
Bayesian Learning of Gaussian Mixture Densitiesfor Hidden Markov ModelsJean-Luc Gauvainy and Chin-Hui LeeSpeech Research DepartmentAT&T Bell LaboratoriesMurray Hill, NJ 07974ABSTRACTAn investigation into the use of Bayesian learning of the pa-rameters of a multivariate Gaussian mixture density has beencarried out. In a continuous density hidden Markov model(CDHMM) framework, Bayesian learning serves as a uni�ed ap-proach for parameter smoothing, speaker adaptation, speakerclustering, and corrective training. The goal of this study is toenhance model robustness in a CDHMM-based speech recogni-tion system so as to improve performance. Our approach is touse Bayesian learning to incorporate prior knowledge into theCDHMM training process in the form of prior densities of theHMM parameters. The theoretical basis for this procedure ispresented and preliminary results applying to HMM parametersmoothing, speaker adaptation, and speaker clustering are given.Performance improvements were observed on tests using theDARPA RM task. For speaker adaptation, under a supervisedlearning mode with 2 minutes of speaker-speci�c training data,a 31% reduction in word error rate was obtained compared tospeaker-independent results. Using Baysesian learning for HMMparameter smoothing and sex-dependent modeling, a 21% errorreduction was observed on the FEB91 test.INTRODUCTIONWhen training sub-word units for continuous speechrecognition using probabilistic methods, we are faced withthe general problem of sparse training data. This limitsthe e�ectiveness of conventional maximum likelihood ap-proaches. The sparse training data problem can not alwaysbe solved by the acquisition of more training data. For ex-ample, in the case of rapid adaptation to new speakers orenvironments, the amount of data available for adaptationis usually much less than what is needed to achieve goodperformance for speaker-dependent applications.Techniques used to alleviate the insu�cient training dataproblem include probability density fuction (pdf) smooth-ing, model interpolation, corrective training, and parametersharing. The �rst three techniques have been developed forHMM with discrete pdfs and cannot be directly extended tothe general case of continuous density hidden Markov model(CDHMM). For example, the classical scheme of model in-terpolation [4] [9] can be applied to CDHMM only if tiedmixture HMMs or an increased number of mixture compo-nents are used.Our solution to the problem is to use Bayesian learningto incorporate prior knowledge into the CDHMM trainingyJean-Luc Gauvain is on leave from the Speech Communica-tion Group at LIMSI/CNRS, Orsay, France.

process. The prior information consists of prior densities ofthe HMM parameters. Such an approach was shown to bee�ective for speaker adaptation in isolated word recognitionof a 39-word, English alpha-digit vocabulary where adapta-tion involved only the parameters of a multivariate Gaussianstate observation density of whole-word HMM's [12]. In thispaper, Bayesian adaptation is extended to handle parame-ters of mixtures of Gaussian densities. The theoretical basisfor Bayesian learning of parameters of a multivariate Gaus-sian mixture density for HMM is developed. In a CDHMMframework, Bayesian learning serves as a uni�ed approachfor parameter smoothing, speaker adaptation, speaker clus-tering, and corrective training.In the case of speaker adaptation, Bayesian learning maybe viewed as a process for adjusting speaker-independent(SI) models to form speaker-speci�c ones based on theavailable prior information and a small amount of speaker-speci�c adaptation data. The prior densities are simultane-ously estimated during the SI training process along withthe estimation of the SI model parameters. The joint priordensity for the parameters in a state is assumed to be aproduct of normal-gamma densities for the mean and vari-ance parameters of the mixture Gaussian components anda Dirichlet density for the mixture gain parameters. The SImodels are used to initialize the iterative adaptation process.The speaker-speci�c models are derived from the adapta-tion data using a segmental MAP algorithm which uses theViterbi algorithm to segment the data and an EM algorithmto estimate the mode of the posterior density.In the next section the principle of Bayesian learningfor CDHMM is presented. The remaining sections reportpreliminary results obtained for model smoothing, speakeradaptation and sex-dependent modeling.MAP ESTIMATE OF CDHMMThe di�erence between maximum likelihood (ML) esti-mation and Bayesian learning lies in the assumption of anappropriate prior distribution of the parameters to be esti-mated. If � is the parameter vector to be estimated from asequence of n observations x1; :::; xn, given a prior densityP (�), then one way to estimate � is to use the maximum aposteriori (MAP) estimate which corresponds to the modeof the posterior density P (�jx1; :::; xn), i.e.Proc. DARPA Speech & Nat. Lang., Morgan Kaufmann, f�ev. 1991 1



