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ABSTRACT

Development of an automatic speech recognition (ASR) system for
low-resourced languages is an important research topic in ASR. This
paper reports on the development of a speech-to-text (STT) system
targeting broadcast news and broadcast conversation transcription
for the low-resourced Slovak language. Context-dependent acous-
tic models are trained without any manually transcribed audio data
via cross-language transfer and unsupervised training. In addition,
a pronunciation dictionary for Slovak language is created using effi-
cient rule-based pronunciation modeling. For language modeling,
large N-gram language models were estimated on 63M words of
texts downloaded from the Internet. The system uses MLP (multi-
layer perceptron) features imported from English which are concate-
nated with cepstral PLP (perceptual linear prediction) and F0 (pitch)
features. These techniques were applied to develop a Slovak STT
system with performance similar to that obtained by state-of-the-art
systems for other languages. Furthermore, we propose to reduce the
dimension of the MLP+PLP+F0 features from 81 to 50, using prin-
cipal component analysis (PCA), in order to reduce the redundancy
between the MLP and the PLP+F0 features. This feature reduction
makes it possible to reduce the word error rate (WER) and the recog-
nition time while reducing the CMLLR adaptation time by a factor
of 3.

Index Terms— Slovak speech-to-text, ASR for low-resourced
languages, Multi-layer perceptron, Unsupervised acoustic model
training, Principal component analysis

1. INTRODUCTION

Development of an automatic speech recognition (ASR) system for
a low-resourced language is one of the important research and de-
velopment topics in ASR. This topic is the focus of recent research
projects in speech processing, for instance the Quaero1 and the Ba-
bel2 projects. ASR technology has been initially developed for full-
resourced languages, for instance English, French or Mandarin. In-
deed, besides a large amount of text data needed for training lan-
guage models, the development of ASR systems requires also acous-
tic data along with their transcriptions for training acoustic models.
This is, in fact, the main technical point which limits the (rapid)
development of an ASR system for a new low-resourced language
since sufficient acoustic data with (manual) transcription is, often,
not readily available for a new low-resourced language. Whilst large
quantities of audio and text data can be downloaded from the Inter-
net, for instance from radio and television news broadcast, the tran-
scriptions of the audio data for training acoustic models are usually

1www.quaero.org
2http://www.iarpa.gov/Programs/ia/Babel/babel.html

not available for low-resourced languages. Unsupervised acoustic
models training [1] would be one of the solutions for training acous-
tic models without using transcriptions. Further, if large enough
quantities of audio data can be found, the automatic transcriptions
can be used to train language models [2] in case of representative
text for language modeling of some under-resourced languages is
difficult to obtain.

The Quaero project aims at developing ASR, or speech-to-text
(STT), systems for European languages, including low-resourced
languages, for instance Latvian [3], Hungarian [4] or Slovak. In this
paper, we report the development of a state-of-the-art STT system
for Slovak language, in the framework of the Quaero project. We
are interested in the transcription of broadcast news (BN) and broad-
cast conversation (BC) data. The automatic transcription of BN and
BC is a challenging task and has been studied for several years for
full-resourced languages, such as English [5] or French [6]. Slo-
vak language is a West-Slavic branch of European language which
is spoken by 7 million people, mostly in Slovakia, and also in other
countries, such as the Czech Republic or Hungary. BN and BC tran-
scription systems for Slovak language have been developed in the
literature [7]. However, more or less transcriptions of acoustic data
have been utilized in the training of these systems.

2. CONTRIBUTIONS

2.1. System development

Our Slovak STT system development makes use of unsupervised
acoustic models training [1], i.e., no transcriptions, and cross-
language transfer acoustic modeling [8]. Cross-language transfer
acoustic modeling has been applied in order to create context-
independent (CI) acoustic models. The purpose of the cross-
language transfer is to find common sound unit representations
that are shared across languages. Indeed, the acoustic realization of
phones could be similar for different languages since they are cre-
ated through a limited set of articulatory movements [9]. Therefore,
CI acoustic models of a low-resourced language can be initially
selected from a set of CI acoustic models of available languages.
These models are used as seed acoustic models in our STT system.

