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Abstract

This paper describes the SQALE project in which the ARPA large
vocabulary evaluation paradigm was adapted to meet the needs of
European multilingual speech recognition development. It involved
establishing a framework for sharing training and test materials,
defining common protocols for training and testing systems,
developing systems, running an evaluation and analysing the results.
The specifically multilingual issues addressed included the impact of
the language on corpora and test set design, transcription issues,
evaluation metrics, recognition system design, cross-system and cross-
language performance, and results analysis. The project started in
December 1993 and finished in September 1995. The paper describes
the evaluation framework and the results obtained.

The overall conclusions of the project were that the same general
approach to recognition system design is applicable to all the
languages studied although there were some language specific
problems to solve. It was found that the evaluation paradigm used
within ARPA could be used within the European context with little
difficulty and the consequent sharing amongst the sites of training and
test materials and language-specific expertise was highly beneficial.
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1. Introduction

Significant advances have been made in recent years in the area of large vocabulary
speaker independent continuous speech recognition. For American English, current
laboratory systems are capable of transcribing continuous speech from any speaker
with average word error rates of between 5% and 10% (Bahl ez al., 1995; Dugast et al.,
1995; Gauvain, Lamel & Adda-Decker, 1995), and with adaptation, this can be improved
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further (Woodland et al., 1995). However, comparable results are generally not available
for other languages because, regardless of their native language, many research groups
have focussed their system development efforts on American English. One of the main
reasons for this has been the existence of the US ARPA CSR programme, and more
importantly for outsiders, the annual ARPA CSR benchmark tests (Kubula et al., 1994;
Pallett et al., 1994, 1995).

Although the original motivation for these evaluations was to compare the per-
formance of the ARPA-sponsored contractors, in practice, they have provided much
more than just a simple means of monitoring progress. Each successive evaluation
involves testing on a set of previously unknown speakers in a known domain which
has typically been read newspaper text. All participants are provided with training data
and other infrastructure materials such as standard language models, and the test
protocols and results analysis are carefully prescribed. Prior to each evaluation, a
working group defines the targets and the basic materials needed to develop and test
systems. The post-mortem analysis of the results helps all participants to understand
the strengths and weaknesses of their and other systems. The net result is a very strong
technology pull.

This paper describes the SQALE (Speech Quality Assessment for Linguistic Engineering)
Project. The aim of the project which was sponsored by the European Commission
was to adapt the ARPA evaluation paradigm described above to meet the needs of
European multilingual speech recognition development. It thus involved establishing a
framework for sharing training and test materials, defining common protocols for
training and testing systems, developing systems, running an evaluation and analysing
the results. To achieve these objectives, there are many issues that must be dealt with
when moving to different European languages. These include the impact of the language
on corpora and test set design, transcription issues, evaluation metrics, recognition
system design and results analysis (Moore, 1988; Steencken & van Veldon, 1989;
Eskenazi, Mariani & Bornerand, 1991). The project started in December 1993 and
finished in September 1995. A dry-run evaluation was conducted in February 1995 and
the actual evaluation was conducted during April and May 1995.

The SQALE project was coordinated by the Netherlands Human Factors Research
Institute (TNoO) who were responsible for defining protocols in cooperation with the
other partners, supplying test data, monitoring the evaluation and analysing the results.
The other partners in the project were Cambridge University Engineering Department
(Cuep) in England, Laboratoire d’Informatique pour la Mécanique et les Sciences de
I'Ingénieur (Lmvsi) in France and the Man—Machine-Interface group with Philips
Research Laboratories (Philips) in Germany. CUED had two systems: Cu-CoN a con-
nectionist system and Cu-HTk a HMM system. Since all partners had previously
participated in the ARPA evaluations and had therefore already developed systems for
American English, this language was used as a baseline for studying cross-language
issues. During the SQALE project, each partner ported their system to one or more of
the three European languages tested: British English, French and German. Table 1
shows the languages that each system was tested on.

