, 132]. The

acoustic training data was comprised of about 160 h of read newspaper texts

from several hundred speakers and the language model training material was

comprised of 400 M words of newspaper texts, from a variety of sources. On

test data recorded with a close-talking microphone with an SNR of about

30 dB, word error rates around 7% were obtained using a 65 k word vocab-

ulary.

5

The same read speech recorded with a table-top microphone in a

computer room/o�ce environment (noise level 55 dBA, SNR about 15 dB),

resulted in a word error of about 14% with noise compensation. Without noise

compensation the word error rates of systems trained on only clean speech

data is over 50%. The word error for read newspaper texts recorded over

long distance telephone lines was over 20%. Spontaneous dictation of busi-

ness and �nancial news was addressed by asking subjects with experience in

journalism to read about a subject and then dictate a text. The journalists

were not allowed to read from a draft, but were allowed to reject ill-formed

sentences [90]. The word error on this data was about 14%. Another task ad-

dressed speech recognition of non-native talkers. With a set of 40 adaptation

sentences, speaker adaptation reduced the word error rate by 2 (from 21%

to 11%). Although not an o�cial benchmark result, comparable word error

reductions have been obtained for native speakers on other tasks.

**maybe this should be later?** While the results given here are for Ameri-

can English, somewhat comparable results have been reported by various sites

for other languages. The LRE Sqale (Speech recognizer Quality Assessment

for Linguistic Engineering) project [181], which aimed to assess language-

dependent issues in multilingual recognizer evaluation, demonstrated that the

same recognition technology and evaluation methodology used for American

5

With the exception of the telephone recordings, the speakers were allowed to repeat their

recording if unsatis�ed with it. [?]
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English could be successfully applied to a dictation task in British English,

French and German.

The speech recognizer is often considered a critical component of spoken di-

alog systems, which aim to enable vocal access to stored information. In order

to provide user-friendly interaction with a machine, it is necessary to be able

to recognize naturally spoken spontaneous utterances from unknown speak-

ers. In general each user interacts only brie
y with the machine, so there

is very little data available for model adaptation. Telephone services are a

natural area for spoken dialog systems as the only means of interaction with

the machine are via voice and have thus been the focus of many development

e�orts. Since all interaction with the caller is by speech, dialog design and

response generation are of particular importance in the context of natural,

mixed-initiative dialogs. Growing in popularity are information kiosks [52]

and multimedia web interfaces, in which di�erent modalities (tactile and au-

dio) can be used for input and output. The speech recognition component of

dialog systems are typically faced with more challenging acoustic conditions

than for dictation tasks, being subject to channel distortions, varied handsets

and noisy background conditions. The capability of the user to interrupt the

machine is often considered as crucial for usability.

In contrast to dictation applications where it is relatively straight-forward

to obtain large written corpora for language modeling, for dialog systems it

is usually necessary to collect application-speci�c data, which can represent a

signi�cant portion of the development e�ort [97]. Acquiring su�cient amounts

of LM training data is more challenging than obtaining acoustic data. With

10 k queries relatively robust acoustic models can be trained, but this number

of queries will typically contain fewer than 100 k words, which may not be

su�cient for word list development or for training n-gram language models,

and are unlikely to yield a complete coverage of the task.

The most widely known e�orts in evaluation of SLDSs are the Darpa Atis

task [72, 109, 138], the German national Verbmobil project [169] and the

EC Language Engineering projects [111, 112]. A wide range of word error

rates have been reported for the speech recognition components of a spoken

dialog systems, ranging from under 5% for simple travel information tasks

using close-talking microphones to over 25% for telephone-based information

retrieval systems. It is quite di�cult to compare results across systems and

tasks as di�erent transcription conventions and text normalizations are often

used. It should be noted that reporting word error rates can be somewhat

misleading, since all di�erences between the exact orthographic form of the

query and the recognizer output are counted as errors, and some of recognition

errors (such as gender or plurals) are not important for understanding. A

more appropriate measure could be the error rate on meaningful words or

concepts used in later processing stages. For instance, in the (Darpa Atis

benchmark tests [130, 131]) the understanding error based on the spoken input

was not much larger than the natural language understanding error obtained

using manual orthographic transcriptions. In the case of multimodal systems,
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the e�ectiveness of speech must be assessed in coordination with the other

modalities.