2.2. System improvement

Discriminative features, extracted by a trained multi-layer percep-
tron (MLP), have been introduced [10] and gradually adopted in
state-of-the-art STT systems thanks to their relevance and effective-
ness [11, 12, 13]. The implementation of MLP features in the STT
systems at LIMSI makes it possible to improve significantly the
recognition performance [11]. Generally, MLP features are used
to augment cepstral features to create an augmented feature vector
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[10, 11, 13]. The dimension of the MLP features is rather similar
to that of the cepstral features. Hence, the dimension of the aug-
mented feature vector is double that of the cepstral feature vector.
This dimension doubling doubles also the numbers of parameters in
the acoustic models using MLP features compared to acoustic mod-
els using cepstral features. Therefore, larger amounts of acoustic
data are needed to estimate, reliably, the parameters of the acoustic
models using MLP features.

In the development of low-resourced STT systems, speech and
text data sparseness is a critical issue since the reliable estimation
of the parameters of the statistical models needs a large amount of
training data [14]. In this paper, besides the development of a base-
line STT system for the low-resourced Slovak language, we are in-
terested in the problem of speech data sparseness for training acous-
tic models using MLP features. As mentioned previously, with the
doubling of the parameters of the acoustic models due to the use of
MLP features, a larger amount of speech data is needed for training
acoustic models. In the context of STT system development for low-
resourced languages, namely Slovak, this issue should be taken into
account.

The fact that augmenting cepstral features with MLP features
improves the ASR performance demonstrates that the information
conveyed in the MLP features is complementary to that conveyed in
the cepstral features. However, the MLP and cepstral features could
contain also redundant information to each other. It has been shown
that reducing the dimension of the augmented feature vectors, using
principal component analysis (PCA), helps in improving the speaker
verification performance, compared to when using cepstral features
alone [15]. Indeed, the PCA maintains the complementary but re-
duces the redundancy between MLP and cepstral features. Further-
more, the acoustic models will be more compact and less parameters
are needed to be estimated if the dimension of the augmented feature
vectors is reduced.

In the context of STT system development for low-resourced
languages, this dimension reduction would be useful when lesser
amounts of speech data is available for acoustic models training.
Further, reducing the dimension of the feature vectors might help
in reducing the recognition and adaptation time which is also an es-
sential factor in the development of STT system. Indeed, when the
dimension of the feature vectors is reduced, the transformation ma-
trices used in the adaptation, for instance using MLLR (maximum
likelihood linear regression) [16] or CMLLR (constrained MLLR)
[17], are reduced, and hence, the adaptation time should be reduced.
In this paper, we propose, thus, to apply the PCA to reduce the di-
mension of the augmented feature vectors which are used in our Slo-
vak STT system.

The paper is organized as follows. Sections 3, 4, 5, and 6 present
the development of the STT system, including the collection of text
and acoustic data for language and acoustic models training, the
building of N-gram language models, the pronunciation modeling,
the acoustic features extraction and acoustic models training, re-
spectively. After that, the experimental results are introduced and
discussed in section 7. Finally, section 8 concludes the paper.

3. DATA COLLECTION FOR SYSTEM DEVELOPMENT

Speech and text resources are needed for training acoustic and lan-
guage models. Our work aims at building a STT system to transcribe
BN and BC data. In our work, broadcast speech data are down-
loaded from Slovak radio sources, available through their websites.

The 3 radio sources are Slovensky Rozhlas3, Euranet4 (European Ra-
dio Network) and Radio Regina. Slovensky Rozhlas (Slovak radio)
is the Slovakian’s national public-service radio broadcaster. Radio
Regina is one of the six radio channels of Slovensky Rozhlas. The
speech data include daily broadcast news and interviews. In total, we
have collected 182.5 hours of speech acoustic data. This speech data
are used to develop the STT system, including the acoustic models
training and the calculation of the PCA transformation matrix [15].
BN and BC speech data for development and evaluation are collected
separately and independently, by the 2012 Quaero STT evaluation
organizers.

Text data are collected from the Internet to train language mod-
els. The text sources are selected to be able to cover the topics which
are often mentioned in the BN and BC. Hence, text data have been
collected from 4 sources which are daily newspapers (sources #1 and
#4), personal blogs (source #2), weekly magazines of politics, cul-
ture and economy (source #3). The information and statistics of the
text data downloaded from these sources are summarized in table 1.
The text data downloaded from these sources are then normalized in
order to keep only clean text. The conversion of the numbers, dates
and time into their pronunciations has been also performed.