The remaining sections of this paper describe the various aspects of the SQALE project
in more detail. Section 2 describes the evaluation paradigm and how the various cross-
language issues were dealt with in preparing the training materials, designing the tests
and analysing the results. Section 3 gives a brief overview of the four recognition
systems used and discusses the language specific problems encountered during the cross-
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TaBLE I. Languages tested by each SQALE system

Cu-Con  Cu-Htk Limst Philips
American ° ° ° °
British ° ° °
French ° ° °
German ° ° °

TaBLE II. Characteristics of acoustic model training data. All data was recorded at 16 kHz sample
rate using 16 bit precision

American British French German
Corpus WSJO WSJCAMO BREF-80 PHONDAT
Source Wall Street Journal Le Monde Phonetic Balanced

+ Train Queries

No. of speakers 84 92 76 155
No. of sentences 7-2k 8-1k 5-1k 15-2k
Corpus size 140 h 13-4 h 92 h 130 h
No. of spoken words 131k 90k 125k
No. of distinct words 9084 13850 1725
Av. freq/words 14-4 6-46 72-4
Microphone(s) Sennheiser HMD414-6 Shure SM10 Various

language development. Section 4 describes the evaluation results and presents cross-
system and cross-language comparisons. Finally, Section 5 discusses the main issues
arising from the project and Section 6 presents overall conclusions.

2. Evaluation framework

As noted above, a principle aim of the SQALE project was to make both cross-language
and cross-system comparisons within a European context. However, time and resource
limitations meant that not all the sites could build and test systems for all languages.
Hence American English was used to provide a common baseline for comparison.
Further normalization was achieved by using common word lists and language models,
by ensuring that comparable amounts of training data were used for each language,
and by attempting to select test material in each language of similar difficulty.

2.2. Training materials

Table II summarizes the main characteristics of the training data. The 84 speaker sub-
set called SI-84 of the Phase 0 portion of the Wall Street Journal Database (WSJ0)
(Paul & Baker, 1992) was used to train the baseline American English systems and a
British English version based on the same text source called WSJCAMO was used for
the British English systems (Fransen et al., 1994). BREF-80 based on the Le Monde
text source was used for the French systems (Lamel, Gauvain & Eskanazi, 1991). All
of these three databases were recorded using similar close-talking microphones and all
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TaBLE III. Characteristics of lexica and language model training text

English French German
Source Wall Street Journal — Le Monde  Frankfurter Rundschau
Corpus size 37-2 MW 37-7 MW 31-5 MW
No. of distinct words 165k 280k 500k
Vocabulary size 20k 20k 64k
2-gram perplexity 198 178 430
3-gram perplexity 135 119 336
Ave. phones/word 4.16 3.53 5.09
Text homophone rate 18% 57% —
Monophone words 3% 19% 0-5%

three come from the same domain as the corresponding language models and evaluation
data. In contrast, the German systems were built using the PHONDAT database which
consists of a mixture of phonetically balanced sentences and train information queries
recorded using a variety of different microphones at multiple locations. Thus, PHON-
DAT was not matched to the evaluation data either acoustically or linguistically. The
use of PHONDAT was in many ways regrettable but it was the only German data
available at the time. Its use does, however, highlight the consequences of mis-match
between the training and testing data.

2.2. Vocabularies and language models

A common trigram language model was used for each system in each language and
newspaper text was used for training data in each case. Table III summarizes the main
characteristics of each language model. The standard MIT-Lincoln Labs 20k-open Wall
Street Journal trigram language model was used for the American and British English
systems'. Trigram language models using similar-sized training sets were constructed
for French and German using the Le Monde and Frankfurter Rundschau newspapers,
respectively. Note that the increased number of distinct words for French and German
is due in part to the fact that upper and lower case were distinguished in these languages
whereas case was ignored in English.

The word lists used to build recognizers for each of the test languages were determined
by sorting the unigram frequencies within each training corpus. Note that a word in
this context is defined as being any distinct sequence of letters delimited by white space
or punctuation marks®. Table IV shows the lexical coverage of each language for
different vocabulary sizes. As can be seen, a much larger vocabulary is needed for
German in order to achieve similar coverage. Hence, a 64k word vocabulary was used
for German as compared to 20k for each of English and French.

Table III also shows some properties of the lexicon for each language. French has a
high number of monophone words and a correspondingly high homophone rate. In
contrast, German has relatively few monophone words and a relatively low homophone

'Used in the 1993 US ARPA CSR Evaluation.
’In practice, the definition of what constitutes punctuation is language specific. For example, “I’ami” in
French is split into two words whereas “friend’s” is a single word.