A more recent application area is the transcription and indexation of gen-

eral audio data, such as radio and television broadcasts

6

, or meetings and

teleconferences, and any kind of audio data mining. Several characteristics of

this type of audio data can be noted. Firstly, it can be considered \found"

data in that it is produced for other reasons, and it is only a secondary bene�t

to be able to automatically structure the data for other uses. Secondly, the

data consists of a continuous audio stream, where there are multiple speaker

turns (maybe overlapping), and there is no a priori segmentation into sen-

tences. Thirdly, the signal capture and background environment can be only

more or less controlled.

Substantially higher word error rates, above 30-40% have been reported for

the transcription of telephone conversational speech using the Switchboard

and multilinugal Callhome (Spanish, Arabic, Mandarin, Japanese, German)

corpora. While most of the results given here are for American English,

somewhat comparable results have been reported by various sites for other

languages including French, German and British English.

Over the last few years there has been increasing interest in the transcription

of radio and television broadcasts, often referred to as \found speech." This

is a major step for the community in that the test data is taken from a

real task, as opposed to consisting of data recorded for evaluation purposes.

The transcription of such broadcasts presents new challenges as the signal

is one continuous audio stream that contains segments of di�erent acoustic

and linguistic natures. Systems trained on 150h of acoustic data and 200

M words of commercial transcripts achieve word error rates around 20% on

unrestricted broadcast news data. The peformance on studio quality speech

from announcers is comparable to that obtained on WSJ read speech data.

|||******taken from ieee**********||{

**to be substantially reduced ***

Audio Indexing

Automatic speech recognition is a key technology for audio and video index-

ing, for data such as radio and television broadcasts. The transcription and

indexation of speech recorded at meetings, workshops and teleconferences has

many similarities to broadcast data. The transcription of such data presents

new challenges as the signal is one continuous audio stream that contains

segments of di�erent acoustic and linguistic natures.

The characteristics of this type of data are quite di�erent those of data in-

put to most speech recognizers in the past. Up until the last few years, speech

6

The earliest work in this area that we are aware of is the NSF Informedia project [71]

under the Digital Libraries News-on-Demand action line. A special section of the Commu-

nications of the ACM was recently devoted to this topic [114].
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recognizers have been confronted primarily with read or prepared speech, as

in dictation tasks where the speech data is produced with the purpose of be-

ing transcribed by the machine, or with limited domain spontaneous speech

in more-or-less system driven dialog systems. In all cases, the user can adapt

his/her language to improve the recognition performance, which can be crucial

for some applications. An interesting aspect of the broadcast news domain

is that, at least for what concerns major news events, similar topics are si-

multaneously covered in di�erent emissions and in di�erent countries and lan-

guages. Automatic processing carried out on contemporaneous data sources

in di�erent languages can serve for multilingual indexation and retrieval. Mul-

tilinguality is thus of particular interest for media watch applications, where

news may �rst break in another country or language.

Radio and television broadcast shows are challenging to transcribe as they

contain signal segments of various acoustic and linguistic natures. The signal

may be of studio quality or may have been transmitted over a telephone or

other noisy channel (i.e., corrupted by additive noise and nonlinear distor-

tions), or can contain speech over music or pure music segments. Gradual

transitions between segments occur when there is background music or noise

with changing volume, and abrupt changes are commonwhen there is a switch

between speakers in di�erent locations. The speech is produced by a wide

variety of speakers: news anchors and talk show hosts, reporters in remote

locations, interviews with politicians and common people, unknown speakers,

new dialects, non-native speakers, etc. Speech from the same speaker may

occur in di�erent parts of the broadcast, and with di�erent background noise

conditions. The linguistic style ranges from prepared speech to spontaneous

speech. Acoustic and language modeling must accurately account for this

varied data.

Two principle types of problems are encountered in automatically transcrib-

ing audio data streams: those relating to the varied acoustic properties of the

signal, and those related to the linguistic properties of the speech. Noise ro-

bustness is also needed in order to achieve acceptable performance levels. In

order to be robust with respect to the varied acoustic conditions, the acoustic

models are typically trained on large corpora (several tens of hours to over a

hundred hours) containing all data types. Band-limited acoustic models are

often used for segments labeled as telephone speech.

