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Abstract

In this paper we present a general approach to identifying non-
linguistic speech features from the recorded signal using phone-based
acoustic likelihoods. The basic idea is to process the unknown speech
signal by feature-specific phone model sets in parallel, and to
hypothesize the feature value associated with the model set having the
highest likelihood. This technique is shown to be effective for text-
independent gender, speaker and language identification. Text-
independent speaker identification accuracies of 98-8% on TIMIT (168
speakers) and 99-2% on BREF (65 speakers), were obtained with one
utterance per speaker, and 100% with two utterances for both
corpora. Experiments in which speaker-specific models were estimated
without using the phonetic transcriptions for the TIMIT speakers had
the same identification accuracies as those obtained with the use of
the transcriptions. French/English language identification is better
than 99% with 2 s of read, laboratory speech. For spontaneous
telephone speech from the OGI corpus, the language can be identified
as French or English with 82% accuracy with 10 s of speech. The ten
language identification rate using the OGI corpus was 59-7% with 10's
of signal.

1. Introduction

In this paper an approach for identifying non-linguistic speech features using phone-
based acoustic likelihoods (Lamel & Gauvain, 1992, 1993a,c; Gauvain & Lamel, 1993)
is presented. By the term non-linguistic we refer to speech features that give little
information about the linguistic content of the message, such as the gender or identity
of the speaker, the accent or even the language spoken. (Knowing the identity of the
language is of little help in understanding what is being said if one does not already
know the language.) While speaker and language identification have been the subject
of long-term research, they have typically been seen as independent research areas,
presenting different problems from those of speech recognition. In our view, these
problems should be approached with the same modelling techniques as are used in
speech recognition. For the most part, today’s best performing speech recognition
systems are based on a statistical modellization of the talker. From this point of view,
message generation is represented by a language model which provides estimates of
Pr(w) for all word strings w, and the acoustic channel encoding the message w in the
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signal x is represented by a probability density function f(x|w). The speech decoding
problem consists then of maximizing the a posteriori probability of w, or equivalently,
maximizing the likelihood Pr(w)f(x|w). The same modelling techniques can be adapted
to other related applications, such as speech understanding and spoken language
systems, or, as in this case, the identification non-linguistic speech features. For these,
the feature decoding problem consists of maximizing the a posteriori probability of the
feature 1 (gender, speaker identity, etc.), or equivalently maximizing the likelihood
. Pr(w|A)f(x|w, A) if all the feature values are equally probable. The basic idea is to
process the unknown speech signal by multiple feature-specific model sets in parallel
(this is similar to the use of gender-dependent models for recognition), where instead
of the output being the recognized string, the output is the characteristic associated
with the model set having the highest likelihood. Some of these feature-specific models
may also be directly used to more accurately model the speech signal thus in consequence
improving the performance of the speech recognizer.

In the next section our approach using phone-based acoustic likelihoods is described.
Section 3 provides a description of the corpora used in the experiments applying this
approach to text-free identification of gender, speaker and language. Experimental
results for these three problems are given in Sections 4, 5 and 6. A complete review of
these problem areas is beyond the scope of this paper, in particular because excellent
reviews already exist in the literature. Reviews of speaker identification and verification
can be found in Atal (1976), Rosenberg (1976), Doddington (1985), Naik (1990) and
Rosenberg and Soong (1992). Automatic language identification has also been the
subject of long-term research (House & Neuberg, 1977; Li & Edwards, 1980; Cimarusti,
1982; Foil, 1986; Goodman, Martin & Wohlford, 1989; Sugiyama, 1991; Nakagawa,
Ueda & Seino, 1992; Lamel & Gauvain, 1992; Gauvain & Lamel, 1993; Zissman, 1993).
Recently gender identification has been of interest, primarily to improve acoustic
modelling (Childers, Wu, Bae & Hicks, 1988; Fussell 1991; Gauvain, Lamel & Adda,
1993). The most closely related studies used small ergodic hidden Markov models
(HMMs) for speaker identification (Poritz, 1982; Tishby, 1991; Matsui & Furui, 1992;
Nakagawa et al., 1992) or language identification (Zissman, 1993) and Gaussian mixture
models (which are special case of ergodic HMMs) for speaker identification (Rose &
Reynolds, 1990; Tseng, Soong & Rosenberg, 1992). The use of phone-based HMMs
has been reported for text-dependent speaker identification or text-independent, fixed-
vocabulary speaker identification (Rosenberg, Lee & Soong, 1990; Matsui & Furui,
1993). In this paper we demonstrate that all of these identification problems can be
effectively handled by the use of phone-based acoustic likelihoods.