Multilingual large vocabulary speech recognition 77

TaBLE IV. Lexical coverage as a function of vocabulary size

No. of words English French German
5k 90-6% 85:2% 82:9%
10k 94-9%, 90-6% 86:1%
20k 97-5% 94-6% 90-0%
40k 99-0% 97-3% 93-9%
60k 99-6% 98-3% 95-1%
80k 99-7% 98-9% 95-7%

TaBLE V. Distribution of sentence length and perplexity for the
10 sentences uttered by each speaker

Sentence length With OOV

Short Normal Long

Low PP 1 1 1
Normal 4
High PP 1 1 1

rate. Thus, although the perplexity of the German language model is high compared
to English and German, the confusability of the vocabulary is lower. These factors,
which were expected to influence the relative recognition rates on the three languages,
are discussed further below.

2.3. Selection of test data

The evaluation data was assembled from existing recordings augmented by new
recordings undertaken by TNo. For each language there were 200 test sentences from
20 speakers plus a set of approximately 60 diagnostic sentences. The test sentences
were chosen to give a reasonable spread of difficulty as determined by sentence length
and perplexity. Table V shows the general distribution for these measures over the 10
sentences uttered by each speaker.

The diagnostic sentences were designed to allow cross-speaker and within-speaker
variability to be studied. They consisted of a set of 10 different speakers uttering the
same three common sentences plus a set of six speakers uttering the same replica sentence
five times. The diagnostic sentences were not part of the official evaluation and they
were processed by the same systems after the evaluation had finished.

2.4. Evaluation protocols

The evaluation was conducted along similar lines to the official ARPA CSR evaluations.
The test data along with reference transcriptions was delivered to each site on CD-
ROM with instructions it not open it before 18th April 1995 at 9am. The deadline for
submission of recognition output for American English, British English and French
was 8th May 1995 and for the German it was 25th May 1995. There was then an
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TaBLE VI. Comparison of front-end processing for each of the recognition

systems
Cu-ConN Cu-Htk Limst Philips
Front-End PLP+MEL + MFCC MFCC FBANK
Time Dep. Rec NN A+ A A+ A LDA
Dimension 23+13 39 48 35

TaBLE VII. Comparison of the Three HMM recognition systems

Feature Cu-Htk Limst Philips
Emission probabilities Gaussian Gaussian Laplacian
Training method Baum-Welch MAP Viterbi
Triphone type Full cross-word Cross-word Word-internal
State clustering method* Decision tree Agglom. data clustering

*The Limst French system used 779 context-dependent models and no state-tying.

adjudication period followed by an announcement of the official results on 8th June
1995.

All recognition output was scored using the standard NIST scoring software. The
output for American and British English was case insensitive and for French and
German it was case sensitive. A standard was defined for mapping accented characters
to plain ASCII.

3. Systems

This section briefly describes and compares the four recognition systems used in the
SQALE evaluations. It then discusses some of the language specific issues encountered.

3.1. The recognition systems

3.1.1. Front-end processing

The front-end processing used by each of the four systems is summarized in Table VI.
The Cu-Htk and Limsi systems use standard MFCC-based front-ends (Davis &
Mermelstein, 1980) augmented by 1st and 2nd order derivatives. The Philips system
uses a two stage process. Firstly, a 63-dimension acoustic vector is computed from a
30 channel filter bank plus total energy augmented by the first 16 first and second
differences. Linear discriminant analysis is then applied to a window of three successive
acoustic vectors to generate a 35-dimension feature vector (Haeb-Umbach, Geller &
Ney, 1993). The Cu-Con system uses two separate front ends. One consists of 12 PLP
coefficients (Hermansky, 1990) plus energy and the other consists of 20 mel-filter bank
amplitudes augmented by pitch, voicing and energy (MEL +).

