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Abstract

In this paper, we investigate the cochlear implant-like process-
ing of speech signal in speaker verification. This processing
was applied on each speech utterance, in the temporal domain,
to reduce spectral information in the original speech signal
and synthesize a new one, called cochlear implant-like spec-
trally reduced speech (SRS), only from low-bandwidth subband
temporal envelopes of the original speech. Spectral analyses,
performed on voiced speech frames, showed that despite of
the spectral and perceptual reduction induced by the cochlear
implant-like signal processing, the global shape of the short-
term spectral envelopes of the SRS signal is rather similar to
that of the original speech signal.

Although the SRS is synthesized only from low-bandwidth
subband temporal envelopes of original speech signal, its use in
a baseline GMM-UBM speaker verification system, with cellu-
lar telephone conversational speech of the Switchboard corpus
(used in NIST SRE 2002), did not alter substantially the mini-
mal DCF (detection cost function) of the system. Furthermore,
using appropriate SRS signals made it possible to reduce the
minimal DCF (5.7% relative reduction) of the system. The lin-
ear combination at the score level, with equal weights, of the
baseline and the SRS-based systems could also help in reduc-
ing the minimal DCE.

1. Introduction

In standard speaker verification system, the purpose of the fea-
ture extraction is to find a tradeoff between extracting relevant
speaker specific information and to remove irrelevant variability
from speech signal in order to achieve optimal recognition per-
formance [1]. The feature extraction module first transforms the
raw signal into feature vectors in which speaker specific proper-
ties are emphasized and reduce the number of coefficients really
used by the system. Conventional speech acoustic feature, e.g.
Mel frequency cepstral coefficients (MFCCs) [2] and perceptual
linear predictive (PLP) coefficients [3] were introduced in early
1980s and 1990s, respectively, in speech and audio processing.

MFCCs and PLP coefficients are normally calculated from
short-term windows of speech signal. These windows have typ-
ically 20-30 ms length. Indeed, the global shape of the discrete
Fourier transform (DFT) magnitude spectrum, known as spec-
tral envelope, contains information about the resonance prop-
erties of the vocal tract and has been found out to be the most
informative part of the spectrum in speaker verification [4]. On
the other hand, post-processing techniques of short-term feature
vectors, which consider rather large time-spans of the speech
signals, have been also incorporated in the feature extraction
of speaker verification. In such techniques, e.g. dynamic (A
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and AA) features [5] or RASTA (relative spectra) filtering [6],
larger time-spans of spectral features are processed in order to
improve the noise robustness of speaker verification. These
techniques operate in the spectral domains. Dynamic features
have been adopted for using in conjunction with short-term
speech features in speaker verification.

Cochlear implant-like spectrally reduced speech (SRS) is
essentially the acoustic simulation of cochlear implant and is a
spectrally reduced transform of original speech signal. In fact,
cochlear implant-like SRS, henceforth abbreviated SRS, can be
recognized by normal hearing listeners. The recognition scores
then depend on the spectral resolution (or the number of fre-
quency subbands of the SRS) [7]. Furthermore, human cochlear
implant listeners relying on primarily temporal cues can achieve
a high level of speech recognition in quiet environment [8]. The
foregoing facts suggest that the SRS could contain sufficient in-
formation for human speech recognition, even though such a
SRS is synthesized only from subband temporal envelopes of
original speech signal [7]. On the other hand, certain speech
analyses in conventional short-term acoustic features extraction,
such as the Bark or Mel scale warping of the frequency axis
or the spectral amplitude compression, derive from the model
of human auditory system. Such auditory-like analyses, which
mimic the speech processing performed by the human auditory
system, are basically aimed at reducing speech signal variabil-
ity and emphasizing the most relevant spectral information for
recognition. As a result, the SRS should contain sufficient spec-
tral information for speech processing systems using short-term
acoustic features, e.g. MFCCs or PLP coefficients.

Indeed, it has been shown that high spectral resolution
SRS contains sufficiently spectral information for hidden-
Markov-model-(HMM)-based automatic speech recognition
(ASR) based on MFCCs and PLP coefficients, [9, 10]. More
specifically, when the ASR system was trained on original clean
speech, testing speech consisting of 16-, 24-, or 32-subband
SRS provided ASR performance which is comparable with that
achieved with original clean speech.