2. Phone-based acoustic likelihoods

A statistical modelling approach is taken, where the talker is viewed as a source of
phones, modelled by a fully connected Markov chain. The lexical and syntactic structures
of the language are approximated by local phonotactic constraints, and each phone is
in turn modelled by a left-to-right HMM. This provides a better model of the talker
than can be done with simpler techniques such as long-term spectra, VQ codebooks,
or a simple Gaussian mixture. A set of phone-based HMMs is trained for each non-
linguistic feature to be identified (language, gender, speaker, etc.). Feature identification
on the incoming signal x is then performed by computing the phone-based likelihoods
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f(x|4;) for all the models 7; of a given set. The feature value corresponding to the model
with the highest likelihood is then hypothesized.

This approach has the following characteristics:

e It can perform text-independent feature recognition. (Text-dependent feature re-
cognition can also be performed.)

e By using a better model of the talker, it is more precise than methods based on
long-term statistics such as long-term spectra, VQ codebooks, or probabilistic
acoustic maps (Rosenberg & Soong, 1992; Tseng et al., 1992).

e It can easily take advantage of phonotactic constraints.

e It can easily be integrated in recognizers which are based on phone models, as all
the components already exist.

The Viterbi algorithm is used to compute the joint likelihood f(x, s|4;) of the incoming
signal and the most likely state sequence instead of f(x|4). This implementation is
therefore nothing more than a modified phone recognizer with language-, gender-, or
speaker-dependent model sets used in parallel, and where the output phone string is
ignored® and only the acoustic likelihood for each model is taken into account. This
decoding procedure has been efficiently implemented by processing all the models in
parallel using a time-synchronous beam search strategy.

The phone recognizer (Lamel & Gauvain, 1993b) can use either context-dependent
or context-independent phone models, where each phone model is a three state left-to-
right continuous density hidden Markov model (CDHMM) with Gaussian mixture
observation densities. The covariance matrices of all Gaussian components are diagonal.
Duration is modelled with a gamma distribution per phone model. As proposed by
Rabiner, Juang, Levinson and Sondhi (1985), the HMM and duration parameters are
estimated separately and combined in the recognition process for the Viterbi search.

Maximum likelihood (ML) estimators are used to derive language-specific models
whereas maximum a posteriori (MAP) estimators are used to generate gender- and
speaker-specific models as proposed by Gauvain and Lee (1991, 1992a). The choice of
method is closely linked to the amount of available training data and the task. ML is
used to construct language-specific models since there is no reason to believe that each
language should be derived from a common source of models and there is sufficient
training data for each language. MAP estimation is used to construct gender-dependent
models from a set of speaker-independent acoustic models, so as to be able to use all
of the available data to train the largest model set possible, and also to take advantage
of commonalities with the speaker-independent models. The speaker-independent seed
models provide estimates of the parameters of the prior densities and also serve as an
initial estimate for the segmental MAP algorithm (Gauvain and Lee, 1992a). This
approach provides a way to incorporate prior information into the model training
process and is particularly useful to build speaker-specific models when the amount of
adaptation data is limited. More details of the specific acoustic modelling used for
feature identification are given in Sections 4, 5 and 6, along with descriptions of the
experiments.

In our original formulation, phonetic labels were required for training the models
(Gauvain & Lamel, 1993). However, in theory there is no absolute need for phonetic
labelling of the speech training data to estimate the HMM parameters. In this case, if

' The likelihood computation can in fact be simplified since there is no need to maintain the backtracking
information necessary to know the recognized phone sequence.
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a blind (or non-informative) initialization for the HMM training re-estimation algorithm
is used, the elementary left-to-right models are no longer related to the notion of phone.
Such a non-informative initialization can lead to poor models for two reasons. First,
the commonly used EM re-estimation procedure can only find a local maximum of
the data likelihood and therefore “good” initialization is critical. Second, maximum
likelihood training of large models with a limited amount of training data (as in our
case) cannot provide robust models if prior information is not incorporated in the
training process. We have experimented with two ways of dealing with these problems.
The first is to use MAP estimation with seed models derived from transcribed speech
data. We applied this approach to speaker identification in order to build the speaker-
specific models from a small amount of untranscribed speaker-specific data. The second
approach is simply based on ML estimation where models trained on labelled data are
used to generate an approximate transcription of the training data. We applied this
second approach to language identification allowing us to estimate “phone” models
from language specific data using a common phone alphabet for all of the languages.
While there are many ways to introduce prior knowledge in the training process, it
should be clear that the use of a great deal of prior information in the training procedure
leads to more discriminative models.

