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ABSTRACT

In this paper we present a quantitative investigation into
the impact of text normalization on lexica and language
models for speech recognition in French. The text nor-
malization process defines what isconsidered to beaword
by the recognition system. Depending on this definition
we can measure different lexical coverages and language
model perplexities, both of which are closely related to
the speech recognition accuracies obtained on read news-
paper texts. Different text normalizations of up to 185M
words of newspaper texts are presented along with corre-
sponding lexical coverage and perplexity measures. Some
normalizationswerefound to be necessary to achievegood
lexical coverage, whileothersweremoreor lessequivalent
in thisregard. The choice of normalization to create lan-
guage models for use in the recognition experiments with
read newspaper texts was based on these findings. Our
best system configuration obtained a 11.2% word error
ratein the AUPELF ‘ French-speaking' speech recognizer
evaluation test held in February 1997.

1. INTRODUCTION

The design of lexica and language models (LMs) are ac-
knowledged to be important steps in the devel opment of
a speech recognizer and entail making some linguistic
choices that are most often made without quantitativejus-
tification. In genera these choices depend on the appli-
cation and the language under consideration: much of
recent speech recognition research for American English
has been supported by ARPA and has been based on text
materials which were processed to remove case distinc-
tion and compound words [11]. Case is generaly kept
as adistinctivefeature in French and moreimportantly in
German [8, 14].

The large amounts of training texts required for lexical
and statistical language model design need to be cleaned
and normalized before use. We compare different types
of normalization of a source text containing 185 million
words of the French newspaper Le Monde. The lexi-
ca coverages and language model perplexities for each
text version were measured on a development text, with
a lexicon containing the 64k most frequent words in the
corresponding normalized training data. Our study shows
which types of processing are most useful for maximizing
thelexical coverage and what effect the processing hason
the language model perplexity. The importance of lexical
coverage and language model perplexity isillustrated by
recognition experiments carried out in preparation for this
year’s AUPELF assessment of French recognizers.

2. NORMALIZATION OF FRENCH TEXTS

French is a language with high lexical variability stem-
ming mainly from gender and number agreement (nouns,
adjectives . . ), and from verb conjugation. A given root
form can have alarge number of derived forms resulting
in both low lexical coverage and poor language model
training. The French language a so makes freguent use of
diacritic symbolswhich are particularly proneto spelling,
encoding and formating errors.

Some of the normaization steps can be considered as
baseline, such as the coding of accents and other diacritic
signs (in 1SO-Latinl), separation into articles, paragraphs
and sentences, preprocessing of digits (10 000 — 10000),
units (kg /em3), aswell as the correction of typical news-
paper formating and punctuation errors, and processing of
unambiguous punctuation markers. Other kinds of nor-
malization are generally carried out, but to the best of our
knowledge, have never been systematically evaluated for
speech recognizer devel opment. We mention here:

Np: processing of ambiguous punctuation marks
(hyphen -, apostrophe ') not including compounds

Ny: processing of capitalized sentence starts

Ny: digit processing (110 — cent dix)

N3: acronym processing (ABCD — A. B. C. D))

Ny4: emphatic capital processing (Etat — état)

Ns: decompounding (arc-en-ciel — arc en ciel)

Ng: no case distinction (Paris — paris)

N7: no diacritics (énervé — enerve)
These elementary operations can be combined to produce
different versions of normalized texts. Eleven such com-
binations are given in Table 1 using the normalizations
listed above. Only the baseline normalizationsare used to
produce the reference text V5. We use two large French
dictionnaries; BDLEX [12] and DELAF [13] to produce
V1 and V5 texts. A more detailed description of the nor-
malizations can befoundin[1].
While any normalization resultsin areduction of informa
tion, theamount of informationlossvariesfor thedifferent
types of normaizations. It is straightforward to recover
a V) text (or an equivaent form) from a Vs or V4 text us-
ing some simple heuristics. For V7 through V3o texts the
original Vp forms are nearly impossi bleto recover without
additional knowledge sources. Furthermore Vg and Vg
texts seem poorly suited for speech recognition, as they
produce high lexical ambiguity.
2.1 Lexical coverage
Recognizer vocabularies (word lists) are generally defined
asthe N most frequent words in training texts. We inves-
tigated the impact of different size training corpora using
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Table1: For eachversionV; (z = 0,
1 in the corresponding column.

version specific 64k word listsfromthe Le Mondetraining
texts. Thethreetraining text sets compared are:

Ty : years 1987-88 (40M words)*
T : years 1987-95 (185M words)
T : years 1991-95 (105M words)?

In order to measure lexical coverage of the different nor-
malized text versions, we selected a development text set
containing about 20000 words from the Le Monde news-
paper taken from the month of May 1996° (dev0).
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Figure 1. OOV ratesfor different normalization versions V; on
To training data and devO test data using 64k word lists.