Given that ASR and speaker verification, using conven-
tional short-term acoustic features, exploit primarily infor-
mation from the short-term spectral envelopes, the cochlear
implant-like processing of speech signal should be also rele-
vant for speaker verification. In this paper, we investigate the
cochlear implant-like processing of speech signal for speaker
verification using short-term PLP-like acoustic feature. This
processing is applied on the speech signals (temporal domain).
We use a standard GMM (Gaussian mixture model)-UBM (uni-
versal background model) speaker verification system for as-
sessing the effect of the cochlear implant-like processing. These
experiments are conducted on cellular telephone conversational
speech from the Switchboard corpus which was used by NIST
for the 2002 one-speaker detection task [11].

This paper is organized as follows. Section 2 introduces the
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cochlear implant-like processing algorithm as well as spectral
analyses of cochlear implant-like SRS. Afterward, the appli-
cation of cochlear implant-like processing of speech signal in
speaker verification is presented in section 3. Finally, section 4
concludes the paper.

2. Cochlear implant-like processing of
speech signal

In [7], Shannon et al. used the cochlear implant-like pro-
cessing to synthesize acoustic simulation of cochlear implant,
or cochlear implant-like spectrally reduced speech (SRS) [10],
only from subband temporal envelopes of original speech sig-
nal. These signals, henceforth abbreviated SRS, are percep-
tually different compared to the original speech. However, it
has been shown that normal hearing listeners could achieve a
nearly perfect recognition score when listening to these signals
[7]. In [9, 10], it has been shown that the SRS is also rele-
vant for HMM-based ASR using MFCCs or PLP coefficients as
acoustic features. The major difference between the SRS used
in [7] and in [9, 10] lies in the type of carrier signals; subband
temporal envelopes in [7] were used to modulate white noise
whereas in [9, 10], they were used to modulated sinusoids. In
the following section, we describe briefly the cochlear implant-
like processing algorithm that we use to process speech signal.
This algorithm is similar with that in [9, 10] and is inspired from
the algorithm introduced in [7].

2.1. Cochlear implant-like processing algorithm

A speech signal s(t) is first decomposed into N subband signals
si(t),s = 1,..., N by using a perceptually-motivated analy-
sis filterbank consisting of N bandpass filters. The filterbank
consists of nonuniform bandwidth bandpass filters which are
linearly spaced on the Bark scale in order to simulate the mo-
tion of the basilar membrane [12]. In this paper, each bandpass
filter in the filterbank is a second-order elliptic bandpass filter
having a minimum stopband attenuation of 50dB and a 2-dB
peak-to-peak ripple in the passband. The lower, upper, and cen-
tral frequencies of the bandpass filters are calculated as in [13].
Fig. 1 shows example of an analysis filterbank consisting of 16
bandpass filters.
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Figure 1: Frequency response of an analysis filterbank consist-
ing of 16 second-order elliptic bandpass filters. The bandpass
filters are linearly spaced on the Bark scale.

The subband temporal envelopes m; () of the subband sig-
nals s;(¢t),7 = 1,..., N are then extracted by, first, full-wave
rectification of the outputs of the bandpass filters and, subse-
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quently, lowpass filtering of the resulting signals. These en-
velopes have the same sampling rate (8 kHz) as that of the sub-
band signal. In this work, the filter which was used to limit the
bandwidth of the subband temporal envelopes is a fourth-order
elliptic lowpass filter with 2-dB of peak-to-peak ripple and a
minimum stop-band attenuation of 50-dB. The subband tempo-
ral envelope m;(¢) is then used to modulate a sinusoid whose
frequency f.; equals the central frequency of the corresponding
analysis bandpass filter of that subband. The subband modu-
lated signal is then filtered again by the same bandpass filter
used for the original analysis subband [7]. Finally, all the pro-
cessed subband signals are summed to synthesize the SRS. The
mathematical formula of the SRS 5(¢) can be expressed as fol-
lows.

N
8(t) =Y ma(t) cos (2 feit) (1)

As reported in [9, 10], the 16-, 24-, and 32-subband SRS
provide comparable ASR performance compared to that ob-
tained with original clean speech signals. Indeed, 16, 24 and 32
are the spectral resolution from which SRS signals contain suf-
ficiently spectral information compared to the original speech
signal. To this end, in this paper, we synthesize SRS signal
from original speech signal with N = {16, 24,32} subbands.
In addition, for the subband temporal envelopes extraction filter,
we use two cut-off frequencies, 50 and 500 Hz, since these cut-
off frequencies ensure a reasonable subband temporal envelope
bandwidths, henceforth denoted as W, for human and machine
speech recognition with short-term speech features [7, 9, 10].