In the remainder of this paper experimental results applying our approach to text-
free identification of gender, speaker and language are presented. In particular, we
show that text-free identification of gender and speaker perform as well as fixed-text
identification for a given duration of identification data, with the same quantity of
training data.

3. Experimental conditions

In this section we provide a brief description of the corpora used to carry out experiments
on identifying non-linguistic speech features, and provide a baseline performance
assessment for the phone recognizer. Five corpora have been used: BDSONS and
BREF for French; TIMIT and WSJ for English; and the OGI 10-language corpus.
BREF, TIMIT and WSJ have been used for gender identification; BREF and TIMIT
for speaker identification; and all five corpora have been used for language identification.
Since the training and test data used differ for the various experiments, the details are
specified for each experiment later.

3.1. The BDSONS corpus

BDSONS or Base de Données des Sons du Francais (Carré, Descout, Eskénazi, Mariani
& Rossi, 1984), was designed to provide a large corpus of French speech data for the
study of the sounds in the French language and to aid speech research. The corpus
contains an “evaluation” subcorpus consisting primarily of isolated and connected
letters, digits and words from 32 speakers (16 male/16 female), and an “acoustic”
subcorpus which includes phonetically balanced words and sentences. A subset of this
latter subcorpus has been used for testing language identification.

3.2. The BREF corpus

BREF is a large read-speech corpus, containing over 100 h of speech material, from
120 speakers (55 male/65 female) (Lamel, Gauvain & Eskénazi, 1991). The text materials
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were selected verbatim from the French newspaper Le Monde, so as to provide a large
vocabulary (over 20 000 words) and a wide range of phonetic environments (Gauvain,
Lamel & Eskénazi, 1990). Containing 1115 distinct diphones and over 17 500 triphones,
BREF can be used to train vocabulary-independent phonetic models. The text material
was read without verbalized punctuation. All the data used for the experiments reported
in this paper comes from the BREF80 subcorpus (two compact discs). Phonetic
transcriptions of this subcorpus were automatically derived and manually verified
(Gauvain & Lamel, 1992).

3.3. The DARPA TIMIT corpus

The DARPA TIMIT acoustic—phonetic continuous speech corpus (Garofolo, Lamel,
Fisher, Fiscus, Pallett & Dahlgren, 1991) is a corpus of read speech designed to provide
speech data for the acquisition of acoustic—phonetic knowledge and for the development
and evaluation of automatic speech recognition systems. TIMIT contains a total of
6300 sentences, 10 sentences spoken by each of 630 speakers from eight major dialect
regions of the U.S.A. The TIMIT CDROM contains a training/test subdivision of the
data that ensures that there is no overlap in the text materials. All of the utterances in
TIMIT have associated time-aligned phonetic transcriptions.

3.4. The DARPA WSJ corpus

The DARPA Wall Street journal-based (WSJ) continuous speech recognition corpus
(Paul & Baker, 1992) has been designed to provide general-purpose speech data
(primarily read speech data) with large vocabularies. Text materials were selected to
provide training and test data for 5 and 20 K word, closed and open vocabularies, and
with both verbalized and non-verbalized punctuation. The recorded speech material
supports both speaker-dependent and speaker-independent training and evaluation. In
these experiments only data from the WSJO corpus were used. The standard WSJO SI-
84 set of 7240 sentences from 84 speakers were used for training.

3.5. The 10-language OGI-TS corpus

The Oregon Graduate Institute multi-language telephone speech corpus (Musthusamy;,
Cole & Oshika, 1992) was designed to support research on automatic language
identification, as well as multi-language speech recognition. The entire corpus contains
data from 100 native speakers of each of 10 languages (English, Farsi, French, German,
Japanese, Korean, Mandarin, Spanish, Tamil and Vietnamese). The utterances have
been verified and transcribed at a broad phonetic level.

Since the identification of non-linguistic speech features is based on phone recognition,
some baseline phone recognition results are given here for the corpora for which a
phone transcription is available. The speaker-independent (SI) phone recognizers use
sets of gender-dependent, context-dependent (CD) models which were automatically
selected based on their frequencies in the training data which was used. Phone error
rates with 428 CD models for BREF, 1619 for WSJ and 459 for TIMIT are given in
Table I. For BREF and WSJ phone errors are reported after removing silences, whereas
for TIMIT silences are included as transcribed, following the common practice for
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TaBLE |. Phone error (%) with context-dependent models and phonotactic constraints

No. of
Condition phones Correct  Substitutions Deletions Insertions Errors
BREF 35 81.7 137 4.6 30 21.3
WSJ nvp 46 79-3 16-2 4.5 5.0 257
TIMIT 39 783 16-7 4.9 4.9 266

TIMIT. The phone error for BREF is 21-3%, WSJ (Feb 92 5 knvp) is 25-7% and TIMIT
(complete test set) is 26:6% scored using the 39 phone set proposed by Lee and Hon
(1989). More details about the phone recognizer and experiments in phone recognition
can be found in Lamel and Gauvain (1993b).