The linguistic models are similarly trained on large text corpora from

various sources with di�erent linguistic properties, such as newspaper and

newswire texts, Internet data, commercial transcriptions and detailed tran-

scriptions of acoustic data. For example, the Limsi American English lan-

guage models result from the interpolation of 3 language models trained on

di�erent sources: 200 million words of commercial broadcast news transcrip-

tions; 350 million words of North American Business newspapers and Asso-

ciated Press Wordstream texts; and 1.6 million words corresponding to the

transcriptions of the broadcast news acoustic training data. The importance

of the accurate transcriptions can be seen in that the interpolation coe�cient
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of this data is .25, despite the limited amount available. In fact, there is only

a slight performance degradation (under 2% relative) if only the commercial

transcripts and acoustic data transcripts are used for LM training.

Most of todays state-of-the-art systems for transcription of broadcast data

employ the techniques described in Section ??, such as PLP features with

cepstral mean and variance normalization, VTLN, unsupervised MLLR, de-

cision tree state tying, gender- and bandwidth-speci�c acoustic models. The

recognition vocabulary contains 65,000 or more words, with a lexical coverage

over 99% on the American English broadcast news data. Given the sponta-

neous nature of parts of the audio data, it is important to explicitly model

�ller words and breath noise [51], which are less common in dictation.

Word recognition is generally performed in two or more decoding passes.

The �rst pass is used to generate an initial word hypothesis, which is used

for unsupervised cluster-based acoustic model adaptation. This adaptation,

which aims to reduce the mismatch between the models and the data, is

needed for generating accurate word hypotheses. When multiple decoding

passes are carried out, information is usually transmitted via word graphs or

lattices.

Over the last 4 years tremendous progress has been made on transcription of

broadcast data [133, 134, 135]. State-of-the-art transcription systems achieve

word error rates around 20% on unrestricted broadcast news data, with a

word error of about 15% obtained on the recent NIST test sets which were

selected to include of higher proportions of studio and announcer data [44].

Transcription performance varies quite a bit across the data types. The av-

erage word error rate reported on prepared, announcer speech was about 8%

in the Darpa'98 benchmark data and under 2% for some speakers. Perfor-

mance decreased substantially for spontaneous portions (average word error

15%), degraded acoustic conditions (average word error 16%), or speech from

non-native speakers (over 25%).

The transcription of broadcast data has also been a recent focus of re-

search e�orts in several other languages, including French, German, Italian,

Japanese, Mandarin and Spanish [22, 81, 86, 126, 135] using the same tech-

nology. The reported error for these languages are somewhat higher than for

American English which can be at least partially attributed to the smaller

amounts of training data available in other languages, in particular to the

di�culty of obtaining commercial transcripts for language model estimation.

For example, in the context of the LE-Olive project, we have developed tran-

scription systems for French and German, with word error rates around 30%

higher than the best reported results for American English.

The same technology can be applied to other problems, such as the tran-

scription of meetings and conferences, or telephone conversations (help lines,

call centers). Each of these tasks poses a set of speci�c problems with regard

to signal capture (single or multiple channels), speaker population, speaking

style and linguistic content, etc. The closest task for which speech recognition

results are publicly available is the Darpa Hub5 conversational speech recog-

c

1999 by CRC Press LLC



nition task using the Switchboard [65] and multilingual Callhome (Spanish,

Arabic, Mandarin, Japanese, German) corpora. The word rates reported for

this data, on the order of 30-40% [182], are substantially higher than those for

broadcast news. The Callhome data is particularly challenging to transcribe

as the conversations are between two people that know each other, and speak

in a familiar manner about subjects of common interest. In addition there are

varied acoustic conditions with respect to the background environment and

the telephone channel.

As part of the SDR'99 TREC-8 evaluation 500 hours of unpartitioned,

unrestricted American English broadcast data were indexed using both state-

of-the-art speech recognizer outputs and manually generated closed caption-

ing [50, 168]. The average word error measured on a representative 10 hour

subset of this data was around 20% for state-of-the-art systems [50]. It is im-

portant to note that not all errors are important for information retrieval, par-

ticularly since most information retrieval systems �rst normalize word forms

(stemming). Only small di�erences in information retrieval performance were

observed for automatic and manual transcriptions when the story boundaries

are known, indicating that the transcription quality may not be a limiting

factor on IR performance for current IR techniques.

|||******end from ieee**********||{

Language Dependencies & Portability

Statistically-based speech recognition technology has been successfully em-

ployed for a variety of tasks and languages. The porting of a recognition

system to a new task or another language requires the availability of su�-

cient amounts of transcribed training data and substantial e�ort is involved

to construct the acoustic and language models, and to develop the recognition

lexicon. Often, however, the necessary resources are not available and gener-

ating them can be long and expensive. Minimizing the required training data

(or determining how to optimally acquire such data) remains an outstanding

challenge. Yet the performance and development costs largely depend on the

available resources and the experience of the system designer.