3.1.2. Acoustic modelling

The Cu-HTk, Livst and Philips systems are all tied-state continuous density HMM-
based systems (Dugast, Aubert & Kneser, 1995; Lamel, Adda-Decker & Gauvain, 1995;
Pye, Woodland & Young, 1995). Table VII summarizes the main characteristics of each
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TaBLE VIII. Number of states and number of Gaussians per state used in each of
the three HMM recognition systems

Language No. of parameters Cu-Htk Limst Philips
American No. of comps/state 9 ~32 ~30
No. of states 3950 2814 ~2500
British No. of comps/state 8 ~32
No. of states 3494 2582
French No. of comps/state 10 ~32 ~30
No. of states 2638 2337* ~2100
German No. of comps/state 10 ~32 ~30
No. of states 4268 2481 ~3000

*The Limst French system used 779 context-dependent models and no state-tying.

recognizer and Table VIII lists the number of parameters used by each system for each
language. The Cu-HTK system uses phonetic decision trees to perform state clustering
(Young, Odell & Woodland, 1994). This allows it to synthesize models for contexts
which do not occur in the training data and it can thereby use full cross-word triphones.
The LiMst system uses cross-word triphones for which there are sufficient training
examples and backs-off to diphones for unseen and infrequent contexts. The Philips
system uses word-internal triphones only. The acoustic modelling in the Philips system
is further simplified by using Laplacians with a single global deviation vector instead
of the more conventional state-specific diagonal variance Gaussians used by the Cu-HTk
and Livsr systems. All three systems use gender dependent model sets.

Acoustic modelling in the Cu-CoN system uses four recurrent neural networks, one
for each input parameterization (MEL+ and PLP) and one for each time direction
(forward and backward) (Hochberg, Renals & Robinson, 1995). Each network consists
of a single layer and the output at each time frame is a vector of phone probability
estimates augmented by a 256-dimension state vector which is fed-back to the input.
The phone probability estimates from each of the four networks are merged to form a
single posterior probability of each phone for each input frame.

In addition to these phone probability estimation networks, four sets of feed-forward
networks are trained to estimate context-classes for each phone based on the state
feedback vector of the corresponding recurrent network. The outputs of these are
merged and then multiplied by the context-independent phone probabilities to give
posterior context-dependent phone probabilities. The contexts are chosen using a
decision tree clustering procedure to give 527 context-dependent phones for American
English and 465 for British English (Kershaw, Hochberg & Robinson, 1995).

3.1.3. Dictionaries

The requirement to use a common language model for each of the languages and the
limited availability of lexicons meant that there was little variation across systems. For
American English all systems used the Limst Nov '93 20k pronunciation dictionary
except for Philips who used the Dragon dictionary. For British English, all systems
used the Cuep BEEP dictionary with little modification. For French, the Lmvst French
pronouncing dictionary was used. However both Cu-HTK and Philips modified this to
handle liaisons (see below). For German, all systems used a dictionary supplied by
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Philips. However, LiMsI made extensive modifications in the form of corrections, a
reduction in the number of vowels and the addition of alternative pronunciations.

3.1.4. Decoding

The three HMM systems use time-synchronous Viterbi-decoders in a two-pass scheme.
The details vary but the broad outline of operation for all of them is as follows. In a
first pass, a bigram language model is used with gender independent models to create
word level lattices. The lattice for each sentence is then expanded using a trigram
language model. In a second pass, the word-level trigram lattices are re-scored using
gender dependent models (Odell et al., 1994; Aubert & Ney, 1995).

The Cu-Con system uses a stack decoder and operates in a single pass with a loosely
coupled language model. The search space is reduced through the usual likelihood-
based pruning and also through posterior-based phone deactivation pruning in which
phones with a low estimated posterior probability are pruned (Renals & Hochberg,
1995).

3.2. Language specific issues

Only the three HMM-based systems were applied across different languages. Given the
very limited time for development, the approach of each site was to apply existing
techniques wherever possible and to minimize the amount of language-specific en-
gineering put into each system. The language-specific problems which were encountered
are discussed here.

3.2.1. Liaison in French

Liaison in French can be regarded as an optional pronunciation variant in which
normally silent word final consonants are pronounced when immediately followed by
a word initial vowel. In the LimsI and Philips systems, all words in the dictionary which
might give rise to a liaison are marked and rules are applied during both training and
recognition to ensure that liaisons are only allowed when the following word starts
with a vowel or, for some words, starts with a “h”. These rules ensured that only the
liaison consonants appropriate to the context were inserted (Gauvain et al., 1994;
Aubert & Ney, 1995).