4, Gender identification

It is well known that the use of gender-dependent models gives improved word
recognition performance over one set of speaker-independent models (Huang, Alleva,
Hayamizu, Hon, Hwang & Lee, 1990). However, this approach can be costly in terms
of computation for medium-to-large size tasks, since recognition of the unknown
sentence is typically carried out twice—once for each gender. A logical alternative is
to first determine the speaker’s gender, and then to perform word recognition using
the models of selected gender. Automatic identification of the speaker’s gender has
been previously investigated using single Gaussian classifiers (Childers et al., 1988;
Fussell, 1991), with gender identification accuracies reported for broad phonetic classes.
Our approach is to use phone-based acoustic likelihoods for gender identification, using
the same phone model sets that are used for phone or word recognition. The gender
of the speaker is hypothesized as the gender associated with the model set giving the
highest likelihood.

This approach was used in the LIMSI Nov 92 WSJ system (Gauvain et al., 1993).
The standard WSJO Sl 84 training material, containing 7240 sentences from 84 speakers
(42 male/42 female) was used to build speaker-independent CD phone models. Gender-
dependent model sets were then obtained using MAP estimation (Gauvain & Lee,
1992b) with the SI seed models. The phone likelihoods using the CD male and female
models were computed, and the gender of the speaker was selected as the gender
associated with the model set that gave the highest likelihood. Since these male and
female models are exactly the same CD phone models as used for word recognition,
there is no need for additional training material or effort. No errors were observed in
gender identification on the WSJO Feb 92 or Nov 92 5k test data containing 851
sentences, from 18 speakers (10 male/8 female).

Gender identification was also assessed for French using a portion of the BREF
corpus. Gender-dependent models were also obtained from Sl seeds by MAP estimation.
The training data consisted of 2770 sentences from 57 speakers (28 male/29 female).
No errors in gender identification were observed on 109 test sentences from 21 test
speakers (10 male/11 female).

To investigate gender identification on a larger set of speakers, the approach was
evaluated on the 168 speakers of the TIMIT test corpus. SI seed models were trained
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Figure 1. Text-independent (—[J—) and text-dependent (— Il —) gender
identification error rates as a function of signal duration for 128 TIMIT
speakers. (The duration includes 100 ms of silence.)

using all the available training data, i.e. 4620 sentences from 462 speakers. These models
were then adapted using MAP estimation with data from the 326 male speakers and
136 female speakers to form gender-specific models. The test data consist of 1344
sentences, eight sentences from each of the 168 test speakers (112 male/56 female). The
error rate in gender identification is shown as a function of the speech duration in Fig.
1. Each speech segment used for the test is part of a single sentence, and always starts
at the beginning of the sentence, preceeded by about 100 ms of silence.? These results
on this more significant test show that the text-independent gender identification error
rate using phone-based acoustic likelihoods is 2:8% with 400 ms of speech and is about
1% with 2s of speech. For reference, 400 ms of speech signal (which includes about
100 ms of silence) represents about four phones, i.e. the number found in a typical
word in TIMIT (average 3-9 phones per word (Garofolo et al., 1991)). This implies
that before the speaker has finished enunciating the first word, one is fairly certain of
the speaker’s gender. We observed that the sentences misclassified with regards to the
speaker’s gender had better phone recognition accuracies with the cross-gender models.

An experiment of text-dependent gender identification was carried out using the same
test data and the same phone models, in order to assess if by adding linguistic
information the speaker’s gender can be more easily identified. The basic idea was to
measure the lower bound on the error rate that would be obtained if higher order
knowledge such as lexical information were provided. To do this, a long left-to-right
HMM was built for each gender by concatenating the gender-dependent CD phone
models corresponding to the TIMIT transcription. The acoustic likelihoods were then
computed for the two models. These likelihood values are evidently lower than are
obtained for text-independent identification. The results are shown in the second curve
of Fig. 1 where it can be seen that the error rate is not any better than the error rate

2The initial and final silences of each test sentence have been automatically reduced to 100 ms.
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obtained with the text-independent method. This indicates that acoustic—phonetic
information is sufficient to accomplish this task.