Table 1. Information and statistics of text data (after normalization)
collected for language models training. Sources #1 and #4: daily
newspapers. Source #2: personal blogs. Source #3: weekly maga-
zine of politics, culture and economy.

Text sources # Sentences # Words
#1. http://zivot.azet.sk 755K 7M
#2. http://blog.sme.sk 940K 11M
#3. http://www.noveslovo.sk 1.0M 15M
#4. http://lesk.cas.sk 3.8M 30M

Total 6.5M 63M

4. N-GRAM LANGUAGE MODELS

N-gram language models (LMs) are trained using the normalized
text data. A vocabulary consisting of 439K words has been used in
the training of the LMs. The words in the vocabulary are selected
as those appearing more than 2 times in the text data for training the
LMs. The 1-gram, 2-gram, 3-gram and 4-gram have been trained on
the 4 text sources. As mentioned previously, a set of speech data has
been collected by the 2012 Quaero STT evaluation organizer. This
speech data as well as their manual transcription are available for
system development. We make use of the development text, con-
sisting of 20K words, to evaluate our LMs. The out-of-vocabulary
(OOV) rate, calculated on this development text, equals 1.64%. The
perplexities (PPLs) and the hit rates of the LMs, calculated on the de-
velopment text, are shown in table 2. Interpolated 2-, 3- and 4-gram
LMs are built from the individual n-gram LMs. The interpolation
weights, perplexities and hit rates of these LMs are shown in table
2. The perplexities of the interpolated LMs, calculated on the devel-
opment text, are reduced compared to those of the individual LMs.
These interpolated LMs are used in the STT system.

5. PRONUNCIATION DICTIONARY

In a STT system, the pronunciation dictionary makes a link between
the language and acoustic models. Indeed, state-of-the-art medium

3http://www.rozhlas.sk
4http://www.euranet.eu

SLTU-2014, St. Petersburg, Russia, 14-16 May 2014

177



Table 2. Perplexities, hit rates of the 2-, 3-, 4-gram and the inter-
polated LMs, calculated on the 20K-word development text. The
sum of the interpolation weights of the interpolated LMs, which are
mixture LMs of the corresponding n-gram LMs, equals 1.

LM Weight PPL 1-gram 2-gram 3-gram 4-gram
Source #4 0.34 1285 26.31 46.24 21.14 6.31
Source #3 0.32 1401 29.81 46.21 18.90 5.08
Source #2 0.21 1551 32.88 45.38 17.28 4.45
Source #1 0.13 1884 38.25 43.60 14.65 3.50
Int 4-gram - 867 19.07 45.86 25.86 9.20
Int 3-gram - 883 19.07 45.86 35.07 -
Int 2-gram - 1059 19.60 80.40 - -

or large vocabulary STT systems use pronunciation dictionaries as
knowledge sources to transcribe individual words into model struc-
tures [18]. This is especially the case within a hidden Markov model
(HMM) framework where the construction of word HMMs from
phoneme models is straightforward. The transcription from words
to sequences of phonemes makes use of grapheme-to-phoneme (g-
to-p) rules of the language in question. The set of phonemes used
in the pronunciation dictionary would be utilized as seed acoustic
models (CI models).

To create the pronunciation dictionary, rule-based [19] or data-
driven [20] g-to-p approaches can be utilized. Data-driven g-to-p
requires sufficient amount of training data to generalize the pronun-
ciations for all the entries of the dictionary. The rule-based g-to-p
approach requires the analysis of all phonetic phenomena in Slovak
language. In this paper, we use the rule-based g-to-p approach to
create the pronunciation dictionary which contains 439K words (en-
tries). The g-to-p rules for Slovak language could be concerning
vowels (e.g. i, ä), diphthongs (e.g. ia, ie, iu, ô), consonants (e.g. m,
f ) or doubled consonants (e.g. ts, dz). Otherwise, there are particular
rules for voice assimilation, vowel sequence or hard vocal begin and
glottal stop [19]. The rule-based g-to-p for Slovak language is, thus,
context-dependent and consists of a large number of transcription
rules.