The out of vocabulary (OOV) word rate for the 11 ver-
sions of normalized T training textsis shownin Figure 1
as measured on the devO test text for a64k word list. The
evolution of the OOV rate, as a function of the normal-
ized text versions, is observed to be the same for both the
training and the development test data. A large reduc-
tion in OOV rate is obtained for the V7, V2 and V3 text
versions, which correspond to the processing of ambigu-
ous punctuation marks, sentence-initial capitaization, and
digits. Subsequent normalizations improve coverage, but
to alesser extent.

A differencein lexica coverage of about 20% is observed
between 75 training and devO test data. While this could
be due to thereatively small size of the 7§ training text,

1Thesewerebaselineresourcesfor all partnersinthe AUPELF French
recognizer evaluation project.

27, is significantly smaller than 77, but contains on average more
recent data.

3This correspondsto the time period from which the AUPELF devel-
opment test data (dev) were selected.

., 10) of normalized text, the elementary normalization steps N; (s = 0, . .., 7) areindicated by

the main cause is the large time gap of (about 8 years)
between the text sets. Using larger and more recent train-
ing texts (11 or 13) thisdifference can be reduced to 1%.
We have noticed that the time proximity between train-
ing and test data is more important than the use of addi-
tiona, but older datain minimizing the OOV rate. This
is shown in Figure 2, where equivaent OOV rates on the
devO test data were obtained for 7, (105 M words) and
the 77 (185 M words) training data. Thus, the selection
of training data for a given test condition is seen to be
more important than the effect of many of the dementary
normalization steps (compounding, case-sensitivity).
Optimized training datasel ectionis carried out by weight-
ing recent training texts more than the older text material.
This optimization can even erradicate the effects of some
minor normalizations. The optimized word list used inthe
recognition experimentsin Section 3 hasthe same number
of OOV wordsfor both the V5 and Vg text versions.
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Figure 2: OOV rates for normalization versions Vo, Vs Vs, Vo
and Vo on devO test data using 64k word lists derived from
different training text sets: 7o (40M words), 71 (185M words)
and 7> (105M words).

2.2 Language model perplexity

The characteristicsof each textversionV; (i = O, . . ., 10),
in terms of the total number of words and number of dis-
tinct words, directly influences the language model prop-
erties. Normalizations of type No, N1, N2 considerably
reduce the number of different word forms, whileincreas-
ing the total number of words in the corpus as shown in
Figure 3. This should be in favor of more reliable LM
training. However, better language model accuracy may
be achieved if alarger number of different word formsare
considered, provided that they are linguistically meaning-
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Figure 3: Number of different words in the training text /o for
different normalization combinations V.

ful and there are sufficient training data available.
Perplexity is commonly used to measure LM efficiency,
and a decrease in perplexity generaly entails a decrease
in error rate. Precise perplexity comparisons make sense
only if the perplexities have been estimated on identical
test texts. In order to compare LM perplexities of the dif-
ferent normalized versions V; of thetest set w with differ-
ent text lengths* we use a normalized perplexity measure,
where the standard perplexity measure p = Pr(w|Lm)~ O
istransformed as follows[6]:

p=p

where n; isthelength of w; (the normalized version V; of
w) and n, isthelength of areference versionw,.

The basic idea here is to consider that Pr(w;|LM;)
can be compared for different normalizations w; of w.
OOV words in the text are replaced by the symbol
<UNKNOWN>, and ignored when computing the perplex-
ity. Figure 4 shows the normalized and unnormalized
perplexity values of the devO text set, using a 7o 64Kk tri-
gram LM. The normalized perplexity grows with increas-
ing normalizations, but thelargest effect is seen for the V3
text (ambiguous punctuations) and the V, text (acronyms).
Perplexity measures for V5 and Vg text versions of a 11
64k trigram LM are also shown. Theincreasein training
datayieldsarelative perplexity reduction of about 10%.
Our investigations with different text normalizations in-
dicate that the precise choice of normalizationis unlikely
to be crucial for the speech recognizer. Thus, for recog-
nition experiments we chose the V5 normalization, which
seems to be a good tradeoff between the best possible
coverage and perplexity values, and providing as output a
reasonably correct form of written French.

3. SPEECH RECOGNITION

Previous experiments in large vocabulary speech recog-
nition in French have been reported in [8] using a 20k
vocabulary (Esprit-SQALE project) on test setswith acon-
trolled OOV rate of about 2%. Without artificid limitation
the OOV rate tends to be closer to 5 or 6%. Hence there
isaneed for larger vocabularies in French, which in turn

4A 1% variation in text length yields a 5% variation of the perplexity
if p = 150.
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Figure 4: Perplexities of devO text (standard & normalized)
for different normalization versions V; using 64k trigram LMs
estimated from 7o (40 Mwords) and 71 (185 Mwords) training
texts.

require larger text corporafor language mode training.

The recognition system configuration is extensively de-
scribedin[2]. We summarize herethemain characteristics
concerning the results presented bel ow.

Acoustic Modeling The acoustic parameters consist
of 39 cepstral parameters (including first and second
order derivatives) derived from aMel spectrum esti-
mated on a 8kHz bandwidth. Each acoustic model is
a 3-state |l eft-to-right CDHMM representing a phone
in context. Gender-dependent models are used. The
model swere trained using 66,585 sentences from 120
speakers (BREF[9]).