While in our previous work (Gauvain et al., 1993), gender-identification was used
primarily as a means to reduce the computation and to improve recognition performance,
gender identification has other uses in spoken language systems. Accurate gender
identification can permit the synthesis module of a system to respond appropriately to
the unknown speaker. In languages like French, where the formalities are used more
than in English, the system acceptance may be easier if greetings such as “Bonjour
Madame” or “Je vous en prie Monsieur” are foreseen. Since gender identification is
not perfect, some fall-back mechanism must be integrated to avoid including the signs
of politeness if the system is unsure of the gender. This can be accomplished by
comparing the likelihoods of the model sets, or by being wary of speakers for whom
the better likelihood jumps back and forth between the gender-specific models over
time.

5. Speaker identification

Speaker identification has been a topic of active research for many years (see for
example, Atal, 1976; Rosenberg, 1976; Doddington, 1985; Naik, 1990; Rosenberg &
Soong, 1992), and has many potential applications where propriety of information is
a concern. In these experiments, the technique of phone-based acoustic likelihoods is
applied to the problem of speaker-identification. A set of context-independent (ClI)
phone models was built for each speaker by adaptation of CI, SI seed models using
MAP estimation (Gauvain & Lee, 1992b). The unknown speech was recognized by all
of the speakers models in parallel, and the speaker identified as that associated with
the model set having the highest likelihood. Speaker-identification experiments were
performed using BREF for French and TIMIT for English. TIMIT has recently been
used in a few studies on speaker identification (Rudasi & Zahorian, 1991; Bennani,
1992; Montacié & Le Floch, 1992) with high speaker identification rates reported using
various sized subsets of the 630 speakers.

5.1. Experiments with BREF

For French, the acoustic seed models were 35 SI CI models, built using 2200 sentences
from 57 BREF training speakers. Ten sentences for each speaker were reserved for
adaptation and test. These models were adapted to each of 65 speakers (including eight
new speakers not used in training the SI models) using eight sentences for adaptation.
While the original Cl models had a maximum of 32 Gaussians, the adapted models
were limited to four mixture components, since the amount of adaptation data was
relatively limited. The remaining two sentences were used for identification test. Text-
independent speaker-identification results are given in the first entry in Table 11 for 65
speakers (27 male/38 female) as a function of signal duration. As for gender identification,
the initial and final silences were adjusted to have a maximum duration of 100 ms
according to the provided time-aligned transcriptions. Using only one sentence per
speaker for identification, there is one error, corresponding to an identification accuracy
of 99:2%. When two sentences for each speaker are used for identification test, all
speakers are correctly identified.

Experiments for text-dependent speaker identification using exactly the same models
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TaBLE 1. Text-independent vs. text-dependent speaker identification
error rate as a function of duration for 65 speakers from BREF

Duration 0-5s 1.0s 15s 20s 2:5s EOS
BREF (text independent) 338 131 78 33 26 08
BREF (text dependent) 354 200 117 67 43 54

EOS is the end of sentence identification error rate. The duration includes
100 ms of silence.

and test sentences were performed. As can be seen in the second entry in Table 11, the
text-dependent error rates are higher than the text-independent error rates. There is
almost a 4% degradation in the identification accuracy at the end of the sentence. These
results were contrary to our expectations, in that typically text-dependent speaker
verification is considered to outperform text-independent (Doddington, 1985; Rosenberg
& Soong, 1992). However, Rosenberg and Soong (1992) have already demonstrated
that with accurate modelling the difference in performance between text-dependent and
text-independent speaker identification becomes quite small. A possible explanation of
our results is that by using the phone transcription (i.e. text-dependent identification)
the phone-based likelihoods are more dependent on the recognizer phone accuracy
than for text-free identification. Therefore, speakers for whom the phone accuracies
are lower than average, are more likely to be misidentified.

5.2. Experiments with TIMIT

For the experiments with TIMIT, a speaker-independent set of 40 CI models were built
using data from all of the 462 training speakers. These SI Cl models served as seed
models to estimate 31 Cl phone model sets for each of the 168 test speakers in TIMIT,
using eight sentences (two SA, three SX and three Sl) for adaptation. The remaining
two SX sentences for each speaker were reserved for the identification test. This set of
speakers was chosen for identification test so as to evaluate the performance for speakers
not in the original Sl training material, which greatly simplifies the enroliment procedure
for new speakers. A reduced number of phones was used so as to minimize subtle
distinctions, and to reduce the number of models to be adapted. As for BREF, while
the original ClI models had a maximum of 32 Gaussians, the adapted models were
limited to four mixture components.