In the Cu-HTK system, liaison was handled by adding pronunciation variants to the
dictionary for all cases where liaison could occur. This simple approach has the
disadvantage that it also allows the recognizer to accept liaisons in many situations
where they would not actually occur. It nevertheless gave ~10% reduction in errors
when compared to a baseline system using the original LiMsi dictionary. As a further
improvement to the Cu-HTK system, additional liaison-specific consonants for /z/, /t/
and /n/ were added so that cross-word triphone context could be used to minimize the
probability of inadmissable liaison pronunciation variants being used during recognition.
This was found to give a further small improvement and when it was compared to a
recognizer which had been modified in a similar way to the Limst and Philips systems,
there was no significant difference.

3.2.2. Compounding in German

Compounding in German results in a much reduced coverage for a similar sized
vocabulary compared to French or English. An effective solution to compounding
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TaBLE IX. Word error rates using a trigram grammar

System American British French German
Cu-ConN 12:9% 13-8%

Cu-Htk 13-2% 14-4% 15-1% 18:7%
Limst 13-5% 15-4% 15-3% 16:1%
Philips 14-7% 16:1% 19-7%

TaBLE X. Statistically significant differences between systems

using a trigram grammar. MP: Matched pair sentence segment;

SI: signed pair comparison; WI: Wilcoxon signed rank; MN:
McNemar sentence error test

Difference Language Tests
Cu-CoN PHILIPS American MP,WI
Cu-Htk Philips American MP,WI
Cu-CoN Limst British MP,WI

Limst Cu-Htk German MP,SI,WI,MN
Limst Philips German MP,SI,WI,MN

requires a morphologically motivated decomposition procedure for source training texts
and a similar inverse procedure for reforming compounds in the recognizer output
(Geutner, 1995). However, since compounding can also give rise to pronunciation
changes this is not at all straightforward.

The compounding problem and the difficulty of dealing with it was noted at the
outset of the project and the simple solution adopted was to increase the German
vocabulary size to 64k words compared to the 20k word vocabularies used for French
and English. A consequence of this is that the language model is much larger and there
are more distinct triphone contexts, especially for word-internal triphone systems.
Thus, effective smoothing techniques for both acoustic and language modelling were
particularly important for German.

3.2.3. Glottal stops in German

The glottal stop in German has no distinctive role within isolated words, but it does
frequently occur at word and morpheme boundaries in continuous speech. Both Cu-HTk
and Limst performed experiments to determine whether or not to include the glottal
stop in the phone set for German. Cu-HTK found little significant difference whereas
Livst found a slight improvement. In the evaluation, Limst and Cu-HTK included the
glottal stop in their acoustic modelling for German and Philips excluded it.

Results

4.1. Baseline results

The results of the SQALE evaluation using trigram language models are summarized in
Table IX and the corresponding statistical significance tests are shown in Table X
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TaBLE XI. Word error rates using a bigram grammar

System American British French German
Cu-CoN 17:0% 17-2%

Cu-Htk 16:7% 18-3% 18-9% 21:6%
Limst 17-2% 18-8% 17-7% 18-4%
Philips 20-3% 20-3% 22:4%

TaBLE XII. Word error rates on the American English evaluation data using the 1994 state-of-
the-art HTK recognition system

Training data  Acoustic model Vocabulary size Language model Word error Error reduction

SI84 triphone 20k 1993 3-gram 13.2%

S1284 quinphone 20k 1993 3-gram 10.3% 22%
S1284 quinphone 65k 1994 4-gram 6:9% 33%
S1284 quinphone* 65k 1994 4-gram 6:3% 8%

*System incorporating incremental speaker adaptation.

(Gillick & Cox, 1989; Martin, 1995). As can be seen, the Cu-Con system had the lowest
error rate on the two English tests, the Cu-HTK system had the lowest error rate on
French and the LiMsr system had the lowest error rate on German. However, all the
systems were very similar and there was no statistically significant difference between
the 1st and 2nd ranked system in the English and French tests. Only the LimsI system
on German was significantly better than any other.

Table XI shows the corresponding results using a bigram language model where the
general pattern is similar.

