
EXPERIMENTS WITH SPEAKER VERIFICATION OVER THE TELEPHONE

J.L. Gauvain, L.F. Lamel, B. Proutsy
LIMSI - CNRS, B.P. 133, 91403 Orsay, Francefgauvain,lamelg@limsi.fryVECSYS, 3 r. de la Terre de Feu - Les Ulis, 91952 Courtabœuf, France

ABSTRACT
In this paper we present a study on speaker verification show-

ing achievable performance levels for both high quality speech
and telephone speech and for two operational modes, i.e. text-
dependent and text-independent speaker verification. A statistical
modeling approach is taken, where for text independent verifi-
cation the talker is viewed as a source of phones, modeled by
a fully connected Markov chain, where the lexical and syntactic
structures of the language are approximated by local phonotactic
constraints. A first series of experiments were carried out on high
quality speech from the BREF corpus to validate this approach
and resulted in an a posteriori equal error rate of 0.3% in text-
dependent as well as in text-independent mode. A second series
of experiments were carried out on a telephone corpus recorded
specifically for speaker verification algorithm development. On
this data, the lowest equal error rate is 2.9% for the text-dependent
mode when 2 trials are allowed per attempt and with a minimum
of 2s of speech per trial.

INTRODUCTION

Speaker verification has been the subject of active re-
search for many years, and has many potential applications
where propriety of information is a concern. With the in-
creasing number of services offered by telephone, accurate
verification capability over the telephone could lead to many
more near-term applications of this technology. In this pa-
per, we present a study on speaker verification showing
achievable performance levels for both high quality speech
from the BREF corpus and for telephone speech, in two op-
erational modes, i.e. text-dependent and text-independent
verification. The experiments with data from the BREF
corpus[9] were carried out to calibrate the algorithm on
high quality speech, even though the corpus was not de-
signed to perform speaker recognition experiments. The
second speech corpus is a telephone speech corpus espe-
cially designed to evaluate speaker recognition algorithms.

A statistical modeling approach is taken, where the talker
is viewed as a source of phones, modeled by a fully con-
nected Markov chain[3, 8] and each phone is in turn mod-
eled by a 3 state left-to-right HMM. Verification can be car-
ried out in text-dependent or text-independent mode. For
text-dependent verification the model is no longer a fully
connected Markov chain as the phone sequence obtained
by concatenation of the lexical items is used to constrain
the search space. For text-independent verification, the
lexical and syntactic structures of the language are approx-
imated by local phonotactic constraints. This approach
provides a better model of the talker than can be done

with simpler techniques such as long term spectra, VQ
codebooks, or a simple Gaussian mixture[16]. The use of
small ergodic HMM (with a maximum of 5 to 8 states) has
been reported for speaker identification[12, 15, 10]. Gaus-
sian mixture models, which are special cases of ergodic
HMM, have been used for speaker identification[13, 16].
The use of phone-based HMM has also been reported
for text-dependent[14, 11] and for text-independent, fixed-
vocabulary[14] speaker identification.

We have previously applied this phone-based approach
to speaker identification[7, 3], where a set of phone models
is trained for each speaker. The identification of a speaker
from the signal x is performed by computing the phone-
based likelihood f(xj�) for each speaker � in the known
speaker set. The speaker identity corresponding to the
model set with the highest likelihood is then hypothesized.
This phone-based approach has been shown to be successful
not only for speaker identification but also for gender and
language identification[3, 8]. In this paper the same speaker
model is applied to speaker verification, and the likelihood
ratio f(xj�)=f(x) is compared to a speaker independent
threshold in order to decide acceptance or rejection.

METHODOLOGY
Maximum a posteriori (MAP) estimation is used to

generate speaker-specific models from a set of speaker-
independent (SI) seed models. The speaker-independent
seed models provide estimates of the parameters of the prior
densities and also serve as an initial estimate for the seg-
mental MAP algorithm[5]. This approach allows a large
number of parameters to be estimated from a small amount
of speaker-specific adaptation data.

The technique of phone-based acoustic likelihoods is ap-
plied to the problem of speaker-identification as follows.
A set of context-independent (CI) phone models are built
for each speaker by adaptation of CI, SI seed models using
MAP estimation as proposed in[4]. The unknown speech
is recognized by all of the speakers’ models in parallel, and
the hypothisized identity is that associated with the model
set having the highest likelihood.