2.2. Spectral analyses

In this section, we perform some spectral analyses in order to
clarify the differences, in the spectral domain, between original
and SRS speech signals. Fig. 2 shows examples of the spec-
trogram of an original speech signal (cellular telephone con-
versational speech) and those of the corresponding SRS signals
which are synthesized from the original one. We can remark,
from the spectrograms of SRS signals, that there are separable
spectral subbands appearing horizontally at the frequency loca-
tions of the bandpass filters. This fact shows that the energy
in the spectral domain of the SRS is concentrated around the
central frequencies of the analysis filterbank.
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Figure 2: Spectrograms of an original speech signal (cellular
telephone conversational speech) and those of the correspond-
ing SRS signals which are synthesized from the original one.
(a) Spectrogram of original speech. (b) Spectrogram of the cor-
responding SRS (N = 16, W = 50 Hz). (c) Spectrogram of
the corresponding SRS (N = 32, W = 500 Hz).
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Fig. 3 shows examples of short-term spectra and spectral
envelopes analyses of original speech and corresponding SRS
signals. The spectra and spectral envelopes were calculated
from voiced speech frames of original speech and correspond-
ing SRS signals. The voiced speech frames in Fig. 3 were ex-
tracted at the same instants in the original speech and the cor-
responding SRS signals which have the same overall lengths
as the original one. The voiced speech frames were multiplied
with Hamming windows and have 30ms lengths. Linear pre-
diction (LP) [14] was used to estimate the short-term spectral
envelopes.
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Figure 3: Discrete Fourier transform (DFT) spectra and linear
prediction (LP) spectral envelopes of voiced speech frames of
original speech and corresponding SRS signals. The voiced
speech frames are extracted at the same instants in the origi-
nal speech and the corresponding SRS signals which have the
same overall lengths as the original one. (a) DFT spectrum and
LP spectral envelope of original speech. (b) DFT spectrum and
LP spectral envelope of SRS (N = 16, W = 50 Hz). (c) DFT
spectrum and LP spectral envelope of SRS (N = 32, W = 500
Hz).

The basic idea of linear prediction is to model the short-
term spectrum by an all-pole model. The order p of the all-
pole model needs to be defined in advance. In this analysis, p
was chosen to be equal 12 and the LP spectral envelopes were
estimated by using the Levinson-Durbin recursion to solve the
normal equations that arise from the least-squares formulation
[14]. It can be observed from Fig. 3 that the global shapes of
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Table 1: Averages of the Pearson product-moment correlation
coefficients (PPMCCs) calculated between the LP spectral en-
velopes of voices speech frames of original speech and cochlear
implant-like spectrally reduced speech (SRS) signals, with dif-
ferent SRS synthesis parameters.

l SRS synthesis parameters [ Average PPMCC ‘

SRS (N = 16, W = 50 Hz) 0.91
SRS (N = 16, W = 500 Hz) 0.94
SRS (N = 24, W = 50 Hz) 0.92
SRS (N = 24, W = 500 Hz) 0.96
SRS (N = 32, W = 50 Hz) 0.90
SRS (N = 32, W = 500 Hz) 0.95

the LP spectral envelopes of the SRS voiced speech frames are
rather similar with that of the LP spectral envelope of the voiced
speech frame of original speech. In this example, the LP spec-
tral envelope of the SRS (N = 32, W = 500 Hz) seems more
similar to that of the original one compared to the LP spectral
envelope of the SRS (N = 16, W = 50 Hz).

