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Abstract

In order to formalize the information used in spectrogram reading, a
knowledge-based system for identifying spoken stop consonants was
developed. Speech spectrogram reading involves interpreting the
acoustic patterns in the image to determine the spoken utterance. One
must selectively attend to many different acoustic cues, interpret their
significance in light of other evidence, and make inferences based on
information from multiple sources. The evidence, obtained from both
spectrogram reading experiments and from teaching spectrogram
reading, indicates that the process can be modeled with rules.
Formalizing spectrogram reading entails refining the language used to
describe acoustic events in the spectrogram, selecting a set of relevant
acoustic events that distinguish among phonemes, and developing
rules which map these acoustic attributes into phonemes. One way to
assess how well the knowledge used by experts has been captured is by
embedding the rules in a computer program. A knowledge-based
system was selected because the expression and use of knowledge are
explicit. The emphasis was in capturing the acoustic descriptions and
modeling the reasoning used by human spectrogram readers. In this
paper, the knowledge acquisition and knowledge representation, in
terms of descriptions and rules, are described. A performance
evaluation and error analysis arc also provided, and the performance
of an HMM-based phone recognizer on the same test data is given for
comparison.

1. Introduction

While spectrograms have been used in speech analysis for many years, over the last
decade there has been revived interest in the application of spectrogram reading toward
continuous speech recognition. The spectrogram displays the energy distribution in the
speech signal as a function of both time and frequency. Spectrogram reading involves
interpreting the acoustic patterns in the image to determine the spoken utterance. One
must selectively attend to many different acoustic cues, interpret their significance in
light of other evidence, and make inferences based on information from multiple
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sources. In a series of experiments intended to illustrate the richness of phonetic
information in the speech signal (Cole, Rudnicky, Zue & Reddy, 1980), Zue demon-
strated that high performance phonetic labeling of a spectrogram could be obtained
without the use of higher level knowledge sources such as syntax and semantics. The
phonetic transcription thus obtained was better than could be achieved by automatic
speech recognition phonetic front ends (Klatt, 1977). It appears that the humans’ ability
to handle partial specification, integrate multiple cues, and properly interpret conflicting
information contributes greatly to this high level of performance.

The spectrogram reader applies a variety of constraints to the identification problem
including knowledge of the acoustic correlates of speech sounds and their contextual
variation, and phonotactic constraints. The reasoning used in spectrogram reading tends
to be qualitative in nature. Acoustic events are either present or absent, often extend
over both time and frequency, and may occur simultancously. While it is impossible to
know what the expert spectrogram reader is thinking as the spectrogram is interpreted, it
appears that much of the knowledge can be expressed as rules (Zue, 1981). However, few
compilations of rules or strategies exist (Rothenberg, 1963; Fant, 1968). A knowledge-
based system appears 1o be a natural medium within which to incorporate the
knowledge, since it provides a means of understanding how the attributes and rules
interact and how the system arrives at its decisions. Recently, several attempts have been
made to build automatic speech recognition systems that model spectrogram reading
directly (Johannsen, MacAllister, Michalek & Ross, 1983; Johnson, Connolly &
Edmonds, 1984; Carbonell, Damestoy, Fohr, Haton & Lonchamp, 1986; Fohr, 1986;
Stern, 1986; Stern, Eskénazi & Memmi, 1986; Zue & Lamel, 1986; Lamel, 1988a,b; Fohr,
Carbonell & Haton, 1989; Meloni, Betari & Gilles, 1989; O'Kane, Keene, Landy &
Adtkins, 1989; Tattegrain & Caclen, 1989).

This paper reports on an attempt to formalize the knowledge used in spectrogram
reading by incorporating it in a knowledge-based system. Since the emphasis was on
formalizing the knowledge, a commercially available expert system shell, ART, was used
for the implementation. Spectrogram reading knowledge is encoded in the descriptions
of acoustic events visible in the spectrogram, and in the relationships between the
acoustic events and phonemes. The acoustic events are described in terms of prototypes,
and the relations between phonemes and acoustic events are expressed in a set of rules.
The degree to which the knowledge has been formalized can be judged by the
performance of the system, the types of errors made by the system, and the reasoning
used. The remainder of this paper is as follows. First a brief introduction to spectro-
grams and spectrogram reading is provided, followed by a definition of the stop
identification task. In Sections 3 and 4 the acquisition of knowledge and the knowledge
representation are described, followed by the rules and strategy in section 5. The system
evaluation and error analysis are provided in Section 6, and the performance is
compared to that of an HMM-based phonetic recognizer on the same test data (Gauvain
& Lamel, 1992).

2. Spectrograms and spectrogram reading

Since the invention of the sound spectrograph (Koenig, Dunn & Lacey, 1946),
spectrograms have been used extensively by researchers in the speech community. In this
research, the wide-band spectrogram, produced with a bandwidth of 300 Hz, has been
used. Since the wide-band spectrogram is produced with a short time window, it
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provides good temporal resolution, enabling accurate location of events in time (such as
stop releases or the onset of voicing). In addition, formant frequencies and the spectral
energy in noise-like regions are generally easy to resolve. Figure 1 shows an example
spectrogram of the phonemic sequence /Ipl/, extracted from continuous speech. The
spectrogram is augmented by three parameters: low frequency energy (LFE), total
energy (TE) and center-clipped zero crossing rate (ZCR), along with the original
waveform display. These parameters are useful to the spectrogram reader in identifying
phonemes, particuarly in regions where the acoustic energy is weak, Researchers may
augment the spectrogram with other parameters. For example, Vaissiere (1983) has
found that the fundamental frequency contour aids in interpreting spectrograms of
French sentences.