�MAP = argmax� P (x1; :::; xnj�)P (�) (1)On the other hand, if � is assumed to be �xed but un-known parameter vector, then there is no knowledge about�. This is equivalent to assuming a non-informative prior,i.e. P (�) =constant. Equation (1) is now the familiar max-imum likelihood formulation.Given the MAP formulation in equation (1) two problemsremain: the choice of the prior distribution family and thee�ective evaluation of the maximum a posteriori. In factthese two problems are closely related, since the choice ofan appropriate prior distribution can greatly simplify theestimation of the maximum a posteriori. The most prac-tical choice is to use conjugate densities which are relatedto the existence of a su�cient statistic of a �xed dimension[1] [2]. If the observation density possesses such a statistic sand if g(�js; n) is the associated kernel density, MAP estima-tion is reduced to the evaluation of the mode of the productg(�js; n)P (�). In addition, if the prior density is chosen inthe conjugate family, i.e. in same family of the kernel den-sity, P (�) = g(�jt;m), the previous product is simply equalto g(�ju;m + n) since the kernel density family is closedunder multiplication. The MAP estimate is then�MAP = argmax� g(�ju;m+ n) (2)In this case, the MAP estimation problem is closely relatedto the MLE problem which consists of �nding the mode ofthe kernel density. In fact, g(�ju;m+ n) can be seen as thekernel of the likelihood of a sequence of m+n observations.When there is no su�cient statistic of a �xed dimension,the MAP estimation, like ML estimation, has no analyticalsolution, but the problems are still very similar. For the gen-eral case of mixture densities of the exponential family, wepropose to use a product of kernel densities of the exponen-tial family assuming independence between the parametersof the mixture components in the joint prior density. Tosimplify the problem of �nding the solution to equation 1,we restrict our choice to a product of a Dirichlet density andkernel densities of the mixture exponential density, i.e.P (�) / KYk=1!mkk g(�kjtk;mk) (3)where K is the number of mixture components and !k'sare the mixture weights. However, this choice may be toorestrictive to adequately represent the real prior informationand in practice it may be of interest to choose a slightlylarger family.In the following subsections, we focus our attention on thecases of normal density and mixture of normal densities fortwo reasons: solutions for the MLE problem are well knownand we are using CDHMM based on mixtures of normaldensities.Normal density caseBayesian learning of a normal density is well known [1]. Ifx1; :::; xn is a random sample from N (xjm; r), where m andr are respectively the mean and the precision (reciprocal

of the variance), and if P (m;r) is a normal-gamma priordensity, P (m; r) / r1=2 exp(� �r2 (m � �)2)r��1 exp(��r),the joint posterior density is also a normal-gamma densitywith parameters �̂, �̂, �̂ and �̂ such that:�̂ = �� + n�+ n� + n �x (4)�̂ = � + n2 Sx + �n(�x� �)22(� + n) (5)�̂ = �+ n=2 (6)�̂ = � + n (7)where Sx is the variance of the random sample. The MAPestimates of � and r are respectively �̂ and �̂� 0:5�̂ .This approach has been widely used for sequential learn-ing of the mean vectors of feature-based or template-basedspeech recognizers, see for example [5] and [8]. Ferrettiand Scarci [11] used Bayesian estimation of mean vectorsto build speaker-speci�c codebooks in an HMM framework.In all these cases, the precision parameter was assumed tobe known and the prior density was limited to a Gaussian.Brown et al. [6] have used Bayesian estimation for speakeradaptation of CDHMM parameters in a connected digit rec-ognizer. More recently Lee et al. [12] investigated varioustraining schemes of the Gaussian mean and variance param-eters using normal-gamma prior densities for speaker