The 168 speaker-specific phone model sets were combined in parallel in one large
HMM, which was used to recognize the unknown speech. Error rates are shown as a
function of the speech signal duration in Fig. 2, for text-independent speaker iden-
tification. The curve labelled TIMIT-168 shows results with TIMIT SI seed models,
using the phone transcription of the speaker-specific data during adaptation. The initial
and final silences were adjusted to have a maximum duration of 100 ms according to
the provided time-aligned transcriptions. If the entire utterance is used for identification,
the accuracy is 98-5%. With 2.5 s of speech the speaker identification accuracy is 98-3%.
For the small number of sentences longer than 3s, identification is 100% correct,
suggesting that if longer sentences were available performance would improve. This
hypothesis is also supported by the result that speaker identification using both sentences
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Figure 2. Text-independent speaker identification error rate as a function of
duration for 168 test speakers of TIMIT. Training based on TIMIT seed
models, with and without the phone transcription, and on WSJ seed models,
without phone transcription. (EOS is the end of sentence identification error
rate. The duration includes 100 ms of silence.) (— ¢ —), TIMIT-168 (TIMIT
seed); (— A —), TIMIT-168-NT (TIMIT seed); (— H —), TIMIT-168-NT (WSJ
seed).

for identification is 100% correct. Text-dependent speaker identification on TIMIT
exhibited the same performance degradation as observed for BREF. At the end of the
sentence (EOS), the speaker-identification error is 6%, compared with 1-5% for text-
independent identification with the same models.

Two additional experiments were performed in which speaker-specific models were
estimated for each of the 168 test speakers in TIMIT without knowledge of the phonetic
transcription. The same eight sentences were used for adaptation. In the first case, the
40 Sl CI seed models from TIMIT were used to segment and label the data from the
168 speakers. In the second case, WSJ SI Cl seed models were used to segment and
label the TIMIT data. These labels were then used during the adaptation instead of
the provided phone transcriptions. Performing text-independent speaker identification
as before on the remaining two sentences gives the results shown in Fig. 2 TIMIT-168-
NT. It can be seen that there is no significant difference in identification error when
adaptation was performed with or without verified phone transcriptions, or when SI
seed models from WSJ were used. The EOS identification error is 1.5% with TIMIT
seed models and 1-2% with the WSJ seed models. As observed previously, if two
sentences are used for identification, the speaker identification accuracy is 100%. This
experimental result indicates that the time-consuming step of providing phonetic
transcriptions is not needed for accurate text-independent speaker identification.

6. Language identification

While automatic language identification has been a research topic for over 20 years,
there are relatively few studies published in this area. Of late there has been a revived
interest in language identification, in part due to the availability of a multi-language
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corpus (Musthusamy et al., 1992) providing the means for comparative evaluations of
techniques. Some proposed techniques for language identification combine feature
vectors (filter bank, LPC, cepstum, formants) with prosodic features using polynomial
classifiers (Cimarusti, 1982), vector quantization (Foil, 1986; Goodman et al., 1989;
Sugiyama, 1991), or neural nets (Musthusamy & Cole, 1992). Broad phonetic labels were
used with finite state models (Li & Edwards, 1980) and with neural nets (Musthusamy &
Cole, 1992). More recently, Gaussian mixture and HMMs have been proposed for
language identification (Nakagawa et al., 1992; Zissman, 1993).

Phone-based acoustic likelihoods can also be used for language identification. Once
again, the basic idea is to process in parallel the unknown incoming speech by different
sets of phone models (each set is a large HMM) for each of the languages under
consideration, and to choose the language associated with the model set providing the
highest normalized likelihood.® If the language can be accurately identified, it simplifies
using speech recognition for a variety of applications, from selecting the language in
multilingual spoken language systems to selecting an appropriate operator, or aiding
with emergency assistance. Language identification can also be done using word
recognition, but it is much more efficient to use phone recognition, which has the added
advantage of being task independent.

6.1. French/English LID experiments

Experimental results for language identification for English/French were given in Lamel
and Gauvain (1992, 1993a), where models trained on TIMIT and BREF were tested
on different sentences taken from the same corpus. While these results gave high
identification accuracies (100% if an entire sentence is used, and greater than 97% with
400 ms, and error free with 1-6s of speech signal), it is difficult to discern that the
language and not the corpus is being identified. Identification of independent data
taken from the WSJO corpus was less accurate: 85% with 400 ms and 96% with 1-6 s
of speech signal.