Some humans have learned to interpret the visual acoustic patterns in the spectrogram
so as to determine the identity of the spoken phonemes or words, a process known as
spectrogram reading. In addition to providing a convenient mechanism for studying
acoustic-phonetics (the relationship between phonemes and their acoustic correlates),
spectrogram reading provides an opportunity to separate the acoustic characteristics of
sounds from other sources of information, such as lexical, syntactic and semantic. It is
difficult to assess the role of the different knowledge sources used by listeners interpret-
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Figure 1. Facts in the dynamic database for the token /Ipl/. (i} Zero crossing
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ing continuous speech. Spectrogram readers may be able to rely on their knowledge of
the acoustic characteristics of speech sounds, how these characteristics change due to
coarticulation, and on phonotactics, the allowable sequences of phonemes in the
language. 1t appears that the spoken phonemes may be labeled in the spectrogram
without considering word hypotheses (Cole & Zue, 1980; Lamel, 1988z,c).

Reading spectrograms entails identifying acoustic characteristics in the image and
applying a variety of constraints to the identification problem. These constraints include
knowledge of the acoustic correlates of speech sounds and their contextual variation,
and phonotactic constraints. Some segments may be easily identified by recognition of
their canonical characteristics, while others require a partiai analysis of the neighboring
segments. The skill also requires the ability to integrate multiple cues and to rely on
secondary cues when the primary ones are not present.

Protocol analysis of the spectrogram reading process (Cole & Zue, 1980) shows there
to be two stages, roughly corresponding to segmentation and labeling. Segmenting the
speech involves placing boundaries to mark acoustic change. Experienced spectrogram
readers often do not explicitly mark boundaries, but rather implicitly denote them via
the labeling. Generally the easy segments, those whose spectral patterns are distinct and
relatively context invariant, are labeled first. Then, with successive revisions, incorporat-
ing the local context and finer acoustic cues, the remaining segments are labeled. For the
reader interested in an example of interpreting a spectrogram, see Zue (1981) or Lamel
(1988a).

2.1. Domain knowledge|/Existence of expertise

The development of a knowledge-based system requires a lot of domain-specific
knowledge and an expert who can solve the problem. While there are still many
unresolved questions in the production and perception of speech, a great wealth of
knowledge exists. The domain knowledge includes our understanding of articulatory
principles, acoustic-phonetics, and phonotactics. For a comprehensive review of the
acoustic theory of speech production see Fant (1960) and Flanagan (1972). The
evidence, obtained from both spectrogram reading experiments (Cole et al., 1980;
Lamel, 1988b) and from teaching spectrogram reading, suggests that there are humans
who qualify as experts. The expert must be able to explain his/her reasoning, as the
process can only be modeled indirectly from the expert’s own descriptions of his/her
actions.

2.2 Task definition

The specific task investigated is the identification of stop consonants extracted {rom
continuous speech. The stops occur in a variety of phonetic contexts selected to test the
importance of knowledge sources thought to be used in spectrogram reading. A partial
segmentation of the speech is provided and the acoustic descriptions are specified by the
user or computed from the segmentation. Restricting the information to the segment to
be identified and its immediate neighbors greatly reduces the complexity of the problem
while retaining much of the contextual influences in American English.
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2.3. Selection of a knowledge-based system shell

This research has focused on the acquisition and formalization of the knowledge base,
rather than the development of a knowledge-based system, or shell, itself. As a result,
existing technology has been used to implement a system for stop identification.

An initial implementation (Zuc & Lamel, 1986) of a knowledge-base and a set of rules
for stop identification used an available MYCIN-based (Shortliffe, 1976), backward-
chaining system. Acoustic measurements were provided semi-automatically to the
system and converted to qualitative descriptions. Rules related the qualitative descrip-
tions to phonetic features, which were then mapped to phonemes. Belicfs in the
preconditions reflected uncertainty in the acoustic descriptions. Strengths in the rule
conclusions reflected how strongly a given acoustic description indicated a phonetic
feature. The system set off to determine the identity of the stop, and in the process
pursued the subgeals of deducing the voicing and place characteristics of the stop. In
each case, the system exhaustively fired all pertinent rules.

The systemn (SS-1) was evaluated on 400 word-initial, intervocalic stops extracted from
the MIT “Ice Cream™ Corpus, containing 1000 sentences (10 from each of 50 male and
50 female speakers). Table I compares the system performance to the performance of
human spectrogram readers on two sets of 100 stops. The averaged human performance
of 2 and 3 spectrogram readers is given, for sets 1 and 2, respectively. The tokens in set 1
were also used to tune the system, which involved setting the thresholds for the mapping
functions, and refining the selected acoustic descriptions and the rules. For set 1, the
system’s performance was comparable to that of the experts. The performance of the
system degraded by 4% when it was confronted with new data (set 2), whereas the
experts’ performance remained high. The degradation of performance from tuning to
test data was attributed primarily to the “lack of experience™ of the system; it had not
learned all the acoustic descriptions and rules used by the experts. The system had
comparable performance on another test set of 200 samples (set 3).

If performance in terms of recognition accuracy was the main objective, the SS-1
system may have been acceptable. However, an important objective of this research was
to develop a system that models the problem-solving procedures used by human experts,
something that the 8S-1 system did not do very well. This was partly due to limitations
imposed by the siructure of the MY CIN-based system. The inferencing of MY CIN did
not enable the system to evaluate multiple hypotheses at any given time. In contrast,
experts tend to use forward induction, and to simultaneously consider a set of possible

TaBLE [. Comparison of human and S8-1 system identification

performance
Number Top Top 2
Condition of tokens  choice (%) choice (%)
set 1 human (2) 200 90 92
systemn 100 88 a5
set 2 human (3) 200 92 926
system 100 84 92

set 3 system 200 83 94
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candidates, although they may use goal-directed reasoning to confirm or rule out
candidates. Since there is redundancy in the acoustic characteristics for a given phonetic
feature, often only a subset of acoustic characteristics are needed to specify it. The goal-
directed control structure of MYCIN always exhaustively fired all rules, while experts
may quit when they have enough evidence for a feature. Other problems occurred with
representing our knowledge in MYCIN’s data structure, the “‘context-tree”. The
MYCIN system did not allow nodes at the same level of the context-tree to share
information, which made it difficult to model coarticulatory effects. As a result, it would
have been difficult to increase the capabilities of the system to identify stops in other
environments, such as consonant clusters. '

Our experience with the §8-1 system indicated the need for a control strategy which
better models the reasoning of spectrogram readers. The expert system shell ART, a
commercial product developed by Inference Co., was selected because it integrates
forward and backward reasoning, allows hypothetical reasoning and has “schemata”
data-structures which provide frame-like capabilities. In addition, ART can be aug-
mented to handle confidences in the preconditions and conclusions.