4.2. Comparison with state-of-the-art

In order to allow cross-language comparisons using existing training material, the data
allowed for the American English systems was limited to the WSJO corpus which
contains around 14 h of acoustic training data S184 and 37M words of text. These
were the conditions in force for the 1993 U.S. ARPA CSR evaluations. However, the
subsequent addition of the WSJ1 corpus has greatly extended the amount of training
material available for American English to around 66 h of speech (SI1284) and 227M
words of text.

Table XII shows the further improvements that can be gained with the Cu-Htk
system when more training data is available (Woodland et al., 1995). The first line
shows the standard Cu-HTK SQALE evaluation result on the American English test.
Increasing the amount of acoustic training data from 12 h to 66 h allows more robust
models to be constructed using wider context in the phonetic decision trees. This results
in a 22% reduction in error rate. The third line shows the effect of increasing the
vocabulary size to 65k words and increasing the amount of language model training
data from 37M to 227M words. The increased vocabulary size reduces the OOV rate
from 1-46% to 0-39% and the increased training material allows a 4-gram language
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TaBLE XIII. Word and sentence error rates of human listeners
compared to the SQALE recognizers on American and British
English test data

Recognizer Word error Std. Dev.
Native listeners 2:63% 0-93%
Non-native listeners 7-40% 1-:67%
SQALE recognizers 12:60% 1-92%

model to be built. This results in a further 33% reduction in error rate. Finally, the last
line shows the effect of using incremental speaker adaptation. This uses maximum
likelihood linear regression to estimate the parameters of a set of matrices which are
used to transform the Gaussian mean vectors (Leggetter & Woodland, 1995). This
provided an addition 8% reduction in error and with more sentences per speaker, this
adaptation would have had greater effect. Overall, this state-of-the-art Cu-HTK system
showed a 51% reduction in error rate compared to the best SQALE evaluation system.
In a separate study on the performance of their French recognition system, Limst
reported comparable error reductions when using additional training data (Gauvain et
al., 1994).

4.4. Comparison with human performance

In order to compare the recognition performance of the automatic systems with humans,
a set of 80 sentences used in a dry-run of the evaluation were presented to 30 listeners.
The test sentences consisted of 40 American and 40 British English. The sentences were
selected to have an even distribution of sentence length, perplexity and speaking rate.
The listeners consisted of 20 native speakers and 10 non-native Dutch speakers who
had lived in the U.S. or U.K. for some time (van Leeuwen, van den Berg & Steeneken,
1995).

The sentences were presented to the subjects using headphones in a quiet room. First
the whole sentence was played and it was then replayed in segments of four to seven
words, split wherever possible at natural phrase boundaries. The subject then typed
the words that had been perceived. Subjects could replay segments but were encouraged
to make a decision as soon as they could. The human generated transcriptions were
manually corrected for spelling errors and then scored against the reference transcriptions
in the usual way. The same sentences were also processed by the Cu-ConN, Cu-HTK and
LiMsI recognition systems set up exactly as in the main evaluation.

Table XIII shows the word error rates and standard deviations of the humans
compared to the average performance of the three recognition systems. As can be seen,
the native listeners easily outperform the machines. However, while the non-native
performance is better than the SQALE systems, it is worse than that of the state-of-the-
art Cu-HTk system described earlier which recorded 5.2% errors on this test set.

An analysis of variance was performed on these results to determine the main
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TaBLE XIV. The significant parameters influencing the word error
rates of human listeners and machines recognizing American and
British English test data

Group Parameter Word error

Native listener Sentence length (short/ 1-7%12-9%
long)

Non-native listener Sentence length (short/ 5:2%/18-0%
long)

Non-native listener Perplexity (low/high) 57%I7-5%

Machine Perplexity (low/high) 5:1%/20-1%

influences on recognition accuracy. Table XIV shows the most significant distinctions
where for sentence length, short is ~eight words and long is ~23 words; for perplexity,
low is ~50 and high is ~500. As can be seen, native listeners are mostly influenced
by sentence length but machines are mostly influenced by perplexity. Non-native
speakers are influenced by both. Speaking rate was measured in terms of words per
min, surprisingly perhaps, this was not found to be significant.