We perform quantitative measure on the similarity be-
tween the global shapes of the LP spectral envelopes of SRS
and that of the original speech signals. Assume that x =
[1,22,...,2]T andy = [y1,2,...,yz]" are two LP spec-
tral envelope vectors of two voiced speech frames, one of the
original speech and another of the corresponding SRS signal,
respectively. The similarity between the global shapes of x and
y is measured by calculating the Pearson product-moment cor-
relation coefficient (PPMCC) r between x and y as follows [15]

e iy (@ =)y — 3)
VEE @ - 225 (i - )

where X = 1 ZiL:1 ziandy = 1 ZiLZI yi. In this analysis,
the PPMCC r is calculated for all voiced speech frames of an
original cellular telephone conversational speech utterance (and
the corresponding SRS signals) which lasts 37 seconds. There
are 1935 voiced speech frames in the utterance and the averages
7 of 1935 PPMCCs are shown in Table 1. It can be observed that
the values of 7 are very close to 1. That is, the global shape of
the LP spectral envelopes of voiced speech frames of SRS sig-
nals is very similar to that of the LP spectral envelopes of voiced
speech frames of original speech. The values of 7 confirm also
that the LP spectral envelope of the SRS (N = 32, W = 500
Hz) is more similar to that of the original one compared to the
LP spectral envelope of the SRS (N = 16, W = 50 Hz), as
shown in Fig. 3.

(@)

3. Speaker verification experiments

We made use of basic GMM-UBM speaker verification systems
for comfortably evaluating the effect of the cochlear implant-
like processing of speech signal on speaker verification. In this
respect, we implemented two speaker verification systems, a
baseline system, denoted as BL-SPKVR, using original speech
signals and another system, denoted as SRS-SPKVR, using
speech signals which were processed with the cochlear implant-
like algorithm (see Fig. 4). The structures of the two systems
were the same except the speech signals which were used in the
two systems. In the SRS-SPKVR system, the cochlear implant-
like processing algorithm was applied on both training and test-
ing speech signals in order to reduce the mismatch between
training and testing conditions [16]. In the following sections,
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we describe the NIST one-speaker detection task, the data used
to carry out the experiments and the specification of the speaker
verification systems.

Cochlear implant-like
processing

Original Spectrally

reduced
speech signals

speech
signals

Figure 4: Original speech signals are processed with the
cochlear implant-like processing algorithm (see section 2.1) to
synthesize the spectrally reduced speech (SRS) signals. The
SRS synthesis algorithm is applied on each original speech ut-
terance to produce a corresponding SRS utterance.

3.1. One-speaker detection task on cellular data

The one-speaker detection task consists of determining whether
a specified speaker is speaking during a given speech segment.
In this work, we conduct experiments on cellular telephone con-
versational speech from the Switchboard corpus, following the
framework defined for NIST SRE 2002 one-speaker detection
task on cellular data [11]. For each of the 330 target speakers
(139 males and 191 females), two minutes of concatenated seg-
ments of speech are provided for training the speaker model.
The evaluation is performed on 3570 test segments (including
1442 males and 2128 females) with a mean duration of 30 sec-
onds. Each test segment is scored against roughly 10 gender-
matching imposters and against the true speaker. The gender
of the target speaker is known. System performances are re-
ported in terms of the minimal a posteriori detection cost func-
tion (DCF) defined by NIST! and in terms of equal error-rate
(EER).

3.2. Speaker verification systems

The baseline GMM-UBM speaker verification system (BL-
SPKVR) [17, 18] was implemented for the experiments using
original speech signals. The front-end consists of 15 MEL-PLP
coefficients along with their A, AA coefficients, and the A
and AA energies for a total of 47 features. These features are
extracted every 10ms using a 30ms window on the 0-3.8kHz
bandwidth and are Gaussianized using feature warping [1] on
a 3-second sliding window. Two gender-specific GMMs with
512 Gaussians and diagonal covariance matrices serve as the
UBMs; they are trained on 2 hours of speech from 60 different
speakers extracted from NIST SRE 2001 development data. For
each target speaker, the Gaussian means of the gender-matching
UBM are MAP-adapted to the speaker data. Then, for each trial,
the log-likelihood of the test segment given the target model is
scaled through T-norm [19] against a set of 174 impostor mod-
els from on NIST SRE 2001 training data.

The cochlear implant-like SRS signals were used in the
implementation of another speaker verification system (SRS-
SPKVR). As mentioned in section 2.1, we used three values of
number of frequency subbands, N = {16, 24, 32}, and two val-
ues of subband temporal envelopes bandwidth, W = {50, 500}
Hz, in the cochlear implant-like processing of speech signal.
Thus, we have in total six types of SRS signals. Correspond-
ingly, six SRS-SPKVR systems were implemented. The techni-
cal specification (feature extraction and normalization, speaker
modeling, scoring, etc.) of the SRS-SPKVR systems were the
same as the baseline speaker verification system (BL-SPKVR).