3. Knowledge acquisition

The knowledge incorporated in the implementation was obtained primarily by observing
others reading spectrograms, by reading spectrograms myself, and by introspection.
Using knowledge about the articulation of speech (and of stop consonants in particular)
as a foundation, spectrograms of stop consonants were studied in order to define
acoustic correlates of their place of articulation and voicing characteristic. An attempt
was also made to determine how the acoustic evidence was weighed and combined in
reaching a decision.

Over the extent of this research T was also fortunate to be involved in attending and
leading several spectrogram reading groups. Spectrogram reading sessions provide a
unique opportunity to gather knowledge. All those attending the session participate in
the interpretation of the spectrogram, generally taking turns at identifying one or a few
segments. When leading groups of beginning spectrogram readers, we usually try to have
them identify easy sounds first (such as strong fricatives, /r/’s and other sounds with
easily recognized acoustic correlates), leaving the more difficult interpretation until the
end, when more contextual constraints can be applied. As the spectrogram readers gain
experience, the spectrogram tends to be read from left-to-right, occasionally skipping
over and returning to difficult regions. At his/her turn, each attendee proposes a label or
sequence of labels for the region, and provides an explanation for his/her decision. When
other spectrogram readers disagree, there can be extensive discussion as to possible
consistent interpretations. At the sessions, particular attention was paid to the acoustic
attributes used by the spectrogram readers and to the reasons they gave to justify their
interpretation. Some of the sessions were tape recorded for further analysis.

Additional knowledge came from spectrogram reading experiments (Lamel, 1988a,b)
and from system development. By analyzing the errors made by the expert spectrogram
readers, I was able to assess some of the tradeoffs they made. For example, some
spectrogram readers consistently favored the information provided by the burst location
over that of the formant transitions. Qthers varied their strategy depending upon which
information they felt was more robust in the given case. Each error was discussed with
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the spectrogram reader who made it in order to elucidate the reader’s reasoning.
Implementing the system led to changes and refinements in the rules, particularly in the
rule ordering. Rule development is an iterative, interactive process. Typically, a few

examples were run through the system and, as a result, rules and rule interactions were
modified.

4. Knowledge representation

The representation used for phonetic decoding combines knowledge from the acoustic
theory of speech production (Fant, 1960) and distinctive feature theory (Jacobson, Fant
& Halle, 1952).

4.1. Static knowledge base

Conceptually there are four levels of representation; phonemes (P), phonetic features
(F), qualitative acoustic attributes (QAA) and acoustic measures (M). A block diagram
of the representation is given in Fig. 2. Moving from left-to-right in the figure provides a
top-down description of the knowledge. The links between the boxes mmemonically
reflect their relationships. Phonemes are defined in terms of their phonetic features.
Internally, phonemes are also grouped into classes reflecting their manner of articula-
tion, such as stops, vowels and fricatives. Grouping phonemes into classes allows some
of the rules of the system to be expressed more succinctly. For example, the features
{+ obstruent, — continuant] are associated with the class of stops, and inherited by cach
member of that class. The phonetic features are related to a set of acoustic attributes,
each of which takes on a qualitative value. The qualitative attributes describe acoustic
events in the speech signal and the canonical temporal and spectral characteristics of the
features. The qualitative attributes are based on our knowledge of the articulation of
speech. They are events seen in a spectrogram or are derived from a quantitative acoustic
measurement made in the speech signal.

Figure 3 shows a subset of the knowledge used to represent the class of stop

feature-of qualitative-attribute-of measure-of
Phonetic Qualitative
p nt;
Phonemes Features Attributes Measurements
has-features has-qualitative-attributes has-measures
Figure 2. Knowledge representation.
has-features has-qualitative-attributes has-measures
@i @ @ VOT-value
4 \ unvoiced prevoiced wiggles
g diffuse F,-location
p alveolar burst frequency
| ] location

Figure 3. Subset of knowledge used to represent stops.
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consonants. The stops, /b,d,g,p,t.k/, are represented by their place of articulation and
their voicing characteristic. The voicing characteristic of a stop is determined primarily
by the acoustic attributes of voice-onset-time (VOT), prevoicing, and aspiration. The
place of articulation decision is based on acoustic attributes describing the frequency and
time distribution of the burst, the aspiration (if the stop is aspirated) and the formant
transitions into the surrounding vowels. The acoustic attributes take on qualitative
values, each of which is associated with an acoustic measure. For example, the VOT is
the time measured from the release of the stop to the onset of voicing in the vowel. A
VOT of 25 ms would be mapped into VOT-short. Similarly, the distribution of energy
across frequency at the stop release may be characterized as compact, diffuse, even, or
bimodal. A compact energy distribution has the energy of the release primarily located
in a frequency range of 1-2 kHz.

Vowels are also represented in the structure. The place of articulation of the vowel is
determined by the tongue height and tongue position, and the position of the lips. The
qualitative acoustic attributes associated with vowels describe the locations and move-
ments of the formants. Acoustically, vowels are also described in terms of duration,
which may be related to the tense/lax feature. The acoustic measures are the formant
frequencies and the duration. For example, a back vowel has a high first formant (F))
location and a low second formant (F,) location, and an F, of 800 Hz is mapped to a
high F,. Semivowels, nasals and fricatives are represented analogously. Some of the
place of articulation attributes for the fricatives and nasals are shared with the stops.