Acoustic models trained on a su�ciently large and varied corpus (for exam-

ple a minimum of 10 hours of speech from 100 speakers) appear to be general

enough to use as bootstrap models for a new task without task-speci�c train-

ing data if appropriate normalization and compensation techniques are used

to reduce di�erences in the recording conditions (microphone, channel, en-

vironmental noise). However, if speed is an important factor, it can still be

interesting to train on task-speci�c acoustic data to better account for the

phonetic coverage of the task.

Language model and lexicon development remain quite task dependent.

For some tasks, such as domain-speci�c dictation, there is a wealth of written

texts that can be used for vocabulary selection and language model estimation.

For other tasks, in particular for spoken dialog systems, very little (if any)
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text data may be available, and data collection is an unavoidable development

step. Using a recognition system for data collection has been found to be quite

e�ective for such tasks, with successively more accurate systems available as

the amount of training data increases [64]. Techniques for adaptation of both

the acoustic and language models can greatly improve the performance of a

system throughout the development process.

Determining the pronunciation lexicon is often one of the most labor in-

tensive aspects of porting to a new task. Although letter-to-sound conversion

programs are available for some languages, these have almost exclusively been

developed for speech synthesis purposes and therefore are less appropriate for

speech recognition. One of the most common techniques is to make use of a

reference lexicon which has been veri�ed (usually both manually and in the

context of a system) to serve as a base lexicon. The baseform pronunciations

may have been generated using letter-to-sound rules. New words are then

added either by using the same letter-to-sound rules, or pronunciation gen-

eration tools [92] and often manually corrected. A means of automatically

adding new words and pronunciations to the recognition lexicon is crucial for

successful deployment of speech technologies.

Substantial e�ort may be required to develop a usable system according to

the task constraints, even from demonstrated state-of-the-art technology. In

adapting a state-of-the-art laboratory speech recognizer for real-world use, all

aspects of the speech recognizer must be reconsidered, from signal capture

to adaptive acoustic and language models. Given application constraints,

standard laboratory development procedures may need to be revised.

Although English has been the predominant language for the computer

world there has been a large growth in the information available in electronic

form (both online and o�ine) in many of the world's languages. As a result,

speech recognition and natural language processing in multiple languages has

become a necessity. Building a recognizer for another language is not so di�er-

ent than building a recognizer for a new task, particularly for close languages.

Language-dependent system components (such as the phone set, the need for

pronunciation alternatives or phonological rules) evidently must be changed.

Other language dependent factors are related to the de�nition and acoustic

confusability of the words in the language (such as homophone, monophone,

and compound word rates) and the word coverage of a given size recognition

vocabulary. Taking into account language speci�cities can evidently improve

recognition performance. For example, tonal languages such as Chinese may

bene�t from explicit modeling of pitch, which in turn may require modi�ca-

tions to the feature analysis used.

Language portability is particular important for audio indexation tasks,

where a a characteristic of the broadcast news domain is that, at least for

what concerns major news events, similar topics are simultaneously covered

in di�erent emissions and in di�erent countries and languages. Automatic

processing carried out on contemporaneous data sources in di�erent languages

can serve for multi-lingual indexation and retrieval. Multilinguality is thus of
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particular interest for media watch applications, where news may �rst break

in another country or language. **remove limsi??** The Limsi American

English broadcast news transcription system has been ported to six other

languages. At the lexical level, a given size lexicon will have di�erent coverage

across languages and highly in
ected languages require a larger lexicon to

adequately represent the language. (see table)

Lexicon N-gram Test

Language #phones size coverage perplexity %Werr

English 48 65k 99.4% 140 20

French 37 65k 98.8% 98 23

German 51 65k 96.5% 213 25

Mandarin 39 40k+5k chars 99.7% 190 20

Spanish 27 65k 94.3% 159 20

Portuguese 39 65k 94.0% 154* 40

Arabic 40 65k 90.5% 160* 20

Figure 1.8 Some language characteristics. For each language are speci�ed: the

number of phones used to represent lexical pronunciations, the approximate vocab-

ulary size in words (characters for Mandarin) and lexical coverage (of the test data),

the test data perplexity with a 4-gram language models *(3-gram for Portuguese and

Arabic), duration and the word/character error rates. For Arabic the vocabulary

and language model are vowelized, however the word error rate does not include

vowel or gemination errors.