adap-tation. They showed that on the alpha-digit vocabulary,with a small amount of speaker speci�c data (1 to 3 utter-ances of each word), the MAP estimates gave better resultsthan ML estimates.Mixture of normal densitiesIn the current implementation of the recognizer used inthis study [13] [14] the state observation density is a mixtureof multivariate normal densities. However, to simplify thepresentation of our approach, we assume here a mixture ofunivariate normal densities:P (xj�) = KXk=1 !kN (xjmk; rk) (8)where � = (!1; :::;!K;m1; :::;mK; r1; :::; rK). For such adensity there exists no su�cient statistic of �xed dimensionfor � and therefore no conjugate distribution.We propose to use a prior joint density which is the prod-uct of a Dirichlet density and gamma-normal densities:P (�) / KYk=1!�kk r1=2k exp(��krk2 (mk��k)2)r�k�1k exp(��krk)(9)The choice of such a prior density can be justi�ed by the factthat the Dirichlet density is the conjugate distribution ofthe multinomial distribution (for the mixture weights) andthe gamma-normal density is the conjugate density of thenormal distribution (for the mean and the precision param-eters). The problem is now to �nd the mode of the posteriorjoint density.Proc. DARPA Speech & Nat. Lang., Morgan Kaufmann, f�ev. 1991 2



If we assume the following regularity conditions, 1) �k =�k and 2) �k = (�k + 1)=2, then the posterior densityP (�jx1; :::; xn) can be seen as the likelihood of a stochas-tically independent union of a set of PKk=1 �k categorizedobservations and a set of n uncategorized observations. (Amixture of K densities can be interpreted as the density of amixture of K populations, and an observation is said to becategorized if its population of origin is known with proba-bility 1.) This fact suggests the use of the E.M. algorithm [3]to �nd the maximum a posteriori. The following recursiveformulas estimate the MAP of the 3 parameter sets.cik �= !kN (xijmk; rk)P (xij�) (10)!0k = �k +Pni=1 cikn+PKk=1 �k (11)m0k = �k�k +Pni=1 cikxi�k +Pni=1 cik (12)r0k = 2�k � 1 +Pni=1 cik2�k +Pni=1 cik(xi �m0k)2 + �k(�k �m0k)2 (13)By using a non-informative prior density (i.e. an improperdistribution with �k = 0, �k = 0, �k = 1=2, and �k =0) the classical E.M. reestimation formulas to compute themaximum likelihood estimates of the mixture parameterscan be recognized.Generalization to a mixture of multivariate normal densi-ties is relatively straightforward. For the general case wherethe covariance matrices are not diagonal, the prior joint den-sity is the product of a Dirichlet density and multivariatenormal-Wishart densities. In the case of diagonal covari-ance matrices, the problem for each component reduces tothe 1-dimensional case, and formulas (12) and (13) are ap-plied to each vector component.When the above regularity conditions on the prior jointdensity are not satis�ed we have no proof of convergenceof this algorithm. However, in practice we have not encoun-tered any problems when these conditions were only approx-imately satis�ed.Segmental MAP algorithmThe above procedure to evaluate the MAP of a mixture ofGaussians can be applied to estimate the observation densityparameters of an HMM state given a set of n observationsx1; :::; xn assumed to be independently drawn from the statedistribution. Following the scheme of the segmental k-meansalgorithm [7] to estimate the parameters of an HMM, �rstthe Viterbi algorithm is used to segment the training dataX into sets of observations associated with each HMM stateand then the MAP estimate procedure is applied to eachstate. The following segmental MAP algorithm originallyproposed in [12] is obtained:1. Set �̂ = argmax� P (�)2. Obtain the optimal state sequence Ŝ, i.e.Ŝ = argmaxS P (XjS; �̂)P (�̂)

3. Given the state sequence Ŝ, use the E.M. algorithm to�nd �̂ such that̂� = argmax� P (XjŜ; �)P (�)4. Iterate 2 and 3 , until convergence.In order to compare our results to results previously ob-tained with the k-means segmental algorithm [13] we usedthe segmental MAP algorithm to evaluate the HMM param-eters. However, if it is desired to maximize P (Xj�)P (�) overthe HMM and not only state by state along the best statesequence, a Bayesian version of the Baum-Welch algorithmcan also be designed. As in the case of maximum likelihoodestimation, simply replace cik by cijk in the reestimation for-mulas and apply the summations over all the observationsfor each state j:cijk �= 