4.2. Dynamic knowledge base

In the preceding section the relationship between objects in the knowledge base were
outlined. The knowledge is static in that it defines prototypes that do not change as a
function of the rules. The representation of each stop can be thought of as a frame
{Minsky, 1975), where the knowledge in the static database defines prototypes and the
default values for each “slot” or attribute. A dynamic database of facts is created for
each token as it is identified. The token exhibits specific acoustic characteristics which
are converted to qualitative acoustic attributes. In turn, these qualitative acoustic
attributes are used in phonetic decoding. The acoustic measures and qualitative acoustic
attributes are obtained from the utierance or by guerying the “user”. The responses
satisfy the preconditions of rules enabling them to fire, resulting in deductions and
further queries for additional information. The framework allows the queries to be
replaced with function calls to measure parameters directly or with database requests to
retrieve prestored measures and/or attributes.

4.3. Qualitative acoustic attributes

The qualitative acoustic attributes (QAAs) describe the acoustic events visible in the
spectrogram. Each segment is represented by a set of QAAs specific for the type of
segment. Table IT lists some examples of qualitative acoustic attributes used to describe
the stop consonants. Each QAA is used to determine the place or the voicing of the stop.
The QAAs represent characteristics of the stop release, the closure interval and the
formant transitions into the surrounding vowels. The stop in Fig. 1 has the qualitative
acoustic attributes listed in the figure.



Stop consonant identification 177

TaBLE II. Examples of qualitative acoustic attributes of stops

Dimension Region Attribute
voicing release VOT-short
VOT-long
aspirated
closure prevoiced
place release burst-location-HF

burst-location-MF
burst-location-LF
burst-location-bimodal
energy-distribution-diffuse
energy-distribution-compact
energy-distribution-even
energy-distribution-bimodal
strength-strong
strength-weak

QAAs are obtained by querying the user or by mapping acoustic measures. Certain
combinations of qualitative acoustic attributes cannot co-occur. For example, it would
be meaningless to have a burst-strength that was both weak and strong. To prevent such
a situation, the rules that query the user for information take into account the facts
already known. For example, if the user responds that burst-strength is strong, then the
system will not query to determine if the burst-strength is weak, but instead auto-
matically asserts that the burst-strength is not-weak.

4.4. Probing the knowledge base

Some facilities were developed for probing both the static and dynamic knowledge bases.
A what-is or what-has question returns a table look-up or definitional answer. A why or
why-not question is generally used to justify in a specific example. Examples of the types
of queries and the forms of responses are given in Table III.

The system response to the query “what-is a [p/?” is that [p/ is a voiceless, labial stop.
The response to “‘what-is voiced?” is a list of all the QAAs that specify voiced: short-
VOT, prevoiced, and not-aspirated. The answer to the query “what-has the feature
voiced?” is the set of stops /b,d,g/. The why-not query is used to ask the system why a
deduction was not made. The system responds with a list of missing and/or contradict-
ory information.

5. Rules and strategy

Plausible strategies for some of the cognitive aspects of spectrogram reading are
simulated through the rules. While it cannot be verified that spectrogram readers use
these or similar strategies, the strategies “feel right”” to the expert. Much of the reasoning
is data-driven—the spectrogram reader sees acoustic events in the spectrogram and
makes deductions based on them. The spectrogram reader takes into account contextual
variation due to coarticulation, is able to combine multiple cues in forming a judgement,
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TasLe IT1. Examples of the types of queries recognized by the system

Question Object Answer

what-is phoneme feature bundle
feature set of acoustic attributes
acoustic attribute  description (value in context)

what-has feature(s) phonemes having feature(s)
acoustic attribute  features having QAA

why phoneme associated deduced features
feature associated QAA’s

why-not phoneme missing features
feature missing or contradictory QAA

and often considers multiple hypotheses at once. Goal-directed reasoning may be used to
confirm or rule out hypotheses. Spectrogram readers are also able to deal with
uncertainty in the acoustic evidence and, to some degree, with acoustic information that
may be contradictory.

An attempt has been made to capture most of the above cognitive aspects in the
implementation. The implementation integrates data-driven and goal-directed reason-
ing. The data-driven rules make deductions based on the qualitative acoustic attributes.
Goal-directed reasoning is used to query the user (or database) for new information and
to confirm or rule out hypotheses. The system models the human capability to
simultaneously consider multiple hypotheses by maintaining a ranking of all candidates
at all times. The rules may be one-to-one, as linking phonetic features and phonemes, or
one-to-many and many-to-one, as in deducing phonetic features from qualitative
acoustic attributes. Thus, the rules provide the capability to handle the problems of
muitiple cues and multiple causes. How spectrogram readers actually combine informa-
tion from multiple sources and deal with uncertain evidence has not been determined,
however, what he/she appears to be doing is modeled. Uncertainty in the acoustic
evidence is modeled by allowing users to specify that an acoustic attribute is present,
absent, or “maybe” present. Constraining the system to use uncertain acoustic attributes
only after using definitive ones provides a mechanism for relaxing constraints under
uncertainty. Uncertainty in the deductions is handled by associating a strength with each
deduction.

5.1, Rules

Different rule sets cover the relations between levels in the representation. Rules map
phonetic features to phonemes, relate qualitative acoustic attributes to phonetic
features, and map acoustic measurements to qualitative acoustic attributes.

5.1.1. Definitional rules

A set of “definitional rules” map the phonemes to their phonectic features. The
representation of stops according to their place of articulation and their voicing
characteristic is shown in Table IV. The rules encode the information in the table
explicitly. An example of a definitional rule is:
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If the voicing of the stop is voiced,
and the place of articulation of the stop is alveolar,
then the identity of the stop is /dj.

While conceptually there are different definitional rules for each stop, they are all
implemented with one rule. The following rule explicitly captures the knowledge that a
stop can be described in terms of its voicing characteristic and its place of articulation.
The rule also combines the beliefs associated with each feature to determine a belief in
the identity of the stop.

If the voicing of the unknown-stop is voicing-
value with voicing-belief

and the place of articulation of the unknown-
stop s place-value with place-belief

and there exists a prototype stop with identity
identity

and with voicing voicing-value

and with place of articulation place-value

then the identity of the unknown-stop is identity
with belief(voicing-belief place-belief ).