We make use of a rule-based g-to-p tool [19], for Slovak lan-
guage, to transcribe the words in the dictionary into their pronun-
ciations. This tool, called g2p-sk5, implements all the Slovak g-
to-p rules mentioned previously (257 rules). Performance of the
phonetic transcription depends on the morphemic and syllabic seg-
mentations [19]. In this tool, these segmentation rules are stored
in the built-in dictionaries of the tool. The tool can generate mul-
tiple pronunciations for a word, resulting in an average of 1.2 pro-
nunciations/word for the 439K words in the dictionary. The pho-
netic transcription is context-dependent [19]. After the automatic
transcription, phonemes’ grouping has been performed, by grouping
phonemes with similar acoustic realizations, in order to reduce the
number of CI acoustic models. Finally, the dictionary consists of 37
phonemes, including 26 consonants and 11 vowels.

6. STT SYSTEM DEVELOPMENT

6.1. Acoustic feature extraction

6.1.1. Cepstral features

The cepstral feature vector consists of 39 PLP-like (perceptual linear
predictive) coefficients [21] derived from a Mel frequency spectrum

5http://packages.debian.org/en/squeeze/g2p-sk

estimated on the telephone bandwidth (0-8kHz), every 10 ms. Cep-
stral mean removal and variance normalization are carried out on
the basis of speech clusters, obtained after automatic speech seg-
mentation and speaker clustering, resulting in a zero mean and unity
variance for each cepstral coefficient. The 39-dimensional acous-
tic feature vector consists of 12 cepstral coefficients and the log
energy, along with the first and second derivative coefficients. A
3-dimensional pitch feature vector (pitch, ∆ and ∆∆ pitch) is ex-
tracted, using the autocorrelation method together with linear inter-
polation [12], and added to the original PLP features, resulting in a
42-dimensional cepstral feature vector (PLP+F0).

6.1.2. MLP features

The MLP features are generated in two steps. The first step is raw
features extraction which constitutes the input layer to a MLP neu-
ral network M. In this work, the TRAP-DCT (TempoRAl Pattern -
Discrete Cosine Transform) [22] is used as raw features. The TRAP-
DCT features are obtained from a 19-band Bark scale spectrogram,
using a 30 ms window and a 10 ms offset. A discrete cosine trans-
form (DCT) is applied to 500-ms window of each band from which
25 first DCT coefficients are retained. The retained DCT coefficients
are then concatenated together. In total, the raw features have, thus,
19× 25 = 475 DCT coefficients. The raw features are then input to
the 4-layer MLP M [11] with the bottle-neck architecture [22]. The
size of the third layer (the bottle-neck) is equal to the desired number
of features (39). In a second step, the raw features are processed by
the MLP M and the features are not taken from the output layer of
the MLP M but from the hidden bottle-neck layer and decorrelated
by a PCA transformation. The MLP feature vector has finally 39 di-
mensions. An illustration of MLP (bottle-neck) feature extraction is
shown in Fig. 1.

Fig. 1. MLP (bottle-neck) features extraction using a 4-layer MLP
neural network. The input features are TRAP-DCT, extracted from
500 ms windows in the subbands of the short-term spectrogram [12,
22]. The bottle-neck features (39-dimensional) are extracted after
using a PCA to decorrelate the outputs of the bottle-neck layer.

An interesting aspect of MLP features extraction is that the MLP
M can be trained on the data that is different from the domain of the
task [23], while still yielding good generalization performance. This
characteristic makes it possible to train the MLP M on full-resourced
languages, for instance English, for using with low-resourced lan-
guages. In this respect, the MLP neural network M is trained on
about 645 hours of English broadcast news (BN) data which is read-
ily available at LIMSI. Part of the training data is broadcast data
available by the Linguistic Data Consortium (LDC)(Hub4 and TDT
corpora [24]). The rest of the data was collected in several projects
(mainly TCSTAR, Quaero) and transcribed by partners in them. The
audio comes from a variety of news sources (ABC, Skynews, BBC
F24 Euronews, ITV1, etc.) and was mostly collected via satellite
with some downloaded from the web. Since the amount of data
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for training the MLP M is very large, an efficient training proce-
dure should be implemented. In our work, a simplified training
scheme, proposed in [13], was applied for the training. Following
this scheme, the training data are randomized and split in three non-
overlapping subsets, used in 6 training epochs with fixed learning
rates. The first three epochs use only 13% of data, the next two
use 26%, the last epoch uses 52% of the data, with the remainder
used for cross-validation to monitor the performance. The Quick-
net6 software was used to train the MLP. The MLP has 138 targets,
corresponding to the individual states for each phone and one state
for the additional pseudo phones (silence, breath, filler-word). The
outputs of the MLP were normalized to range between 0 and 1 using
the softmax function.