Assuming no prior knowledge about the speaker distri-
bution, the a posteriori probability Pr(�jx) is approximated
by the score L(x; �) defined asL(x; �) = f(xj�)
=X�0 f(xj�0)

where the �0 are the speaker-specific models for all speak-
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ers known to the system and the normalization coefficient
 was empirically determined as 0.02. (This coefficient is
needed to compensate for independency approximations in
the model.) Calculating the denominator of this expression
is very costly as the number of operations is proportional
to the number of speakers used in the calculation, or as in
our case, the number of target speakers. We can signifi-
cantly reduce the required computation by using a Viterbi
beam search on all the speakers’ models in parallel. This
decoder, which was developed for speaker identification
and the identification of other non-linguistic speech fea-
tures [3, 8] has been easily modified to provide not only
the likelihood of the most probable speaker, f(xj�), but
the likelihoods for the N most probable speakers. We thus
reduce the neccessary computation by approximating the
summation above by a summation over a short list of the
most probable speakers. This implementation is a modified
phone recognizer where the output phone string is ignored
and only the acoustic likelihood is taken into account.

If a verification attempt is unsuccessful, it is common
practice to allow a second trial in order to reduce the false
rejection of known users. A straight-forward approach is to
base the decision only on the score L(x; �) of the second
attempt, ignoring the preceding trial. This approach can be
justified on the grounds that the actual test data is potentially
invalid. Alternatively, it is possible to base the decision on
the scores of both trials.1 In our system we use this second
approach as it reduced the error rate by 21%, compared with
an error reduction of 13% obtained using only the score of
the last attempt.

EXPERIMENTS WITH BREF
The aim of the first series of experiments was to calibrate

the algorithmon high quality speech. For these experiments
we made use of a portion of the BREF corpus[9]. This
corpus contains read-speech material from 120 speakers,
however it was not designed to perform speaker recogni-
tion experiments. Since all the data for each speaker was
recorded in a single session (lasting about 4 hours),temporal
variations in the speakers’ voice are likely to be minimum.
For each speaker each utterance has a unique prompt text, so
it is not possible to assess the use of fixed, identical training
and test sentences with this corpus.

For each of 50 target speakers, the first 75 sentences were
used as training material. 50 sentences for each speaker
were used for verification test. A set of 1820 sentences
from 65 of the remaining speakers were used to provide
data for impostor attempts.

A set of 35 SI, CI phone models served as seed models
for estimation of speaker-specific models for each target
speaker. Only the Gaussian means were adapted, i.e., the
estimates of the variances are the same for all speakers.
A common silence model was used for all speakers. A
feature vector containing 16 Mel-frequency scale cepstrum
coefficients (8kHz bandwidth) and their first and second
order derivatives was computed every 10 ms. Cepstral-
mean removal was performed for each sentence.

1It is evidently possible to allow more than 2 trials per attempt, in which
case the score would take into account all scores from previous trials.

Condition EER
Gaussian mixture, 3s 5.5%
Text unknown, 3s 1.1%
Text known, 3s 1.0%
Text known, 5s 0.7%
Text unknown, EOS (avg 7.1s) 0.3%
Text known, EOS (avg 7.1s) 0.3%
Text known, EOS (avg 7.1s), 2 trials 0.2%

Table 1: A posteriori equal error rates (EER) for different model
sets and operational modes on a total of 4370 attempts for users
and impostors with 1 trial per attempt. The amount of speech data
used for verification is specified: “3s” corresponds to the first 3s
of each utterance; “EOS” means the entire sentence used with an
average duration of 7.1s per sentence.

Speaker verification performance using phone-based
models was compared to a simpler system based on long-
term statistics of the speech, using Gaussian mixture. In this
case, the silence is modeled using a single mixture of 32
Gaussians which is common for all speakers. The speech
portion of the training data for each speaker is modeled us-
ing a single mixture of 32 Gaussians. With this Gaussian
mixture model an a posteriori equal error rate (EER) of
1.8% was obtained on a set of 50 test sentences per speaker
recorded immediately after the training material, using 3s
of speech per trial and one validation trial. On a second
set of 50 test sentences taken from the end of each record-
ing session the a posteriori EER was 5.5%. Therefore this
second set of test sentences were used in all the remaining
experiments in order to have more realistic conditions.