5.1.2. Rules relating qualitative acoustic atrributes to features

The relationships between the qualitative acoustic attributes and the phonetic features
are complicated. The majority of the rules in the implementation deal with these
relationships. The rules are all of the form:

If precondition(s)
then conclusion(s) with strength(s).

The preconditions are generally facts that exist in the database. However, the absence
of a fact may also be used as a precondition: whenever the fact exists, it serves to inhibit
the rule from firing.

A given phonetic feature may be signalled by several qualitative acoustic attributes,
resulting in multiple rules to deduce the phonetic feature. For exampie, both a long-VOT
and the presence of aspiration in the stop release are cues for the feature voiceless. The
corresponding two rules are:

If the VOT is long,
then there is strong evidence that
the voicing characteristic is voiceless.

If the release is aspirated,
then there is sfrong evidence that
the voicing characteristic is voiceless.

If, as in the example of Fig. 4(c), the preconditions of both of the rules are satisfied,
then the belief that the voicing of the stop is voiceless will be quite strong. Not all the
qualitative acoustic attributes for a phonetic feature are always present. For any
particular acoustic segment, some or all of the rules may have their preconditions
satisfied and those rules will fire.
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TabLE IV. Phonetic features of stops

b d g p t k
voiced + + + — — -
labial + — - + - -
alveolar - + - - +
velar - - + - -

A given qualitative acoustic attribute may be indicative of different phonetic events,
resulting in rules that have multiple deductions with respect to the context. For example,
in the absence of contextual information, a burst spectrum that has energy predomin-
antly at high frequencies is likely to indicate an alveolar place of articulation, However,
if the stop is in a syllable with a front vowel, the stop is also likely to be velar and mav be
labial. The contextual influences are directly incorporated into the rules as follows:

If the burst-location is high-frequency,
then there is strong evidence that
the place of articulation is alveolar.

If the burst-location is high-frequency,
and the vowel is front
then there is strong evidence that

the place of articulation is velar
and there is weak evidence that

the place of articulation is labial.
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7t H||1' 7
6F :Hv 6
5t 15
N 3 | ]
I 4 3 14
~ I3 1 ]
%13 .. 13
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(a) Itup/ (b) fkip/ (c) fkup/

Figure 4. Spectrograms illustrating contextual variation.
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Figure 4 illustrates an example requiring the use of such contextual information. The
spectral characteristics of the stop release in the spectrograms in (2) and (b) are quite
similar; they both have a predominance of high frequency energy. In this example, it
would not be easy to determine the identity of either stop only by visual inspection of the
release. The spectral characteristics of the release are consistent with both a /t/ and a
front-/k/. However, knowledge that the following vowel in (a) is an fu/ indicates that the
stop is a /t/. The spectral characteristics of a back, rounded /k/ in the syllable /ku/ are
quite different, as can be seen in the spectrogram in Fig. 4(c).

The presence or absence of acoustic evidence may be important. For example, if a stop
is syllable-initial and has a VOT value that is medium (maybe-short and maybe-long),
then the presence of aspiration indicates that it is voiceless, and the absence of aspiration
is indicative of voiced. Two rules that use aspiration to deduce the voicing characteristic
are:

If the stop is syllable-initial
and the VOT is maybe-long and maybe-short,
and the release is aspirated,
then there is strong evidence that
the voicing characteristic is voiceless.

If the stop is syllable-initial
and the VOT is maybe-long and maybe-short,
and the release is nor-aspirated,
then there is medium evidence that
the voicing characteristic is voiced.

Note that the presence of aspiration is a stronger indicator of voiceless than the lack of
aspiration is of voiced. In other cases, the presence of an acoustic attribute may indicate
a feature, but the absence of the acoustic attribute does not provide negative evidence for
that feature. One such acoustic attribute is a “double burst”. When a double burst is
observed it is a strong indicator of a velar place of articulation. However, since a double
burst is not that common, the system must have some evidence that the place of
articulation is velar before attempting to find 2 double burst. The double-burst rule is:

If the place of articulation is velar with belief
and the release has a double burst
then there is strong evidence that

the place of articulation is velar.

The value of the voicing characteristic and of the place of articulation are deduced
independently. While it is possible to deduce phonemes directly instead of features,
deducing phonetic features adds another level of representation and generalization. This
allows commonality in the rules for place or voicing to extend to different manner
classes. For example, vowels and nasals are both shorter preceding voiceless consonants
than voiced consonants in the same syllable, This phonological effect can be captured in
one rule, instead of individually for each phoneme. The formant motion between a vowel
and a consonant depends primarily on the place of articulation of the consonant, and
not on its identity. Thus, for example, the gqualitative acoustic attribute of falling
formants can be associated with the feature labial, covering multiple phonemes,
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Phonotactic constraints are implemented in rules which account for the phonetic
context. For example, if the stop is preceded by a fricative, the system will attempt to
determine whether the fricative is an /s/ or a /z/. If the fricative is a /z/, the system asserts
that the stop is syllable-initial. If the fricative is an /s/, the system must deterrnine
whether or not the /s/ and the stop form a cluster. If the stop is in a cluster with the /s/,
then the stop is voiceless. If the stop is not in a cluster with the /s/, then there is a syllable
boundary between the fricative and the stop, and the syllable-initial rules to deterrine
the voicing of the stop may be applied.

The context is specified in the preconditions of the rules to ensure that they fire only
under the appropriate conditions. When the stop is preceded by a fricative, the formant
motion in the vowel to the left of the fricative is not used, since the formant transitions
should always indicate the alveolar place of articulation of the fricative. This is
implemented by preconditions in the vowel formant rules which specify that the right
context cannot be a fricative. For a stop preceded by a homorganic nasal, the formant
motion in the vowel preceding the nasal is used to infer the place of articulation of the
nasal, which is the same as that of the stop.