ij !kN (xijmjk; rjk)P (xij�j) (14)where 
ij is the probability of being in the state sj at time i,given that the model generates X . (For the segmental MAPapproach 
ij is equal to 0 or 1.)Prior density estimationIf the prior density de�ned by equation (9) for a mixtureof univariate Gaussians is used, more parameters need to beevaluated for the prior density than for the mixture densityitself. As in the case for the HMM parameters, it is thereforeof interest to use tied parameters for the prior densities inorder to obtain more robust estimators or to simply reducethe memory requirements.The method of estimating these parameters depends onthe desired goals. We envisage the following three types ofapplications for Bayesian learning.� Sequential training: The goal is to update existingmodels with new observations without reusing the orig-inal data in order to save time and memory. After eachnew data set has been processed, the prior densitiesmust be replaced by an estimate of the posterior den-sities. In order to approach the HMM MLE estimatorsthe size of each observation must be as large as pos-sible. The process is initialized with non-informativeprior densities.� Model adaptation: For model adaptation most of theprior density parameters are derived from parametersof an existing HMM. (This justi�es the use of the term\model adaptation" even if the only sources of infor-mation for Bayesian learning are the prior densities andthe new data.) To estimate parameters not directly ob-tained from the existing model, training data is neededin which the \missing" prior information can be found.This data can be the data already used to build the ex-isting models or a larger set containing the variabilitywe want to model with the prior densities.� Parameter smoothing: Since the goal of parametersmoothing is to obtain robust HMM parameters, sharedProc. DARPA Speech & Nat. Lang., Morgan Kaufmann, f�ev. 1991 3



prior parameters must be used. These parameters areestimated on the same training data used to estimatethe HMM parameters via Bayesian learning. For exam-ple, with this approach context-dependent (CD) modelscan be built from context-independent (CI) models.In this study we were mainly interested in the prob-lems of speaker-independent training and speaker adapta-tion. Therefore parameter smoothing and model adaptationin which the prior density parameters must be evaluatedfrom SI or SD models and from SI training data were in-vestigated. This approach was used to smooth the param-eters of CD models, for speaker adaptation, and to buildsex-dependent models.In these three cases, the prior density parameters wereestimated along with the estimation of the SI model param-eters using the segmental k-means algorithm. Informationabout the variability to be modeled with the prior densitieswas associated with each frame of the SI training data. Thisinformation was simply represented by a class number whichcan be the speaker number, the speaker sex, or the phoneticcontext. The HMM parameters for each class Cl given themixture component were then computed. For the experi-ments reported in this paper, the prior density parameterswere estimated as follows:�jk = �jk + 12 (15)�jk = �jk2rjk (16)�jk = mjk (17)�jk = !jk KXk=1 �jk (18)�jk = pPl cjklPl cjkl(yjkl �mjk)t(Pk !kr�1jk )�1(yjkl �mjk)(19)where !jk,mjk, and rjk are the SI HMM parameters for eachstate j and each mixture component k (mjk and rjk are vec-tors of p components). The class mean vector yjkl is equal toPi cijklxi=cjkl, where cijkl is de�ned as cijkl = cijk if xi 2 Cland cijkl = 0 if xi 62 Cl, and cjkl =Pi cijkl. It can seen thatwhen the �jk 's are known all the other prior parameters aredirectly estimated from the SI HMM parameters. The priordensity parameters �jk can be regarded as a weight associ-ated with the kth Gaussian of state sj. When this weight islarge, the prior density is sharply peaked around the valuesof the SI HMM parameters and these values will be modi-�ed only slightly by the adaptation process. Conversely, if�jk is small the adaptation will be very fast. By choosingthese estimators for the prior parameters the ability of theprior density to accurately model the inter-class variabilityis reduced but more robust estimators are obtained. Ad-ditionally, to further increase the robustness, the �jk valuescan be constrained to be identical for all Gaussians of a givenstate, or for all states of an HMM, or even for all the HMMs.