Porting a recognizer to another language necessitates modifying those sys-

tem components which incorporate language-dependent knowledge sources

such as the phone set, the recognition lexicon, phonological rules and the lan-

guage model. Other considerations are the acoustic confusability of the words

in the language (such as homophone, monophone, and compound word rates)

and the word coverage of a given size recognition vocabulary. There are two

predominant approaches taken to bootstrapping the acoustic models for an-

other language. The �rst is to use acoustic models from an existing recognizer

and a pronunciation dictionary to segment manually annotated training data

for the target language. If recognizers for several languages are available, the

seed models can be selected by taking the closest model in one of the avail-

able language-speci�c sets. An alternative approach is to use a set of global

acoustic models, that cover a wide number of phonemes [?]. This approach

o�ers the advantage of being able to use multilingual acoustic models to pro-

vide additional training data, which is particularly interesting when only very

limited amounts of data (< 10 hours) for the target language are available.

There are some notable language speci�cities. The number of phones use

in the recognition lexicon is to range from 25 for Spanish to 51 for German

(see Table 1.1). The Mandarin phone set distinguishes 3 tones, which are
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associated with the vowels. If the tone distinctions are taken into account

the Mandarin phone set di�erentiates 61 units. For most of the languages

it is reasonably straightforward to generate pronunciations (and even some

predictable variants) using grapheme-to-phoneme rules. The automatically

generated pronunciations can optionally be manually veri�ed. A notable ex-

ception is the English language for which most of the pronunciations have

been manually derived. Another important language characteristic is the lex-

ical variety. The agglutination and case declension in German results in a

signi�cantly larger OOV rate for a �xed size lexicon. French, Spanish and

Portuguese all have gender and number agreement which expands the lexical

variety, which for French also leads to a high homophone rate, particularly for

verb forms. The Mandarin language also poses the problem of word segmen-

tation, but this is o�set by the opportunity to eliminate OOVs by including

all characters in the recognition word list [?]. The Arabic language also is

agglutinative, but a larger challenge is to handle to lack of vowelization in

written texts. This is compounded by a wide variety of Arabic dialects, many

of which do not have a written form.

At Limsi broadcast news transcription systems have been developed for

the American English, French, German, Mandarin, Spanish, Arabic and Por-

tuguese languages. To give an idea of the resources used in developing these

systems, there are roughly 200 hours of transcribed audio data for Ameri-

can English, about 50 hours for French and Arabic, 20 hours for German,

Mandarin and Spanish, with 3.5 hours for Portuguese. The data come from

a variety of radio and television sources. Obtaining appropriate language

model training data is also di�cult. While newspaper and newswire texts

are becoming widely available in many languages, these texts are quite di�er-

ent than transcriptions of spoken language. There are also signi�cantly more

language model training texts available for American English (over 1 billions

words including 240 million words 10k hours of commercially produced tran-

scripts). For the other languages there are on the order of 200-300 millions

words of texts, with the exception of Portuguese where only 70 millions words

are available. It should be noted that French is the only language other than

American English for which commercially produced transcripts are available

(20 million words).

Some of the system characteristics are shown in Table 1.1, along with in-

dicative recognition performance rates. The word error rate on unrestricted

American English broadcast news data is about 20% [?, ?]. The transcription

systems for French and German have comparable error rates for news broad-

casts [?]. The character error rate for Mandarin is also about 20% [?]. Based

on our experience, it appears that with appropriately trained models, recog-

nizer performance is more dependent upon the type and source of data, than

on the language. For example, documentaries are particularly challenging to

transcribe, as the audio quality is often not very high, and there is a large

proportion of voice over.

With today's technology, the adaptation of a recognition system to a dif-
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ferent task or language requires the availability of su�cient amounts of tran-

scribed training data. Obtaining such data is usually an expensive process

in terms of manpower and time. Recent work has focused on reducing this

development cost [?].