5.1.3. Mapping rules

The mapping rules convert acoustic measurements into qualitative attributes. The
mapping rules are implemented as backward-chaining rules, and therefore do not fire
unless they are called upon to produce a result needed by another rule. The mappings are
schematically illustrated in Fig. 5, The rules which map from numerical quantities into
qualitative acoustic attributes are of the form:

If the measured-value is <a
then the attribute has the qualitative-value short
else if the measured-value is > b
then the attribute has the qualitative-value long
otherwise the attribute has the qualitative-values
maybe-short and maybe-long.

The mapping rules typically divide the range into disjoint regions, where measures
falling between regions are associated with both labels. The mapping ranges were hand-
selected by looking at histograms of the measure on a set of training samples. However,
these could be statistically trained if enough data were analysed,

5.2. Control strategy

Spectrogram readers appear to extract acoustic attributes in the spectrogram and to
propose a set of features consistent with the attributes. The candidate set is refined by
looking for additional acoustic evidence to confirm or rule out some of the possibilities.
The control strategy attempts to model the behavior of spectrogram readers. The order
in which the rules fire is controlled by priorities associated with the rules and by the use
of preconditions so as to have the behavior of the system appear more “intelligent”’.

maybe-short
maybe-long
] I
a b

short long

Figure 5. Example of mapping ranges for numerical quantities.
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The system uses general information before using more specific information. This is
implemented by associating higher priorities with the more general rules. Preconditions
are also used to prevent the system from asking for detailed information too early. An
example was shown in the double-burst rule, where there had to be some belief that the
place of articulation was velar before the rule could be applied.

The system maintains a ranking of all candidates. Each time a new fact is asserted into
the database, the ranking rules reorder the candidates for place and voicing. In this way,
the system simultaneously considers multiple hypotheses at the same time. The list of
ordered candidates enables the system to pursue the most likely candidate first. The rules
are ordered so as to seem logical to the user. For example, if labial is the top candidate,
the system tries to determine if the stop has a weak release, as a weak release provides
confirming evidence for labial. If the top candidate is alveolar, and the second candidate
is labial, the system will attempt to find out if the release is strong, as a strong release
favors alveolar over labial. However, if the top two candidates are alveolar and velar,
rules using the strength of the release are postponed, since the release strength is not a
good attribute to distinguish between them.

Without specific “‘termination’ rules, the system exhaustively fires all rules until there
are no more left. However, the system may be run in a mode where, when it has enough
evidence for a feature, it does not exhaustively pursue all the alternatives. This behavior
is implemented by rules which attempt to confirm the top candidate and rule out the
closest competitor when the belief in the top candidate is large enough. If the belief in the
top candidate (and the distance between the top two candidates) increases, then the
system confirms the top candidate and no longer attempts to determine the value of the
feature.

5.3. Combining evidence

The rules provide evidence that a given feature has a particular value. Since there are
multiple rules which deduce the same feature, some way is needed to combine the
evidence from the different rules. Combining evidence is an unsolved problem in expert
systems research. There have been different approaches to the problem, including
probabilistic, such as Bayesian (Duda, Hart & Nilsson, 1976), fuzzy logic (Zadeh, Fu,
Tanaka & Shimura, 1975), and more ad hoc formulations (Keeney & Raiffa, 1976;
Shortliffe, 1976).

The goal in building a knowledge-based system is to use domain knowledge to solve
the problem. By using rules that are based on our knowledge of the articulation of
speech and our cxperience in spectrogram reading, the hope is that reasonable
performance can be obtained with a small amount of training data. Some properties that
a reasonable scoring scheme for this application should have are:

e The scoring must be able to handle both positive and negative evidence.

¢ The combining of evidence should be order independent.

o The combining of evidence should be monotonic. Positive evidence can never
decrease the belief in something and negative evidence can never increase it.

e Since the rules assert conclusions with strengths, the combining should also
preserve the relative strengths of the conclusions. A weak conclusion cannot
increase the belief more than a strong one can. The converse is also true, In
addition, a strong positive conclusion and a weak negative conclusion cannot
combine to reduce the belief in something.
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Two simple scoring schemes satisfying the above properties have bezn investigated.
The first assigned numerical values to weak, medium, strong and certain evidence, and
summed the evidence. Positive evidence was added, and negative evidence subtracted.
The numbers used were:

with-certainty =10
strong-g¢vidence =08
medium-evidence=0-5
weak-evidence =02

The second scheme counted the number of reasons of each strength and ranked the
candidates according to lexicographic ordering (Keeney & Raiffa, 1976).

6. System evaluation

The performance of the system was compared to human performance on two sets of
tokens covering a variety of phonetic contexts. The first set contained tokens that were
heard correctly by all listeners and were read correctly by all spectrogram readers (AC).
The second set contained tokens that were misheard or misread by at least one subject
(SE). The tokens were selected from a larger set of tokens which had been used to
evaluate the abilities of human listeners and human spectrogram readers to identify stop
consonants (Lamel, 1988a), so as to include roughly equal numbers of each stop. The
tokens were extracted from continuously spoken sentences taken from the DARPA
TIMIT Acoustic-Phonetic Corpus (Garofolo, Lamel, Fisher, Fiscus, Pallett & Dahl-
gren, 1992) and the MIT Ice Cream Corpus. The test tokens come from 139 different
speakers (78 male, 61 female), with approximately half of the tokens from each sex. The
test tokens cover the five tasks shown in Table V. Each speech token contains the stop
(or cluster) of interest, and the preceding and following vowels in their entirety.

TaABLE V. Definition of phonetic contexts for the 5 recognition tasks

Description Grammar

Task 1 syllable-initial singleton stops VSV

Task 2 syllable-initial stops VFSV
preceded by /s/ or /z/

Task 3 syllable-initial stops in VSSVVor
semivowel clusters and affricates VAV

Task 4 non-initial singleton stops VSV

Task 5 non-initial homorganic VNSV

nasal-stop clusters

V: vowel; §: stop {b,d,g.p,t.k}; F: fricative {s.z}; SV: semivowe! {l,r,w};
A: affricate {€,j}; N: nasal {m,n,ng}.
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6.1. Results

System performance for each of the five tasks is given in Table VI for the two subsets of
tokens. Both the top choice! and top-two choice accuracies are provided. The system
performance was about the same for syllable-initial singleton stops (task 1) and syllable-
initial stops preceded by /s/ or /z/ (task 2). The system identified singleton stops better
when they occurred in syllable-initial position (task 1) than in non-syllable-initial
position (task 4). Performance was better for non-initial stops in nasal clusters (task 5)
than for singleton non-initial stops (task 4).