6.1.3. Features’ dimension reduction using PCA

The cepstral features (C-dimensional) are augmented with the dis-
criminative features (D-dimensional). The augmented feature vector
y has cumulative dimension (L-dimensional, L = C+D) and could
contain redundant information for speech recognition. We propose
to reduce the dimension of the feature vector y using principal com-
ponent analysis (PCA). To reduce the dimension of the augmented
feature vector y by PCA, a transformation matrix P of L×L dimen-
sions, whose columns are the principal components, is calculated.
The augmented feature vectors y are then linearly transformed to a
lower dimension feature vector ŷ using a matrix P̂ of L × M di-
mensions (M < L), which contains M first principal components,
following the equation:

ŷ = P̂Ty

where T denotes the transpose. The M -dimensional feature vec-
tor ŷ is then used in the training and testing of the speech recogni-
tion system. To calculate the matrix P, disjoint data, which are not
used in train and test, are selected. Augmented feature vectors (L-
dimensional) are extracted from these data and are put adjacently in
a matrix Y. After that, the matrix P is calculated from the data ma-
trix Y by singular value decomposition (SVD) technique [25]. This
matrix is calculated once and is the only matrix using for features
projection.

6.2. Acoustic models training with MLP+PLP+F0 features

The above mentioned acoustic data (see section 3), consisting of
182.5 hours of acoustic data, is divided into two sets S1 and S2, in
respecting of the diffusion time. The first one, S1, consists of 109.5
hours, broadcast in 2011, and the second one, S2, consists of 73
hours of acoustic data, broadcast in 2012. In fact, after partitioning
the data into homogenous segments [26], only 92.5 hours of speech
from S1 and 60 hours of speech from S2 are retained. In this work,
we use speech data from S1 (92.5 hours) for STT system training.
The speech data from S2 (60 hours) are used to calculate the PCA
projection matrix P (see section 6.1.3).

Since no transcription of the acoustic data is available, unsu-
pervised training techniques are applied to train context-dependent
acoustic models. More specifically, the cross-language transfer tech-
nique [8] is applied to create initial CI acoustic models (AMs). The
CI AMs are gender-independent (GI). These CI AMs consist of the
37 phonemes presented in the pronunciation dictionary. These ini-
tial CI AMs are selected from the CI AMs of the already available
STT systems at LIMSI, including Arabic [27], English [28], French

6http://www1.icsi.berkeley.edu/Speech/qn.html

[6] and Russian [29] STT systems. The 37 phonemes and their cor-
responding acoustic sources are shown in table 3. In addition, 3 CI
AMs from other languages, which model silence, breath and filler-
word, have also been involved, resulting in a total of 40 CI AMs.
Indeed, it would be quasi-ideal if the CI AMs could be selectecd
from Czech STT system since Czech is the closest language to Slo-
vak. However, we do not have Czech STT system at LIMSI. Further-
more, we have also noticed that the CI AMs are not very important
for unsupervised training. Therefore, the CI AMs have been selected
from the available STT systems at LIMSI, namely English, French
and Russian STT systems.

Table 3. The 37 phonemes in the dictionary and the corresponding
source phonemes, taken from existent STT systems (Ar: Arabic, En:
English, Fr: French, Ru: Russian). These phonemes are used as the
context-independent (CI) acoustic models.

Phonemes Source phonemes Phonemes Source phonemes
b b (Fr) l l (En)
d d (Fr) L ly (Ru)
g g (Fr) m m (En)
p p (Fr) n n (En)
t t (Fr) N ny (Ru)
k k (Fr) f f (Fr)
c ts (Ru) v v (Fr)
C tS (En) j y (En)
$ z (En) r r (Ru)
D dy (Ru) s s (Fr)
T ty (Ru) z z (Fr)
h h (En) S S (En)
H x (Ar) Z Z (Fr)
A ˆ (En) o c (En)
a a (En) ó o (Fr)
E E (En) ô o (En)
é e (Fr) u U (En)
I I (En) ú u (En)
i i (Fr)