Standard HMM training requires an alignment between the audio signal

and the phone models, which usually relies on an orthographic transcription

of the speech data and a good phonemic lexicon. The orthographic transcrip-

tion is usually considered as ground truth, that is the word sequence should by

hypothesized by the speech recognizer when confronted with the same speech

segment. One can imagine training acoustic models in a less supervised man-

ner. Any available related linguistic information about the audio sample can

be used in place of the manual transcriptions required for alignment, by incor-

porating this information in a language model, which can be used to produce

the most likely word transcription given the current models. An iterative

procedure can successively re�ne the models and the transcription.

One approach is to use existing recognizer components (developed for other

tasks or languages) to automatically transcribe task-speci�c training data.

Although in the beginning the error rate on new data is likely to be rather high,

this speech data can be used to re-train a recognition system. If carried out

in an iterative manner, the speech corpus can be cumulatively extended over

timewithout direct manual transcription. This approach has been investigated

in [86, ?, ?].

There are certain audio sources such as radio and television news broad-

casts, that can provide an essentially unlimited supply of acoustic training

data. However, for the vast majority of audio data sources there are no

corresponding accurate word transcriptions. Some of these sources, in partic-

ular, the main American television channels also broadcast manually derived

closed-captions. The closed-captions are a close, but inexact transcriptions

of what is spoken, and are only coarsely time-aligned with the audio signal.

Manual transcripts are also available for certain radio broadcasts. There also

exist other sources of information with di�erent levels of completeness such as

approximate transcriptions or summaries, which can be used to provide some

supervision.

Experiments exploring lightly supervised acoustic model training were car-

ried out using unannotated audio data containing over 500 hours of BN audio

data [?]. First the recognition performance as a function of the available

acoustic training data was assessed. With 200 hours of manually annotated

acoustic training data (the standard Hub4 training data), a word error rate of

18.0% was obtained. Reducing the training data by a factor of two increases

the word error rate to 19.1%, and by a factor of 4 to 20.7%. With only 1

hour of training data, the word error rate is 33.3%. A set of experiments in-

vestigated the impact of di�erent levels of supervision via the language model

training materials. Language models were estimated using various combina-

tions of the text sources, from the same epoch as the audio data or predating

the period. Since newspaper and newswire sources have only an indirect corre-
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spondence with the audio data, they provide less supervision than the closed

captions and commercially generated transcripts [?]. While all of the lan-

guage models provided adequate supervision for the procedure to converge,

and those that included commercially produced transcripts in the training

material performed slightly better. It was found that somewhat comparable

acoustic models could be estimated on 400 hours automatically annotated BN

data and 200 hours of carefully annotated data.

This unsupervised approach was used to develop acoustic models for the

Portuguese language for which substantially less manually transcribed data

are available. Initial acoustic model trained on the 3.5 hours of available

data were used to transcribe 30 hours of Portuguese TV broadcasts. These

acoustic models had a word error rate of 42.6%. By training on the 30 hours

of data using the automatic transcripts the word error was reduced to 39.1%.

This preliminary experiment supports the feasibility of lightly supervised and

unsupervised acoustic model training.

Improving Genericity

In the context of the EC Coretex project, research is underway to improve

the genercity of speech recognition technology, by improving the basic tech-

nolgoy and exploring rapid adaptation methods which start with the initial

robust generic system and enhance performance on particular tasks. To this

extent, cross task recognition experiments have been reported where models

from one task are used as a starting point for other tasks [?, ?, ?, ?, ?, ?].

In [?] broadcast news (BN) [?] acoustic and language models to decode the test

data for three other tasks (TI-digits [?], ATIS [?] and WSJ [?]). For TI-digits

and ATIS the word error rate increase was shown to be primarily due to a

linguistic mismatch since using task-speci�c language models greatly reduces

the error rate. For spontaneous WSJ dictation the BN models out-performed

task-speci�c models trained on read speech data, which can be attributed to

a better modelization of spontaneous speech e�ects (such as breath and �ller

words).

Methods to improve genericity of the models via multi-source training have

been investigated. Multi-source training can be carried out in a variety of

ways { by pooling data, by interpolating models or via single or multi-step

model adaptation. The aim of multi-source training is to obtain generic mod-

els which are comparable in performance to the respective task-dependent

models for all tasks under consideration. Compared to the results obtained

with task-dependent acoustic models, both data pooling and sequential adap-

tation schemes led to better performance for ATIS and WSJ read, with slight

degradations for BN and TI-digits [?].