As expected, the performance on the AC subset (87%) was better than on the tokens
that were misidentified by humans (71%). The system failed to propose the correct
candidate for 2% of the AC tokens and 12% of the SE tokens. The system performance
varied across context in a manner similar to that observed for human spectrogram
readers (Lamel, 1988a). The system performance on multiple tasks is seen to be
comparable to or better than that of the original Mycin-based SS-1 system on syllable-
initial stops.

6.1.1. AC tokens

Even though listeners and spectrogram readers were able 1o identify the tokens in this
set, the system made errors on 12 of the 94 tokens. The second candidate was correctin 9
of the 12 errors. In half of the errors, the system’s top choice was listed as an alternate
candidate by a spectrogram reader. Averaged across the tasks, 75% of the errors were in
place of articulation and 17% were in voicing.

Most of the errors are reasonable, even though there may have been acoustic evidence
for the correct answer. A few examples of tokens on which the system made errors are
shown in Fig. 6. The errors made on the two left tokens are more reasonable than the
errors for the two tokens on the right. The leftmost token was called /d/, with /b/ as a

TasLe VI. Knowledge-based system evaluation on five tasks. Task I:
syllable-initial singleton stops, Task 2: syllable-initial stops preceded by
s/ or [z, Task 3: syllable-initial stops in clusters with /l,r,w/ and
affricates, Task 4: non-syllable-initial singleton stops, Task 5: non-
syllable-initial stops in homorganic nasal clusters

Percent correct: top/top 2

N AC N SE
Task 1 24 88/96 27 82/93
Task 2 2% 89/96 1 64/73
Task 3 14 1007100 17 82/94
Task 4 18 67/89 19 58/68
Task § 12 1007100 6 83/100
Overall 94 87/96 80 71/85

' When there was a tie for the top choice, the system was credited with having identified the stop correctly,
Ttes occurred on only 6 of the 174 tokens.
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Figure 6. Examples of system errors on AC tokens. (i) Zero crossing rate;
(ii) Total energy; (iii) Energy—123 Hz to 750 Hz; (iv) Waveform.

second candidate. The burst release is located primarily at mid frequencies (24 kHz), a
lower frequency location than is expected for an alveolar stop between front vowels,
However, the preceding vowel is a fronted-/u/, which would probably not be fronted if
the stop was labial. However, the system did not have the information that the preceding
vowel is fronted. The formant transitions are also slightly better for alveolar than for
labial.

The middle two spectrograms both have conflicting evidence between the burst
characteristics and the formant transitions. The formant transitions in the vowels
surrounding the /p/ in (b) favor a labial place of articulation, but the high frequency
concentration of energy in the release supports alveolar. While the weak release of /g/
into {b) suggests labial, the formant transitions from the stop into the next vowel /a/ are
incompatible with labial. In this case, the system favored labial quite strongly, even
though the spectrogram readers ruled labial cut. While the rightmost spectrogram was
called a /t/, /k/ was a close second choice. The distinguishing acoustic cue is subtle, but
there is more energy in the release around 3 kHz than there is at higher frequencies,
supporting velar,

6.1.2. SE tokens

The tokens in the SE subset had an error by at least one spectrogram reader or one
listener. The system made errors on 23 of the 80 tokens. The same error was made by a
listener in 14 of these cases. A spectrogram reader made the same error as the system on
11 of the tokens, and supplied the system’s top choice as an alternate candidate for
another 5. Only in 2 instances did the systermn propose an answer that did not agree with
any of the human subjects (listeners or readers).
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6.1.3. Performance with termination

The system was also evaluated using termination rules. If there was sufficient evidence
for a phonetic feature, the system stopped attempting to determine that feature.
Performance using the termination rules was essentially unchanged. The termination
rules applied 53% of the time for voicing, 48% of the time for place, and 27% of the time
for both voicing and place. The system terminated early more often on AC tokens than
on SE tokens,

6.2. Comparison with an HMM-based phone recognizer

In order to compare the performance of this knowledge-based approach to statistically-
based approaches, an HMM-based phonetic recognizer {Gauvain & Lamel, 1992) was
evaluated on the same set of test tokens. The phone recognizer was trained on the
TIMIT corpus using the newly defined training and test partitions as specified in
Garofolo et al., 1992.2 The 16 kHz speech signal was Mel frequency bandpass filtered
and 15 cepstral coefficients were computed every 10 ms. There are 52 context-indepen-
dent phones models®, each of which is a 3-state left-to-right HMM with Gaussian
mixture observation densities. Duration is modeled with a gamma distribution per
phone model. Maximum likelihood estimators were used for the HMM parameters and
moment estimators for the gamma distributions. In addition, the HMM recognizer was
provided with a task grammar (see Table V) to use during recognition, which supplied
the same information which had been given to the knowledge-based system and the
human subjects.

The results of the evaluation are given in Table VII for the AC and SE tokens. Only
stop identification errors were counted —errors in vowel or fricative identification were
ignored. Comparing Tables VI and VII, it can be seen that overall the knowledge-based
system outperforms the HMM-based system (83% vs. 73-5%). The HMM-based system
performs better on task 4 for the AC tokens, and on task 2 for the SE tokens. For the AC
tokens, 53% of the errors are in voicing alone, 18% in place of articulation, and 29% in
both. An even larger percentage of the errors (75%) are in voicing for the SE tokens. The
overall voicing accuracy is 85% for the AC tokens and 72% for the SE tokens, compared
to 97% (AC tokens) and 84% (SE tokens) for the knowledge-based system. That the
HMM-based system makes more errors on voicing suggests that duration, which is a
primary cue for voicing, is not particularly well-modeled. This contrasts with the
knowledge-based system which had most of the errors in place of articulation. The
HMM-based system correctly identifies place of articulation for 91% of the tokens
compared to 89% for the knowledge-based system.