We apply unsupervised acoustic models training [1] to train
context-dependent (CD) AMs, since there are no available transcrip-
tions of the training data. In this respect, these 40 CI and GI AMs
are used in the initial step to decode the speech data for training,
from S1. It should be noted that the CI AMs, taken from existent
STT systems, have been trained with cepstral features (PLP+F0).
The hypotheses obtained from the decoding with the CI AMs are
used as the ground truth for subsequent decoding iterations. The un-
supervised acoustic models training is continued with the following
steps:

i. During the second iteration, context-dependent (CD) and GI
AMs are trained with the hypotheses obtained in the first itera-
tion.

ii. Gender-dependent (GD) and CD AMs are trained during the
third iteration with the hypotheses obtained in the second itera-
tion. GD models are obtained by MAP (maximum a posteriori)
adapting [30] the context-dependent GI models, using male and
female data whose labels are produced after the audio partition-
ing [26].

iii. The MLP+PLP+F0 features, obtained by concatenating the
MLP and PLP+F0 features [10], are used in the fourth it-
eration. This iteration uses the hypotheses produced from
the third iteration with AMs trained with cepstral features
(PLP+F0). Context-dependent, GI and GD acoustic models
with MLP+PLP+F0 features are obtained during this iteration.
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iv. The final MLP+PLP+F0 AMs are trained with the hypotheses
obtained from the decoding of the training speech data (from
S1) using the AMs based on MLP+PLP+F0 features.

In our experiments on the development data, the initial decoding
with context-independent (CI) AMs, using PLP+F0 features, gave a
WER of 90.8%. With PLP+F0 features, the lowest WER has been
obtained with the context-dependent (CD) gender-independent (GI)
AMs. This WER equals 43.25%. The WERs obtained with the CD
AMs, trained with MLP+PLP+F0 features, are reported in section 7.

6.3. Acoustic models training with reduced features

To reduce the dimension of the MLP+PLP+F0 features with PCA
(principal component anaysis), the PCA matrix P (see section 6.1.3)
is calculated and used for features projection. In this respect, disjoint
speech data from S2 (60 hours) are utilized to estimate P. After par-
titioning, there are 3416 speech segments in this set. MLP+PLP+F0
feature vectors are calculated from these speech segments, resulting
in a total of a 15.5M feature vector. Following [15], a limited number
(13.5K) of MLP+PLP+F0 feature vectors are extracted from 15.5M
feature vectors to constitute the data matrix Y (see section 6.1.3)
which is used to calculate the matrix P. The extraction is performed
by randomly selecting 4 MLP+PLP+F0 feature vectors from each
speech segments. This selection ensures that the matrix Y is consti-
tuted by speech data which cover various environmental and speak-
ing conditions.

It has been shown that 50 is the dimension of the reduced
features which gave best performance in speaker verification appli-
cation [15]. In the current study, the 81-dimensional MLP+PLP+F0
feature vectors are projected into the PCA space P to create
50-dimensional (M = 50) feature vectors. We create also 81-
dimensional (M = 81) feature vectors in order to assess the ef-
fectiveness of the decorrelation and the dimension reduction per-
formed by PCA. Feature vectors created with PCA are denoted
as MLP+PLP+F0-PCA features and the specific ones are denoted
as MLP+PLP+F0-PCA50 (M = 50) and MLP+PLP+F0-PCA81
(M = 81) features. Further exhaustive study would be performed
to investigate the impact of the reduced features’ dimension to the
STT system performance. To train the AMs with MLP+PLP+F0-
PCA features, the steps mentioned previously (see section 6.2) are
repeated. The MLP+PLP+F0-PCA features are used instead of the
MLP+PLP+F0 features.

7. EXPERIMENTAL RESULTS

7.1. Word error rate (WER)

The results are reported with the AMs based on MLP+PLP+F0 and
MLP+PLP+F0-PCA features since these are the final models of the
training process. These AMs gave better performance compared to
intermediate AMs. The STT system performance, in term of case-
insensitive word error rate (WER) calculated on the development set
(3.5 hours of speech), are shown in table 4. These results are ob-
tained with one-pass decoding with several steps. The lattices are
rescored using the interpolated 4-gram language model [6]. Silence
models of different sizes are tested. The small silence model is 96-
Gaussian and the bigger one is 1024-Gaussian. Gender-independent
(GI) and gender-dependent (GD) AMs are utilized. It can be ob-
served that:

• Small silence models (96-Gaussian) work better than the big-
ger ones (1024-Gaussian).