In [?] cross-task porting experiments are reported for porting from an Italian

broadcast news speech recognition system to two spoken dialogue domains.

Supervised adaptation was shown to recover about 60% of the WER gap

between the broadcast news acoustic models and the task-speci�c acoustic
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models. Language model adaptation using just 30 minutes of transcriptions

was found to reduce the gap in perplexity between the broadcast news and

task-dependent language models by 90%. It was also observed that the out-

of-vocabulary rates for the task-speci�c language models are 3 to 5 times

higher than the best adapted models, due to the relatively limited amount of

task-speci�c data and the wide coverage of the broadcast news domain.

Techniques for large-scale discriminative training of the acoustic models of

speech recognition systems using the maximum mutual information estima-

tion (MMIE) criterion in place of conventional maximum likelihood estima-

tion (MLE) have studied and it has been demonstrated that MMIE-based

systems can lead to sizable reductions in word error rate on the transcription

of conversational telephone speech [?]. Experiments on discriminative train-

ing for cross-task genericity have made use of recognition systems trained on

the low-noise North American Business News corpus of read newspaper texts

and tested on television and radio Broadcast News data. These experiments

showed that MMIE-trained models could indeed provide improved cross-task

performance [?].

Perspectives

**robustness**

**improving model genericity and portability**

**Unsupervised training for AM and LMs**

Despite the advances in technology witnessed over the last decode recogni-

tion performance remains highly dependent upon the task, the talker, speak-

ing style, recording and environmental conditions etc.

Despite recent progress, automatic speech recognition performance remains

far from human performance [34, 41, 106, 165], with di�erences in the range of

a factor of 5 to 10, depending upon the transcription task and test conditions.

To reduce this di�erence further improvements are needed in the modeling

techniques at all levels: acoustic, lexical and linguistic (syntactic and seman-

tic).

It is well acknowledged that for laboratory systems (to the best of our

knowledge no performance measures are available for commercial dictation

systems) there can be a huge performance di�erence, such as a factor of 20

or more in the word error rates for the best (1-2%) and worst speakers (25-

30%). This can be attributed to a variety of factors [43] mainly, the speaking

style and speaking rate. For moderate speaking rates (120-160 words per

minute), there is no strong correlation between speaking rate and word error

rate, however, for speaking rates over 180 words per minute, the word error

rate increases signi�cantly [131]. Acoustic model adaptation can partially re-

duce this di�erence, but requires several minutes of data to be e�cient, which

limits its use. Faster adaptation techniques which can better account for the

correlation between the parameters of the model are therefore needed. Reduc-
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ing this di�erence may also require adaptive pronunciation models, which can

predict pronunciation variants based on the observed pronunciations for the

given speaker. A person who pronounces a word in a given manner is likely to

pronounce similar words in a similar way. Similarly, at the cross-word level,

di�erent speakers make use of di�erent phonological rules. Although these

rules are usually systematic, no systems that we know of are able to make use

of this consistency.

Even with an average word error rate of 5% for speaker adapted dictation

systems, the user must correct one out of twenty words, which is a costly

process. An analysis of real users' experience with dictation, comparing the

e�ciency of dictation with typing is given in [84].

One class of future potential products based on dictation technology are

telephone services o�ering the ability to dictate a letter, fax or email message.

However, before such applications can become widespread, performance will

need to be improved. Extrapolating from the results given above for sponta-

neous journalist dictation and for read telephone speech, expected word error

rates for spontaneous dictation over the telephone are likely to be over 30%.

Distributed speech recognition, where acoustic parameterization is carried out

on the local handset or webphone, and the coded parameters transmitted to

a central server for recognition, may help solve this problem by eliminating

the variability due to the telephone channel.

Concerning language modeling, to date techniques for longer term agree-

ment have resulted in only minimal improvements. They should however be

useful for accurate transcription of highly in
ected languages where 3-grams

are clearly not the optimal solution.

Keeping the language model up-to-date is a challenge for broadcast news

transcription due to the the fast, changing nature of news. New topics appear

suddenly, and remain popular for quite variable length time periods. One of

the most di�cult problems is to be able to recognize previously unseen or rare

proper names. Fortunately other sources of contemporary data are available

to help keep the system up-to-date, such as written documents from newspa-

pers and newswires, many now available on the Internet, which can be used

by the transcription system to continually update its lexicon and language

model. This is not a trivial problem since producing phonetic transcriptions

of new words such as proper names (in particular for foreign names which are

quite common in broadcast data) must rely on some acoustic evidence, since

the pronunciation of foreign words can be quite variable depending upon the

talker's knowledge of the foreign language.