1 —
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Table 2: Speaker detection performance, in terms of min. DCF
and EER, of the baseline (BL-SPKVR) and SRS-based (SRS-
SPKVR) speaker verification systems. The last line contain
min. DCF and EER of the linear combination at the score level,
with equal weights, of the BL-SPKVR and the SRS-SPKVR
(N = 32, W = 500 Hz) systems.

| Speaker verification system [ min. DCF [ EER (%) ‘

| BL-SPKVR! (baseline) [ 03300 | 834 |
SRS-SPKVR (N = 16, W = 50) 0.3481 9.19
SRS-SPKVR (N = 16, W = 500) 0.3411 9.16
SRS-SPKVR (N = 24, W = 50) 0.3383 8.78
SRS-SPKVR (N = 24, W = 500) 0.3298 8.81
SRS-SPKVR (N = 32, W = 50) 0.3323 8.93
SRS-SPKVR? (N = 32, W = 500) 0.3143 8.69

| BL-SPKVR! + SRS-SPKVR? [ 03112 | 844 |

3.3. Experimental results

Speaker detection results, performed by the baseline system
and the SRS-based systems, are presented in Table 2. It can
be observed that the minimal DCF of most SRS-SPKVR sys-
tems have not been substantially altered compared to the min-
imal DCF of the baseline system BL-SPKVR even though the
cochlear implant-like processing has significantly modified the
original speech signals. Especially, the SRS-SPKVR (N =
32, W = 500 Hz) system has substantial lower minimal DCF
compared to that of the baseline system (5.7% relative reduc-
tion). The DET (detection error tradeoff) curves in Fig. 5 show
that the performance of the SRS-SPKVR (N = 32, W = 500
Hz) system outperforms that of the baseline system for the low
false alarm rate. The minimal DCFs in Table 2 are rather con-
sistent with the PPMCCs which measure the similarity between
the global shapes of LP spectral envelopes of voiced speech
frames of original speech and SRS signals (see Table 1, section
2.2).

A linear combination (with equal weights) at the score level
on the outputs of the baseline and the SRS-SPKVR (N =
32, W = 500 Hz) systems made it possible to achieve a lower
minimal DCF compared to individual systems (see the last line
of Table 2). In addition, the EER obtained with this combina-
tion approaches that of the baseline system. The EER of the
baseline system is lower than that of the SRS-SPKVR systems.

4. Conclusion

In this paper, we have investigated the cochlear implant-like
processing of speech signal in speaker verification. This pro-
cessing has been previously investigated in speech recognition
by humans [7] and machines [9, 10, 16]. The cochlear implant-
like processing was inspired from speech signal processing al-
gorithm in standard cochlear implant. This algorithm reduces
the spectral information in the original speech signals and syn-
thesizes new speech signals, called spectrally reduced speech
(SRS), from low-bandwidth subband temporal envelopes of the
original ones. This reduction made the SRS signals spectrally
and perceptually different compared to the original speech sig-
nals. It has been shown, through spectral analyses of voiced
speech frames, that even though the spectral information has
been substantially reduced, the global shapes of the short-term
linear prediction spectral envelopes have almost been retained
in the SRS signals. This fact might be the critical factor which
makes the SRS relevant for speaker verification using short-
term speech features.
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Figure 5: DET curves of the baseline (BL-SPKVR) and the
SRS-SPKVR (N = 32, W = 500 Hz) systems. Circles are
drawn at minimal DCF operating points.

Although the SRS is synthesized only from low-bandwidth
subband temporal envelopes of original speech signal, its use in
a standard GMM-UBM speaker verification system, with cel-
lular telephone conversational speech of the Switchboard cor-
pus, has not altered substantially the minimal DCF of the sys-
tem. Furthermore, using appropriate SRS signals (SRS (N =
32, W = 500 Hz) in this case) has made it possible to reduce
the minimal DCF (5.7% relative reduction) of the system. The
linear combination at the score level, with equal weights, of the
baseline and the SRS-based systems could also help in reducing
the minimal DCF. The SRS is therefore relevant not only for
ASR but also for speaker verification. This study might open
potential research directions, e.g. speaker verification through
low-bandwidth (or low bit-rate) telecommunication networks,
since the SRS signal can be synthesized from low-bandwidth
subband temporal envelopes of original speech signal.
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