The experimental results on the BREF data are summa-
rized in Table 1. This approach was evaluated in both text-
independent and text-dependent modes, for one and two
trials per validation attempt. When 2 verification trials are
authorized (for target speakers and impostors), there are on
average 1.1 trials per attempt. All conditions are compared
using the a posteriori EER.

With a fixed amount of 3s of speech per trial and one trial
per validation attempt, the EER is 1.1% in text-independent
mode (text unknown) for a total of 4370 attempts (by users
and impostors). If the text is known the EER is reduced
to 1.0%. Using a fixed longer duration of 5s of speech,
the EER is 0.7%. If the entire utterance is used for the
verification, the EER with a maximum of two trials per
attempt is 0.2%. It should be noted that this number is
certainly optimistic in that the training and verification data
were recorded in the same 4h session.

In order to assess the performance with a smaller amount
of training data for each speaker, the same experiments
were carried out using only 30 and 10 sentences to estimate
the speaker specific phone models. Reducing the available
training data in half (i.e. 30 sentences instead of 75) did
not affect the performance: the EER with 1 trial in text
dependent mode and 3s of speech per trial still being 1.0%.
For the same test conditions the verification EER is 1.8%,
when only 10 sentences per speaker were used for training.
With these same models, using the entire utterance sentence
for test and a maximum of 2 trials per attempt, resulted in
an EER of 0.4%.
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EXPERIMENTS WITH TELEPHONE SPEECH
In order to carry out experiments on speaker verification

over dialed-up telephone lines, a corpus has been designed
specifically for this purpose. The corpus contains train-
ing material from 100 target speakers, recorded in multiple
sessions with variable of telephone handsets and calling
locations. Each target speaker is also providing multiple
sessions of test data to be used for verification attempts.
Data from 1000 unknown speakers is being collected so as
to provided test material from impostors. The recordings
are similar to the Polyphone recordings being collected in
several languages[2, 1], with different types of read speech
material (words, numbers, dates, phonetically compact sen-
tences, ellicited and spontaneous speech, etc.) so as to be
able to assess the effects of data type on the verification
accuracy.

In these experiments only a portion of the corpus is used.
Approximately 75 sentences from each of 45 target speak-
ers (coming from 2 recording sessions) were used to adapt
SI, CI seed models to form speaker-specific models. As
for the experiments with BREF only the Gaussian means
were adapted, and a common silence model was used for
all speakers. A feature vector containing 13 Mel-frequency
scale cepstrum coefficients (0-3.5kHz bandwidth) and their
first order derivatives was computed every 10 ms. In order
to minimize effects due to channel differences, cepstral-
mean removal was performed for each sentence. The im-
postor data include 1980 sentences from 135 speakers, with
each speaker participating in one call.

Figure 1 gives ROC (Receiver Operating Characteristics)
curves for different model types and operational modes for
the telephone data. The phone-based approach is compared
to a baseline system using Gaussian mixture. Two mixtures
of 32 Gaussians are used, one for silence/noise (common
for all speakers) and another for the speech, specific to each
speaker. For the phone-based approach, text-dependent
and text-independent modes are compared, for one and two
verification trials.

The ROC curve for the Gaussian mixture model is shown
in (a). This can be compared with (b) the ROC of the phone-
based approach in text-independent mode. The phone-
based approach is seen to perform significantly better than
the Gaussian mixture model (7.3% v.s 9.0% EER) with 1
only trial per attempt and an average of 3.2s of speech per
trial. If the text is known, the EER is reduced to 5.1% (curve
c). It should be noted that with the phone-based approach,
knowing the text does not imply the use of a fixed text. The
user can be prompted to read any text. In (d), 2 verification
trials are allowed per attempt, reducing the EER to 4.1%
with 1.1 trials on average. Curve (e) shows the ROC if a
minimum amount of 2s of speech is required for each trial.
For the sentences having this minimal duration, the EER is
reduced to 2.9%.