4.4 Speaker variability

As mentioned in Section 2.3, the official SQALE evaluation data was augmented by a
small set of diagnostic sentences designed to investigate issues of within and between-
speaker variability. This diagnostic set consisted of approximately 30 common sentences
spoken by 10 speakers and a set of 30 replica sentences consisting of five repetitions
by each speaker.

The mean word error rate and variance was first computed for each replica set of
five sentences for each recognition system and language. The number of replica sentences
is rather small and hence the spread of variance as a function of the mean is rather
high. Nevertheless, it was found that the assumption of a binomial distribution for
word error rate was consistent with the experimental data and provides a reasonable
estimate of variance.

Given this assumption, the within-speaker variance on the per speaker word error
rate o2 can be approximated by

5 2= 1=w)N;
CVETST N (D

where w; is the mean word error rate for speaker j expressed as a fraction, N, is the
number of words spoken by the jth speaker and J is the total number of speakers. The
between-speaker variance o3 is computed from the usual sample average, that is

2.-108,=W)’N;

71 2)

op=

where w is the global mean error rate.
From these estimates of variance, the F-ratio 63/c2 was calculated for each language
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TaBLE XV. The F-ratios of between and within-speaker variability

Language Fyso, Cu-ConN Cu-Htk Limst
American 1-88 4-09 522 2:34
British 1-88 2-31 1-99 1-08
French 221 1-30 1-50
German 1-88 1-05 1-61

TaBLE XVI. The number of errors caused by each OOV word
for each language

American British French German

1-5 1-6 1-8 13

and system and the results are shown in Table XV (Hays, 1963). Also shown in this
table is the F-ratio required for the difference in means between speakers to be significant
at the 95% confidence level. As can be seen this analysis indicates that only the American
English data contains significant speaker variability for all systems.

4.5. Errors caused by out of vocabulary (OOV) words

To measure the effects of OOV words on error rate in the differing languages, each test
sentence containing an OOV word was paired with a sentence of similar perplexity
which had no OOV words. The error rates of the OOV set and the non-OOV set could
then be compared. Scaling the number of words in the OOV set by the error rate on
the non-OOV set gives an estimate of the number of errors that would have occurred
in the OOV set even if there had been no OOVs. This allows the ratio of actual errors
incurred for each OOV to be estimated and the results are shown in Table XVI. As
can be seen French has the highest ratio and German the lowest. The ratios for
American are somewhat lower than those calculated in a comparable analysis made
for the ARPA 1994 evaluation results where values in the range 1-7-2-1 were found
(Pallet et al., 1995).

5. Discussion

The results of the main SQALE evaluation showed broadly comparable performance
across all of the systems and languages tested. The connectionist system Cu-Con ranked
first on both the American and British tests and although there was no statistically
significant difference between it and the nearest HMM-based system, it is still interesting
to speculate on the reasons for its relatively good performance. The recurrent neural
network used as a probability estimator in the Cu-CoN system is trained to discriminate
between phones. It thus uses the training data to estimate decision boundaries, unlike
the HMM systems which use the training data to estimate probability distributions.
The net result is that the Cu-CoN system uses fewer parameters and as a consequence,
it has relatively more training data per parameter. As shown in Section 4.2, a HMM-
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based system can give much better performance when there is more training data and
although comparable results for the Cu-CoN system were not produced, the results of
recent ARPA evaluations (Pallett e al., 1994, 1995) suggest that the Cu-CoN system
would not be better in this case. Thus, there is some evidence that in these SQALE
evaluations, the HMM-based systems suffered more from the limited training data than
did the Cu-Con system.

Although all of the HMM-based systems tested had broadly similar performance,
the Philips system had the highest error rate on all of the languages that it was tested
on. Thus, it appears that the simplifications adopted within the Philips system of using
a single global rather than state-specific deviation (variance) vector, and limiting triphone
contexts to within words did have an adverse effect on performance.

The performance of the German systems was around 30% worse than for the English
systems and it is believed that the mismatch between the acoustic training data and the
test data played a significant part in causing this degradation.

The experience of each of the sites taking part in SQALE was that a reasonably
competitive recognition system can be constructed without paying any special attention
to the specific target language. Once a phone set has been chosen and a dictionary
obtained, most of the processing is routine and language independent. However, once
the basic system has been constructed subsequent refinement is typically language
dependent. For example, both Cu-HTK and Philips made significant improvements to
their initial French systems by taking specific actions to deal with liaison. Similarly,
Livst expended considerable effort in refining their version of the German dictionary
and this resulted in their system being significantly better than any of the others.