For the experiments reported in this paper a common valuefor all the HMMs was estimated. This is clearly too stronga constraint and we plan to relax it in future experiments.The state log-energy density parameters can be adaptedusing the same Bayesian learning principle. In the currentmodels, a discrete pdf is used to model the state log-energy.Like for the mixture parameters, these pdfs were estimatedusing Bayesian learning. The prior density, a Dirichlet dis-tribution, was estimated in the same way as the mixtureweights. Bayesian learning of the log-energy pdf was notused for fast speaker adaptation since we could only adaptthe parameters corresponding to a few observed log-energyvalues. In fact, here the more general problem is Bayesianlearning of discrete HMMs based on multinomial distribu-tions, for which only the statistics of the observed symbolscan be adapted. One solution to this problem is to view,only for training purposes, the multinomial distribution asa mixture of Gaussians with a common covariance matrix.CD MODEL SMOOTHINGIt is well known that HMM training requires smoothing,particularly if a large number of context dependent (CD)phone models are used with limited training data. Whileseveral solutions have been investigated to smooth discreteHMMs, such as model interpolation, co-occurence smooth-ing, and fuzzy VQ, only variance smoothing has been pro-posed for continuous density HMMs. We investigated theuse of Bayesian learning to train CD phone models withprior densities obtained from CI phone training. This ap-proach can be seen as model interpolation between CI andCD models for the case of continuous density HMMs.All the experiments presented in this paper use a set of1769 CD phone models. Each model is a 3 state left-to-rightHMM with Gaussian mixture state observation densities ex-cept for the silence model which has only one state. Di-agonal covariance matrices are used and it is assumed thatthe transition probabilities are �xed and known. As de-scribed in [14], a 38-dimensional feature vector composed of12 cepstrum coe�cients, 12 delta cepstrum coe�cients, thedelta log energy, 12 delta-delta cepstrum coe�cients, andthe delta-delta log energy is used. The training and test-ing materials were taken from the DARPA Naval ResourceManagement task as provided by NIST. For telephone band-width compatibility, the original speech signal was �lteredfrom 100 Hz to 3.8 kHz and down-sampled at 8 kHz. Resultsare reported using the standard word-pair grammar with aperplexity of about 60.For the parameter smoothing experiments, the trainingdata consisted of 3969 sentences from 109 speakers (78 malesand 31 females). This data set will be subsequently referredto as the SI-109 training data. For the MAP estimation,the prior densities were based on a 47 CI model set. Co-variance clipping, as reported in [13], has been used for thetwo approaches. Results are reported with a mixture of 16Gaussian components for each state. Table 1 shows worderror rates obtained for the FEB89, OCT89, JUN90, andFEB91 test sets using models estimated with the MLE andMAP methods.An average error rate reduction of about 10% was ob-Proc. DARPA Speech & Nat. Lang., Morgan Kaufmann, f�ev. 1991 4