Developing systems for many languages at reasonable cost is a problem

that may require less supervised training procedures. Some very promising

work has been recently reported by [86] using untranscribed training data

for acoustic model estimation. An initial system is developed using a small

amount of training data (10 hours). This system is then used to transcribe

a second set of data, and models are reestimated. The new models are then

used to transcribe more data, and the cycle is reiterated.
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In our view, the main challenge of spoken language dialog systems is to pro-

vide a natural, user-friendly interface with the computer, allowing easy access

to the stored information. The user should be free to ask any question or to

provide any information at any point in time, but the system should help the

user if the user appears to be in di�culty. We have observed that some speak-

ers had serious di�culty in interacting with the Arise system, and suspect

that there is a class of users that will experience similar di�culties with any

such system. How large a percentage of the targeted user population falls into

this category of user is unknown. Even for deployed systems, evaluation is

carried out on the calls that are received, by default eliminating people that

have called the system only once and never called back. Speech recognition

for SLDSs is complicated by the fact that speaker-independent modeling is a

necessity, as the total amount of speech during any interaction is small so that

it is di�cult to take advantage of model adaptation. As discussed above, this

results in a wide range in recognition errors across speakers, and in particular

for speech from non-native speakers, for whom the word error can be twice

as high as for native ones [64]. Also, in order to improve speech recognition

performance on spontaneous speech it may be interesting to question the ba-

sic units used for acoustic modeling, as units other than context-dependent

phones may prove to better capture the large amount of phonological vari-

ants. For language modeling a similar question can be posed regarding how to

better model contractions and sloppy articulation resulting in word deletions.

Task independence is another outstanding challenge, particularly concern-

ing the language models. If su�cient acoustic training data is available, it

is possible to estimate acoustic models that work pretty well for a variety

of tasks. This is not the case for language models, where domain coverage

is critical. Constructing corpora that are representative, complete, and yet

at the same time not too big, remains an open research area in spite of our

collective experience.

Although it is generally advocated that speech can provide a more nat-

ural interface with the computer than a keyboard or a mouse, few studies

have addressed multimodal interaction using speech. User trials of the Mask

kiosk [93] carried out with over 200 subjects demonstrated that for this task

multimodality is more e�cient (faster and easier) than unimodality as some

actions are better carried out by voice and others by touch. These studies also

showed that subjects performed their tasks more e�ciently as they became

familiarized with the Mask system, learning to exploit the vocal input and

bene�ting from the multiple modalities. Audio-visual speech recognition [145]

is a promising research direction to improve the usability of multimodal kiosks.

Despite the numerous advances made over the last decade, speech recogni-

tion is far from a solved problem. Much of the recent progress in LVCSR has

been made fostered by the availability of large corpora for training and test-

ing speech recognition and understanding technology. However, constructing

corpora that are representative, complete, and yet at the same time not too

big, remains an open research area in spite of our collective experience. Re-
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cent e�orts have been directed at developing generic recognition models and

the use of unannotated data for training purposes, in an aim to reduce the

reliance on manually annotated training corpora.

It has often been observed that there is a large di�erence in recognition

performance for the same system between the best and worst speakers. Un-

supervised adaption techniques do not necessarily reduce this di�erence, in

fact, often they improve performance on good speakers more than on bad

ones. Interspeaker di�erences are not only at the acoustic level, but also the

phonological and word levels. Today's modeling techniques are not able to

take into account speaker-speci�c lexical and phonological choices.

A wide range of potential applications can be envisioned based on tran-

scriptions of broadcast data, particularly in light of the recent explosion of

such media, which required automated processing for indexation and retrieval

(Chapters 29, 30 and 32). Related spoken language technologies, such as

speaker and language identi�cation, which rely on the same modeling tech-

niques, are clearly of interest for automated processing of large multilingual

corpora. Important future research will address keeping vocabulary up-to-

date, language model adaptation, automatic topic detection and labeling,

and enriched transcriptions providing annotations for speaker turns, language,

acoustic conditions, etc.
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