6.3. Sensitivity due to scoring

The same test set of 100 syllable-initial stop consonants used to evaluate SS-1 system (see
Section 2.3) was also used to assess the importance of the strengths associated with the

?For reference, our 52 CI model set had an overall phone accuracy of 60.1% (65.1% with 39 folded phones)
when evaluated on the TIMIT core test set (Garofolo er af.,, 1992). This performance is superior to that
reported by Lee and Hon (1989), using a smaller set of 48 CI phones. Both Lee and Hon (1989) and Robinson
and Fallside (1991) have reported higher phone accuracies using context-dependent models, on a different
training/testing subdivision of TIMIT.

*The same experiment was run using sets of 446 and 1669 context-dependent phone models, but on average
no difference in performance was observed.
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TasLe VII. HMM-based system evaluation on five tasks. Task 1:
syllable-initial singleton stops, Task 2: syllable-initial stops preceded by
/sf or fzf, Task 3: syllable-inttial stops in clusters with /i,r,w/ and
affricates, Task 4: non-syllable-initial singleton stops, Task 5. non-
syllable-initial stops in homorganic nasal clusters

Percent correct: top

N AC N SE
Task 1 24 79 27 63
Task 2 26 g1 11 82
Task 3 14 86 17 71
Task 4 18 78 19 53
Task 5 12 92 6 67
Overall 94 82 80 64

rule conclusions. Two experiments were conducted. In the first experiment the rule
strengths were all set to 1-0, eliminating the distinction between weak and strong
evidence. The resulting error rate of 27%, shown as “count” in Fig. 7, is almost double
that of the baseline system, “‘add”, which has a 15% error rate. (For comparison, two
human spectrogram readers had a 90% top choice identification accuracy for the same
tokens.) In a second experiment, 2 random number in the range [0, 1-0] for positive
evidence and [—1-0, 0] for negative evidence, was generated and summed. This
experiment was conducted 10 times. Shown as “random”, the mean error rate was 30%
with a standard deviation of 4%. Both of these experiments indicate that the rule
strengths associated with the rule conclusions are important and that not all the evidence
should be treated equally.

To evaluate the dependency of the performance on the selection of the numerical
values, experiments were conducted in which a random number, in the range [ — a,a], was
added to the score at each update. The system was evaluated 10 times each for a=0-1,
0-2, 0-3, and 0-4. The results are shown in Figure 7. The difference in the mean error rate
from the baseline of 15% is insignificant at the (-05 level for all cases, Fora=0-3, 0-4 the
difference is significant at the 0-01 level. These experiments indicate that the system is
relatively insensitive to the numerical values assigned to the strengths.

201 s ¢ E

101 L]

Percent error

t 1 ] 1 i | L ] I
add count random a=0-1 a=02 a=03 a=04 mycin qual

Figure 7. Comparison of scoring strategies
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The remaining two data points in Figure 7 show the performance of the system using
two other scoring strategies. The point labeled “mycin” used the EMYCIN-combine
function (Shortliffe, 1976). The point labeled “qual” used the lexicographic scoring.
That the system petformance is comparable to the “add” method illustrates the
robustness of the system to changes in scoring methods.

7. Discussion

The most difficult part of the system implementation, and by far the most time-
consuming, was controlling the system to have acceptable behavior. Because of the way
backward chaining is integrated in ART, different rules had to be written for almost
every query in the systemn, with each having a priority to ensure that it fired
appropriately.

In order to simulate the concept “‘use information that is known to be true, before
using evidence that might be true”, the rules had to be duplicated, assigning a lower
priority to rules based on uncertain evidence, It would have been better if 2 “meta-rule”
could have been written that said to use certain evidence before using uncertain evidence.
Duplicating rules requires extra care when the rules are modified, as the modifications
may have to be made in multiple copies of the rule.

It is difficult to model the human ability to selectively pay altention to acoustic
evidence, particularly when there is contradictory evidence. By design, the system is
relatively conservative and rarely ignores evidence, even in the presence of conflicting
evidence. At times human experts will say things like “the formants are better for
alveolar than velar, but I like the release so much better as velar, that I'm willing to
ignore the formant transitions™. The system is reluctant to use evidence as strongly as a
spectrogram reader will, as the conditions under which readers do so are not well
understood,

A related issue is the identification of the acoustic attributes. It may be relatively easy
to develop algorithms to locate some of the attributes, such as location of the energy in
the release, and the strength of the release. Other attributes might be quite difficult. For
example, the formant transitions between stops and vowels may occur over a short time
interval, such as the 30 ms before and after the stop. Humans are often able to determine
the formant motion, while the problem for formant tracking is still unsolved despite
many efforts.

8. Summary

Knowledge obtained from spectrogram reading was incorporated in a rule-based system
for stop identification. The emphasis was on capturing the acoustic descriptions and
modeling the reasoning thought to be used by human spectrogram readers. Because
there is ambiguity in relating acoustic events to the underlying phonemic representation,
multiple descriptions and rules were used. The reasoning of the system “feels”
acceptable to a spectrogram reader. The system simultaneously considers multiple
hypotheses and maintains a ranking of hypotheses for each feature independently.
Evaluation on a set of tokens from a variety of contexts indicated that the errors made
by the system were often reasonable and in agreement with spectrogram readers and
listeners. The system performance was higher than the performance of an HMM-based
system trained on TIMIT and tested on the same test tokens. The system was shown to
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be relatively insensitive to changes in scoring strategies, and it’s level of performance
indicates that knowledge formalization has been somewhat successful. However, the
ability of human spectrogram readers and listeners surpasses that of the knowledge-
based system, indicating the need for additional knowledge. There appears to be much
more happening in our visual system and in our thought processes than we actually
express, even when asked to explain our reasoning,
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