In these experiments we attempted to avoid the bias due to corpus, by testing both
on other data from the same corpora from which the models were built, and on
independent test data from different corpora. The language-dependent models are
trained from similar style corpora, BREF for French and WSJO for English, both
containing read newspaper texts and similar size vocabularies. A set of SI Cl phone
models were built for each language, with 35 models for French and 46 models for
English.* Each phone model had 32 gaussians per mixture, and no duration model. In
order to minimize influences due to the use of different microphones and recording
conditions a 4 kHz bandwidth was used. The training data were the same as for gender
identification (BREF: 2770 sentences from 57 speakers; WSJO SI-84: 7240 sentences
from 84 speakers).

®In fact, this is not a new idea: House and Neuberg (1977) proposed a similar approach for language
identification using models of broad phonetic classes, where we use phone models. Their experimental results,
however, were synthetic, based on phonetic transcriptions derived from texts.

4The 35 phones used to represent French include 14 vowels (including three nasal vowels), 20 consonants
(six plosives, six fricatives, three nasals and five semivowels), and silence. The phone table can be found in
Gauvain and Lamel (1992). For English, the set of 46 phones include 21 vowels (including three diphthongs
and three schwas), 24 consonants (six plosives, eight fricatives, two affricates, three nasals, five semivowels),
and silence.
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TasLE 1. Language identification error rates as a function of
duration and language with phonotactic constraints provided by a
phone bigram

Error rate vs. duration

Test No. of

corpus sentences 04s 08s 1.2s 1.6s 20s 24s
WSJ 100 5.0 30 1.0 2:0 1.0 1.0
TIMIT 192 94 57 2:6 2:1 0-5 0
BREF 130 85 1.5 0-8 0 0-8 0-8
BDSONS 121 7-4 2.5 2.5 1.7 0-8 0
Overall 543 79 35 1.8 1.5 0-7 0-4

The duration includes 100 ms of silence.

Language identification accuracies are given in Table 111 with phonotactic constraints
provided by a phone bigram. Language identification error rates are given for the four
test corpora, WSJ and TIMIT for English, and BREF and BDSONS for French, as a
function of the duration of the speech signal. Approximately 100 ms of silence are
included at the beginning and end of each utterance (the initial and final silences were
automatically removed based on HMM segmentation), so as to be able to compare
language identification as a function of duration without biases due to long initial
silences. The test data for WSJ consists of 100 sentences, the first 10 sentences for each
of the 10 speakers (5 male/5 female) in the Feb 92-si 5 knvp (speaker-independent, 5K,
non-verbalized punctuation) test data. The TIMIT test data are the 192 sentences in
the “coretest” set containing eight sentences from each of 24 speakers (16 male/8
female). The BREF test data consists of 130 sentences from 20 speakers (10 male/10
female) and for BDSONS the data is comprised of 121 sentences from 11 speakers (5
male/6 female).

While WSJ sentences are more easily identified as English for short durations, errors
persist longer in these sentences than for TIMIT. In contrast for French, BDSONS
data is better identified than BREF with 400 ms of signal, perhaps because the sentences
are phonetically balanced. For longer durations, BREF is slightly better identified than
BDSONS. Bearing in mind that the corpora were recorded under similar conditions,
the performance demonstrated here shows that accurate task-independent, cross-corpus
language identification can be achieved.

The overall French/English language identification error is shown in Fig. 3 as a
function of duration, with and without phonotactic constraints provided by a phone
bigram. Using the phone bigram is seen to improve language identification primarily
for short signals. The overall error rate with 2 s of speech is less than 1% and with 1s
of speech (not shown) is about 2%. Incorporating phonotactic constraints had the
smallest improvement for TIMIT, probably due to the nature of the selected sentences
which emphasized rare phone sequences.

Language identification of the BREF and WSJ data is complicated by the inclusion
of foreign words in the source text materials. One of the errors on BREF involved
such a sentence. The sentence was identified as French at the beginning and then all
of a sudden switched to English. The sentence was “Durant mon adolescence, je
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Figure 3. Overall French/English language identification as a function of
duration with and without phonotactic constraints provided by a phone
bigram. (The duration includes 100 ms of silence.) (— 4 —), No phone bigram;
(— M —), with phone bigram.

dévorais les récits westerns de Zane Grey, Luke Short, et Max Brand ...”, where the
italicized words were pronounced in correct English.

We are in the process of obtaining corpora for other languages to extend this work.
However, there are a variety of applications where a bilingual system, just French/English
would be of use, including air traffic control (where both French and English are
permitted languages for flights within France), telecommunications applications, and
many automated information centres, ticket distributors and tellers, where already you
can select between English and French with the keyboard or touch screen.