The human benchmark tests show that whilst there is still some way to go before
machines can match the competence of native speakers, performance is approaching
that of non-native speakers. The factors which affect performance also seem to be
different for humans who prefer short sentences and machines which prefer low
perplexity sentences. These differences may be attributed to the limited short-term
memory capabilities of humans and the rather crude language model available to the
machines. This suggests that improvements in language modelling will be essential if
the performance gap between humans and machines is to be bridged. Unlike other
studies performed during the ARPA evaluations, speaking rate appears to have had no
significant influence on the results achieved here. However, the speaking rate was
measured in terms of words per unit time and a phone-based measurement of rate
might have led to a more meaningful analysis.

Part of the motivation for the SQALE project was to discover what new problems
would arise when adapting the U.S. ARPA evaluation paradigm to European languages.
One of the first issues that arose was that of case sensitivity in the output transcriptions.
Like the ARPA tests, the English reference comparisons were case insensitive, whereas
case was significant for French and German. In the event, this turned out to be a minor
issue since scoring the French and German systems with case disregarded resulted in
only a 0-1% and 0-3% drop in error rate, respectively.

Perhaps a more important issue in comparing performance across languages concerns
homophones. French has a very high homophone rate and most phones can correspond
to one or more graphemic forms. For example, /¢/ can stand for ai, aie, aies, ait, aient,
hais, hait, haie, haies, es, and est. This ambiguity can extend to phrase length sequences.
For example, one OOV induced error resulted in “épanouissait” being recognized as
“est pas nous il s’est”. Overall, homophone confusions in French represent about 20%
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of all recognition errors. Again the long term solution to these problems will require
more powerful language models. In the meantime, however, the problem that remains
is how to account for them when making cross-language comparisons.

In designing the test material and in the subsequent analysis, TNO attempted to
normalize for the differences in difficulty between the test sets. The results showed that
perplexity has a strong influence on recognition performance. Given that recognition
systems explicitly include language model log likelihoods in their hypothesis scoring,
this is perhaps not surprising. However, the relationship between perplexity and
recognition error is complex. TNo have studied this relationship and they have developed
a model relating word error to perplexity based on an arcsin transform (Steencken &
van Leeuwen, 1995).

In addition, word-level perplexity clearly has limitations when making cross language
comparisons. Although the perplexity of the German test data was much higher than
the other languages, much of this increase was due to compounding. Compounding,
however, tends to make words longer and hence less confusable. Thus, taking into
account the training data mismatch discussed above, the error rate for German was
lower than a simple perplexity measure would suggest. In future, alternatives to word-
based perplexity need to be studied, for example by using morphemes as the basic unit.

6. Conclusions

The evaluation framework imported from the U.S. ARPA evaluations appears to be
highly portable and little difficulty was encountered in making the necessary performance
analyses in each language. However, finding an effective method for determining task
difficulty and equalizing across languages remains an unsolved problem.

The overall conclusions of the SQALE project were therefore that the same general
approach to recognition system design is applicable to all the languages studies. Typically
there will be some language specific problems to solve such as liaison in French and
compounding in German. However, the basic modelling approach appears to be
straightforward to port across languages.

Finally, a major benefit of extending the ARPA evaluation paradigm for use in the
European context was that the consequent sharing amongst the sites of training data,
test materials and language-specific expertise was highly beneficial. Each site made
rapid progress in developing systems for languages which it might not otherwise have
had the opportunity to work on. Overall this created a very strong technology pull
which if continued would make a significant difference to the development of large
vocabulary recognition systems in Europe.

The SQALE project was sponsored by the European Commission, DG XIII, as part of the linguistic
Research and Engineering Programme. In addition to the authors of this paper, many other
people have contributed to the various systems and the evaluations including: at CUED, Gary
Cook, Jeroen Fransen, and Julian Odell; at LIMSI, Gilles Adda; and at Philips, Reinhard Kneser.

The project partners would also like to thank Lidia Pola at the EC and the project reviewers,
Isabel Trancoso and Melvyn Hunt.
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