Language Modeling We used 65k bigram and tri-
gram LMs trained on 200M words of Le Monde and
LeMonde Diplomatiquetexts (years 1987-1996), and
70M words from Agence France Presse (AFP, years
1994-1996, distributed by LDC).

L exicon Thetraining and recognitionlexicawere de-
velopedat LIMSI. Each lexica entry isphonemically
transcribed using a 34 phoneset including silence. A
pronunciation graph is associated with each word in
order to account for pronunciation variants.

Decoding Decoding is carried out in 3 passes. The
first pass uses a bigram language model (2.2M bi-
grams) to generate aword graph. The acoustic mod-
els used in this pass consist of about 3000 position-
dependent triphones with about 8000 tied states.
The second decoding pass, makes use of the word
graph with a trigram LM (14M bigrams and 22M
trigrams), and position-independent triphone mod-
els (about 9000 tied states are distributed among
over 5000 models). Prior to the third decoding pass
unsupervised acoustic model adaptation based on
MLLR [10Q] is carried out using the hypotheses gen-
erated in the second pass. An interpolated language
model based on word trigrams and class bigrams[7]
isoptionally used in this pass.

These experiments were carried out within the AUPELF
project using two test sets(dev-T, eval-T) each containing



about 600 sentences (15000 words). For each set T, a
subset T' of 300 sentences contains the paragraphs with
thelowest OQV rates.

Table 2 shows the results of recognition experiments us-
ing a standard trigram and a trigram+biclass language
model. The standard trigram uses a backoff procedure to
word bigrams and unigrams, whereas the trigram-+biclass
mode [7] interpolates trigrams with class bigrams. The
interpolated model yieldsasmall perplexity decrease from
135 to 131 on the dev-T text, and a small but consistent
error reduction across both test sets.

| test [ tgstand. | tg+biclass ||
65k-dev 12.9 12.7
65k-eval 115 11.2

Table2: Word error rates on the development and the evaluation
sets, using a 65k vocabulary and trigram LM (standard trigram
and biclassinterpolation).

[word ist ][ 20k | 30k | 40k | 50k | 60k | 65k ||

T, std 638|430 | 315|236 | 195 | 1.79
T, opt 615|404 | 280|211 | 159 | 1.34
T, sd 360 | 237 | 1.70 | 1.22 | 0.96 | 0.87
T,opt || 351|203 | 135|097 | 058 | 0.44

Table3: OOV ratesonthedev T and T sets, for word listsrang-
ing from 10k to 65k words. Theword lists consist of the N most
frequent words in the Tp baselinetraining data (std=standard) or
optimized over the available training data (opt=optimized).

The impact of word list size and training data selection
(optimization) on lexical coverage is shown in Table 3.
Optimization yields an absolute gain of about 0.3% for
dev-T andfor dev-T’ regardless of theword list size. Lex-
ica coverage can thus be improved by increasing and
optimizing the system’s vocabul ary.

As can be seen in Table 4 filtering the test datafrom T to
T’ not only reducesthe OOV rate, but the perplexity drops
significantly. The large word error reduction (4 times the
OOV reduction) isexplained by both OOV and perplexity
decreases, with amagjor contribution due to the difference
in perplexity. Using the same recognition system with
the same LM on the complete test set T, but outputting
only words of a 20k word list we can measure the impact
of lexical coverage independently of other factors. By
simulating an increase in coverage from 20k to 65k the
observed error reduction is 60% of the OOV reduction.
This illustrates that the probability of misrecognizing in-
frequent words is high, as all OOV s would be recovered
by a perfect recognizer.

Comparing independent 20k and 65k systems we have
observed a word error reduction of about 1.3 times the
reduction in OOV. Based on these measures we infer that
an OOV generates on average 2.2 errors.®

4. DISCUSSION

We have investigated different types of normalizations
for French newspaper texts and measured their impact on
lexicd coverage and LM perplexity. These parameters
are known to be rel ated to speech recognition accuracy, as
demonstrated by the recognition experiments.

5We estimate the average number of errors caused by an OOV to be
theratio of the differencein error rate between the 20k and 65k systems,
and the rate of 20k-OOV srecovered.

[ e [OOV(%) [ ppx [ViET (%) |
65k-dev-T 1.34 135 12.9
65k-dev-T 0.45 105 89

Table4: OOV rates, perplexity andword error rateson thedev-T
and dev-T’ sets, using a 65k vocabulary and atrigram LM.

Normalizations resulting in significant reductions of the
OOQV rate (No-N2) have been identified. A strong corre-
lation of thetext version (V;) with both number of distinct
word forms (Fig. 3) and with the normalizati on-dependent
OOQV rate (Fig. 2) was observed. Similar perplexity val-
ueswere obtained for most of thenormalizationsexplored.
Thelargest changesin perplexity wereobserved after treat-
ment of ambiguous punctuationsand of acronyms.

Our investigations have shown that some normalizations
should besystematically applied (typically No — N3). Dif-
ferent more complex combinations give approximately
equivalent results in terms of coverage and perplexity.
Thefina choice among these depends on the application.
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