Model type FEB89 OCT89 JUN90 FEB91MLE 6.2 6.0 6.3 5.8MAP47 5.3 6.0 5.3 5.4Table 1: Parameter smoothing with Bayesian learning.served using parameter smoothing with prior densities es-timated on a set of 47 units. This improvement is limitedsince the 1769 phone model set was originally designed tobe trainable with a MLE approach on the SI-109 trainingdata [13]. We intend to run some other experiments with alarger number of CD units to futher explore this approach.SPEAKER ADAPTATIONPrevious works on speaker-adaptation within the frame-work of the DARPA RM task have been reported for fast-adaptation (using less than 2 min of speech). Model inter-polation has been proposed to adapt SI models [9] and prob-abilistic spectral mapping has been proposed to adapt SDmodels [10] and multi-speaker models [15]. In the frameworkof Bayesian learning, speaker adaptation may be viewedas adjusting speaker-independent models to form speaker-speci�c ones, using the available prior information and asmall amount of speaker-speci�c adaptation data. Alongwith the estimation of the parameters for the SI CD models,the prior densities are simultaneously estimated during thespeaker-independent training process. The speaker-speci�cmodels are built from the adaptation data using the seg-mental MAP algorithm. The SI models are used to initializethe iterative adaptation process. After segmenting all of thetraining sentences with the models generated in the previousiteration, the speaker-speci�c training data is used to adaptthe CD phone models both with and without reference tothe segmental labels. Three types of adaptation were in-vestigated: adapting all CD phones with the exact triphonelabel (type 1), those with the same CI phone label (type 2),and all models without regard to the label (type 3). Eachframe of the sentence is distributed over the models based onthe observation densities of the preceding iteration. Whenthe model labels are not used, this method can be viewedas probabilistic spectral mapping constrained by the priordensities. For fast speaker adaptation, it was found that acombination of adaptation types 1 and 2 was the most ef-fective. The same set of 1769 CD phone units, where theobservation densities are mixtures of 38-element multivari-ate Gaussian distributions was used for evaluation. While amaximum of 8 mixture components per density was allowed,the actual average number of components was 7. This rep-resents a total of 3 million parameters to be estimated andadapted.Experiments were conducted using approximately 1 and2 minutes of adaptation data to build the speaker-speci�cmodels. In 40 utterances, roughly 2 minutes of speech, onlyabout 45% of the CD phones appear (28% for 20 sentences),whereas typically all the CI phones appear. Table 2 sum-marizes the test results1 on the JUN90 data for the last 801Results reported in this section were obtained with a recog-nizer using a guided search strategy [17] which has been found togive slightly biased and better performance than a regular beam

Speaker SI SA (1 min) SA (2 min) Err. Red. (2 min)BJW(F) 4.7 3.4 2.2 53%JLS(M) 3.6 3.0 3.4 5%JRM(F) 9.2 7.0 5.3 42%LPN(M) 3.2 4.7 3.2 0%Overall 5.1 4.3 3.5 31%Table 2: Speaker adaptation results on the JUN90 test data.Speaker SI SA (2 � 2 min)BJW(F) 4.7 3.4JLS(M) 3.6 3.5JRM(F) 9.2 6.6LPN(M) 3.2 3.7Overall 5.1 4.3Table 3: Unsupervised speaker adaptation results on the JUN90test data.utterances of each speaker, where the �rst 20 (or 40) utter-ances were used for supervised adaptation of types 1 and2. Speaker-independent recognition results are also shownfor comparison. With 1 minute and 2 minutes of speaker-speci�c training data, a 16% and 31% reduction in worderror were obtained compared to the speaker-independentresults. On this test speaker adaptation appears to be e�ec-tive only for the female speakers for whom SI results werelower than the male speakers.Preliminary experiments have also been carried out usingunsupervised speaker adaptation, which is more applicableto on-line situations. Starting with the SI models, adapta-tion of SI phone models is performed every 40 utterancesusing type 2 adaptation. The results on the JUN90 test areshown in Table 3 for the last 80 sentences