From these ROC curves we can make the following con-
clusions:� The phone-based approach performs better than the

simpler approach based on a mixture of Gaussians.� On the telephone corpus, better results are obtained
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Figure 1: ROC curves for different model sets and operational
modes: (a) multi-Gaussian model; (b) 35 phone models, text
independent; (c) 35 phone models, text dependent; (d) same as (c)
with 2 trials; (e) same (d) with at least 2s of speech. The dotted line
shows the points of equal error (false acceptance/false rejection).

when the text is known a priori. It should be kept
in mind that these experiments were carried out with
an orthographic transcription of the speech, and not
with the prompt text. The same experiments should be
carried out with the prompt text to more realistically
estimate the performance.� Allowing a second verification trial reduces the EER
without significantly increasing the number of trials
for the target speakers (10% increase).� Requiring a minimum speech signal duration of 2s
reduces the error rate by almost 30%.

The cepstral analysis used to represent the speech signal
essentially models the spectral envelope. However, it is
widely believed that the fundamental frequency (F0) con-
tains information about the identity of the speaker, which
may be complementary to the information captured by the
cepstral analysis. To investigate this possibility, the F0 was
estimated for all the frames of the training and test data. A
Gaussian model was built for the log F0 of each speaker.
Using only this model, an EER of 19.3% was obtained with
one verification trial, and an EER of 17.3% when two trials
were allowed with an average of 1.3 trials per target speaker
attempt. When both the cepstral and F0 models were used,
the EER was reduced by 7% with one trial compared to
the cepstral-based phone model only, but no significant im-
provement was observed when 2 trials were authorized.

ERROR ANALYSIS
For the telephone speech data, the EER for the best con-

figuration tested (minimum duration of 2s and 2 trials) is
2.9%. To understand this relatively high error rate, his-
tograms of the scores for target speakers and impostors
(2200 attempts for each class) are shown in Figures 2a and
2b. In Figure 2a the distributions appear to be well sepa-
rated: 87% of the attempts by impostors have a score of
essentially 0, and 51% of the attempts by target speakers

EUROSPEECH’95, Madrid 3



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 a

tte
m

pt
s

Speaker score

(a) Histogram of scores - 2x2200 attempts

Target user scores
Impostor scores

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

N
um

be
r 

of
 a

tte
m

pt
s

Speaker score

(b) Histogram of scores - 2x2200 attempts

Target user scores
Impostor scores

Figure 2: Distribution of scores for target speakersand impostors.

have a score of essentially 1. The overlap in the distribu-
tions is better seen in Figure 2b with an expanded vertical
scale. It is apparent in these histograms that main source of
error is the low score for certain attempts by target speakers.
Almost 2% of the attempts by target speakers have a score
almost equal to 0.

The errors are localized on a few speakers for whom
the verification error is high. Attempts by 5 of the target
speakers account for 70% of all errors. For these 5 speakers
the verification error rate ranges from 36% to 70%. A large
proportion of the errors seem to be due to variability in
the origin of the calls, the channel conditions or large level
variations for a given target speaker, and not characteristics
of the speaker.

SUMMARY

We have presented a series of experiments in speaker ver-
ification for both high quality speech and telephone speech
using a statistical approach based on HMM phone mod-
els. The decoding procedure has been efficiently imple-
mented by processing all the models in parallel using a time-
synchronous beam search strategy. Speaker verification (or
identification) can be carried out in both text-dependent or
text-independent modes using the same phone models.

For text-independent verification, the phone based ap-
proach was shown to clearly out-perform a simpler Gaus-
sian mixture model on high-quality speech from the BREF
corpus and for telephone speech has a 20% lower a posteri-
ori equal error rate. For the BREF corpus, text-independent

and text-dependent verification EERs were about the same.2

On the telephone corpus, text-dependent verification per-
forms better than text-independent. When a verification
attempt fails, allowing a second trial reduces the number of
errors by 20%, while only increasing the number of trials
by 10%. For the telephone speech corpus, the majority of
the errors are due to low scores for a few target speakers,
mostly reflecting differences in the origin of the call for the
training and testing sessions. In an additional experiment
on the telephone speech, combining a model for F0 with
the speaker-specific phone model set did not significantly
improve performance. On the telephone speech corpus, an
a posteriori equal error rate of 2.9% was obtained using a
minimum duration of 2s per trial, in text-dependent mode,
allowing 2 trials per attempt. This can be contrasted with
the equal error rate obtained on the high quality speech
corpus which is well under 1%.
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