• GI AMs work better than the GD AMs.

• STT system using the MLP+PLP+F0-PCA50 features has
a smaller WER compared to the system using the standard
MLP+PLP+F0 features, in each comparable condition.

• STT system using the MLP+PLP+F0-PCA81 features has the
highest WER, amongst three types of features, in all compa-
rable conditions.

STT experiments are performed with another independent set
(4.8 hours) of speech data which was released by the 2012 Quaero
STT systems evaluation organizers. The WERs are shown in table
5. The phenomena, observed on the development set, repeat with
the 2012 Quaero evaluation set. These results show that the reduc-
ing the dimension of the feature vectors from 81 to 50 helps in re-
ducing the WER whereas decorrelating the coefficients of the stan-
dard MLP+PLP+F0 feature vectors, without reducing the dimension,
does not help to reduce the WER.

7.2. Discussion

In the training of gender-dependent (GD) acoustic models (AMs),
labeled male and female data, for adapting the gender-independent
(GI) AMs to the GD AMs, have been obtained from a standard audio
partitioner [26]. The WERs, obtained with the GD AMs, are not as
good as those obtained with the GI AMs. The fact that GD AMs
are not effective, compared to the GI AMs, may be due to the fact
that there is much more male data than female data in our training
data. In this context, the use of MLP+PLP+F0-PCA features helps
in reducing the detrimental effect created by the unbalance of GD
data.

Further, the fact that smaller silence model works better than
larger silence model might be due to the fact that the completely un-
supervised training was not converging well for the silence. Further
analyses on the effect of silence models to the results should be car-
ried out. On another aspect, using the MLP+PLP+F0-PCA features
reduces the recognition time slightly (6% relative in average) while
reducing the CMLLR adaptation time by a factor of 3, compared to
when using the MLP+PLP+F0 features.

8. CONCLUSION

We have reported the development of a speech-to-text (STT) system
for transcribing Slovak broadcast news (BN) and broadcast conver-
sation (BC). Relevant techniques, including cross-language transfer
[8] and unsupervised acoustic models training [1], have been uti-
lized during the system development (for training context-dependent
acoustic models without any manual transcription of the training
data). These techniques, together with the efficient application of
N-gram language modeling and rule-based pronunciation modeling
[19], have made it possible to develop a state-of-the-art STT system
for low-resourced Slovak language. Furthermore, we have proposed
to reduce the dimension of the MLP+PLP+F0 features, using prin-
cipal component analysis (PCA), in order to reduce the redundancy
between the MLP and the PLP+F0 features. This features’ dimen-
sion reduction has made it possible to reduce the WERs as well as
the recognition and adaptation time (with CMLLR transform [17])
of the STT system.
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Table 4. Word error rates (WERs, in %), calculated on the development set (3.5 hours of speech), with MLP+PLP+F0 and MLP+PLP+F0-
PCA features. The GI and GD acoustic models (AMs) were tested with two silence models (96- and 1024-Gaussian).

``````````̀Silence model
Features

MLP+PLP+F0 MLP+PLP+F0-PCA81 MLP+PLP+F0-PCA50

96-Gaussian (GI AMs) 24.53 25.02 24.33
1024-Gaussian (GI AMs) 26.10 26.16 24.90
96-Gaussian (GD AMs) 25.98 26.00 24.64
1024-Gaussian (GD AMs) 28.20 27.70 25.68

Table 5. Word error rates (WERs, in %), calculated on the evaluation set (4.8 hours of speech), with MLP+PLP+F0 and MLP+PLP+F0-PCA
features. The GI and GD acoustic models (AMs) were tested with two silence models (96- and 1024-Gaussian).

``````````̀Silence model
Features

MLP+PLP+F0 MLP+PLP+F0-PCA81 MLP+PLP+F0-PCA50

96-Gaussian (GI AMs) 29.07 29.79 29.00
1024-Gaussian (GI AMs) 31.35 31.45 29.63
96-Gaussian (GD AMs) 30.21 30.61 29.35
1024-Gaussian (GD AMs) 33.03 32.88 30.37
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