of each speaker.There is an overall error reduction of 16%.SEX-DEPENDENT MODELINGIt has recently been reported that the use of di�erentmodels for male and female speakers reduced recognizer er-rors by 6% on the FEB89 and OCT89 tests using a word-pair grammar with models trained on the SI-109 data set[16]. We investigated the same idea within the frameworkof Bayesian learning. Two sets of 1769 CD phone modelswere generated using data from the male speakers for oneset and from the female speakers for the other set. For bothsets the same prior density parameters, which had been esti-mated along with SI training on all 109 speakers, were used.Recognition is performed by computing the likelihoods ofthe sentence for the two sets of models and by selecting thesolution corresponding to the highest likelihood. In orderto avoid problems due to likelihood disparities caused byimplementation details, all the HMM parameters with theexception of the Gaussian mean vectors were assumed tobe known and set to the parameter values of the SI modelstrained on the 109 speakers.Table 4 shows the results obtained on the FEB91 testusing the speaker independent set (SI), the male set (MA),search strategy.Proc. DARPA Speech & Nat. Lang., Morgan Kaufmann, f�ev. 1991 5



Speaker SI MA FE MA+FEALK(F) 9.3 11.5 8.6 8.6CAL(F) 3.8 5.1 3.8 3.8CAU(F) 3.3 3.7 3.7 3.7EAC(F) 7.2 8.9 6.4 7.2JLS(M) 1.6 2.0 2.0 2.0JWG(M) 7.9 6.6 12.9 6.6MEB(M) 4.1 3.3 6.5 3.3SAS(M) 1.9 2.2 3.7 2.2STK(M) 5.0 3.3 5.0 3.3TRB(F) 10.9 18.3 5.7 5.7overall 5.4 6.4 5.8 4.6Table 4: Results on FEB91 test using separate male/femalemodels.the female set (FE), and the male and female sets together(MA+FE). Looking at the results speaker by speaker it canbe seen that sex models do the job for which they have beendesigned; The best result for each speaker is obtained withthe models of his/her sex. For the FEB91 test, the malemodels gave the higher likelihood for 153 sentences and thefemale models for 147 sentences. The overall improvementobtained using separate models for male and female speakersis a reduction in error rate of about 16%. This improvementis observed for both male and female speakers.On the FEB91 test, using Baysesian learning for HMMparameter smoothing and sex-dependent modeling, a 21%error reduction compared to the baseline system results isobtained (5.8% to 4.6%).SUMMARYAn investigation into the use of Bayesian learning ofCDHMM parameters has been carried out. The theoricalframework for training HMMs with Gaussian mixture den-sities was presented. It was shown that Bayesian learningcan serve as a uni�ed approach for parameter smoothing,speaker adaptation, and speaker clustering. Encouragingresults have been obtained for these three applications.Bayesian learning applied to HMM parameter smoothinghad an overall 10% reduction on the word errors comparedto results obtained using conventional segmental k-meanstraining. Using Bayesian learning for sex-dependent mod-eling, an additional 15% error reduction was obtained. Forspeaker adaptation, a 31% error reduction was obtained onthe JUN90 test with 2 minutes of speaker-speci�c trainingdata. Since the extent of these tests is relatively limited,other experiments should be carried out to obtain more sta-tistically signi�cant results in order to fully validate thisapproach. REFERENCES[1] M. H. DeGroot, Optimal Statistical Decisions, McGraw-Hill,New York, 1970.[2] R. O. Duda and P. E. Hart, Pattern Classi�cation and SceneAnalysis, John Wiley & Sons, New York, 1973.[3] A. P. Dempster, N. M. Laird and D. B. Rubin, \MaximumLikelihood from Incomplete Data via the EM algorithm", J.Roy. Statist. Soc. Ser. B, 39, pp. 1-38, 1977.
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