6.2. OGI 10-language experiments

Language identification over the telephone opens a wide range of potential applications.
Cognizant of this, we have evaluated our approach on the OGI 10-language telephone
speech corpus. The training data consists of calls from 50 speakers of each language.
There are a total of about 4650 sentences, corresponding to about 1 h of speech for
each language. The test data are taken from the spontaneous stories of the development
test data as specified by National Institute of Standards and Technology and include
about 18 signal files for each language. Since these stories tend to be quite long, they
have been divided into chunks by NIST, with each chunk estimated to contain at least
10 s of speech.

The training data for all languages was first labelled using a set of SI, Cl phone
models estimated on the NTIMIT corpus (Jankowski, Kalyanswamy, Basson & Spitz,
1990). Language-specific models were then estimated using ML estimators with these
labels. Thus, in contrast to the French/English experiments where the phone tran-
scriptions were used to train the SI models, language-specific training is done without
the use of phone transcriptions. Language identification results using all 10 languages
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TasLE IV. OGI language identification rates (%) as a function of test
utterance duration (without phonotactic constraints) for “10 s chunks”

Duration No. of 10s chunks 2s 6s 10s
English 63 54 64 67
Farsi 61 64 61 66
French 72 58 65 67
German 63 44 48 54
Japanese 57 28 32 42
Korean 44 48 48 55
Mandarin 59 46 51 61
Spanish 54 32 52 56
Tamil 49 69 82 82
Vietnamese 53 42 49 47
Overall 575 48-7 55.1 59.7

TaBLE V. French/English language identification rates (%) on the OGI
corpus as a function of test utterance duration for “10s chunks”

Duration No. of 10s chunks 2s 6s 10s
English 63 76 83 84
French 72 76 79 79
Overall 135 76 81 82

are shown in Table IV as a function of signal duration. The overall 10-language
identification rate is 59-4% with 10s of signal (including silence). There is a wide
variation in identification accuracy across languages, ranging from 42% for Japanese
to 82% for Tamil.

Two-way French/English language identification was evaluated on the OGI corpus
so as to provide a measure of the degradation observed due to the use of spontaneous
speech over the telephone. The results are given in Table V. Language identification
was 82% at 10s (79% on French and 84% for English) for the 135 10s chunks. This
can be compared to the results with the laboratory read speech, where French/English
language identification is better than 99% with only 2 s of speech.

We would like to emphasize that these are very preliminary results which have been
obtained by simply porting the approach to the conditions of telephone speech.
Our approach for English and French took advantage of the associated phonetic
transcriptions, whereas for this evaluation the training has been performed without
transcriptions. Despite these conditions, our results compare favourably to previously
published results on the same corpus (Musthusamy & Cole, 1992; Zissman, 1993).

7. Summary

In this paper we have presented an approach for the identification of non-linguistic
speech features from recorded signals using phone-based acoustic likelihoods. We
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approach the problem with the same statistical modelling techniques as used in speech
recognition. The basic idea is to train a set of phone-based HMMs for each non-
linguistic feature to be identified (language, gender, speaker, etc.), and to identify the
feature as that associated with the model having the highest acoustic likelihood of the
set. While phone labels have been used to train the Sl seed models, these models can
then be used to label unknown speech, thus avoiding the costly process of transcribing
the speech data. The decoding procedure is efficiently implemented by processing all
the models in parallel using a time-synchronous beam search strategy.

This has been shown to be a powerful technique for gender, language and speaker
identification, and has other possible applications such as for dialect identification
(including foreign accents), or identification of speech disfluencies. Gender identification
for BREF and WSJ was error-free, and 99% accurate for TIMIT with 2s of speech.
Speaker identification accuracies of 98-8% on TIMIT (168 speakers) and 99:1% on
BREF (65 speakers) were obtained with one utterance per speaker, and 100% if two
utterances were used for identification. This identification accuracy was obtained on
the 168 test speakers of TIMIT without making use of the phonetic transcriptions
during training, verifying that it is not necessary to have labelled adaptation data. Sl
models can be used to provide the labels used in building the speaker-specific models.
Being independent of the spoken text, and requiring only a small amount of identification
speech (in the order of 2:55), this technique is promising for a variety of applications,
particularly those for which continual, transparent verification is preferable.

Tests of two-way language identification of read, laboratory speech show that with
2s of speech the language is correctly identified as English or French with over 99%
accuracy. Simply porting the approach to the conditions of telephone speech, the
identification rate on the French and English data in the OGI multi-language telephone
speech corpus was about 76% with 2s of speech, and increased to 82% with 10s of
speech. The overall 10-language identification accuracy on the designated development
test data of the OGI corpus is 59-7%. These results were obtained without the use of
phone transcriptions for training, which had been used for the other experiments with
laboratory speech.
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