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ABSTRACT tained by means of a decision tree. Word recognition is
Transcription of broadcast news shows (radio and telewjsio performed in three steps: 1) initial hypothesis generation

is a major step in developing automatic tools for indexatiorl 2) word graph generation, 3) final hypothesis generation,
retrieval of the vast amounts of information generated ority d each with two passes. The initial hypothesis are used for

basis. Broadcast shows are challenging to transcribe gste cluster-based acoustic model adaptation using the MLLR
sist of a continuous data stream with segments of differieat |  technique. The final hypothesis is generated using a 4-gram
guistic and acoustic natures. Transcribing such data resjaid- interpolated with a category trigram model with 270 auto-

dressing two main problems: those related to the variedstmou matically generated word classes [8].
properties of the signal, and those related to the linguistop-

r development work aim t improving th rtition-
erties of the speech. Prior to word transcription, the dataair- Our developme ork aimed atimproving the partitio

i : . ing algorithm([5, 6] and improving the acoustic and lan-
titioned into homogeneous acoustic segments. Non-spesgh s L

ments are identified and rejected, and the speech segments arguage models. The maq_n dlﬁerence_s from our Nov97 sys-
clustered and labeled according to bandwidth and gendee Th tem are the use of additional acoustic and language model
speaker-independent large vocabulary, continuous sgeeol- training data, the use of divisive decision tree clusteiimg
nizer makes use of n-gram statistics for language modelimy a  Stead of agglomerative clustering for state-tying, thesgen

of continuous density HMMs with Gaussian mixtures for atcous ~ ation of word graphs using adapted acoustic models as well
modeling. The LIMSI system has consistently obtained tofell as acoustic model adaptation prior to successive decoding
performance in DARPA evaluations, with an overall word #ran  passes, the use of interpolated LMs trained on differert dat
scription error on the Nov98 evaluation test data of 13.6%e T sets instead of training a single model on weighted texts,

average word error on unrestricted American English braatic 54 a 4-gram LM interpolated with a category model.
news data is under 20%.

DATA PARTITIONING

INTRODUCTION While itis evidently possible to transcribe the continuous

In this paper we report on recent progress in transcrib- stream of audio data without any prior segmentation, parti-
ing the television and radio broadcast news, and describetioning offers several advantages over this straight-fowa
the LIMSI system used in the Nov98 ARPA benchmark solution. First, in addition to the transcription of whatsva
test. This system is an extension of our Nov97 Hub4E said, other interesting information can be extracted ssch a
system [5], using maximum likelihood partitioning and a the division into speaker turns and the speaker identities.
3-step decoding approach with acoustic model adaptation. Prior segmentation can avoid problems caused by linguistic

Radio and television broadcasts contain signal segmentsdiscontinuity at speaker changes. By using acoustic mod-
of various linguistic and acoustic natures, with abrupt or els trained on particular acoustic conditions, overall-per
gradual transitions between segments. Data partitioningformance can be significantly improved, particularly when
serves to divide the acoustic signal into homegenous seg-cluster-based adaptation is performed. Finally, elimitgat
ments, and to associate appropriate labels with the seg-non-speech segments and dividing the data into shorter seg-
ments. The segmentation and labeling procedure[4] first ments (which can still be several minutes long), reduces the
detects and rejects non-speech segments using GMMs. Arcomputation time and simplifies decoding.
iterative maximum likelihood segmentation/clusteringpr The segmentation and labeling procedure introduced
cedure is then applied to the speech segments using GMMsin [5] is as follows. First, the non-speech segments
and an agglomerative clustering algorithm. The result of are detected and rejected using Gaussian mixture models
the partitioning process is a set of speech segments with(GMMs). The GMMs, each with 64 Gaussians, serve to
cluster, gender and telephone/wideband labels. detect speech, pure-music and other (background). The

The speech recognizer uses context-dependent (word-acoustic feature vector used for segmentation contains 38
independent but position-dependent) triphone-basedghon parameters. It is the same as the recognition feature vector
models. Each phone model is a tied state left-to-right CD- except that it does not include the energy, although thadelt
HMMs with Gaussian mixtures, where the state tying is ob- energy parameters are included. Each GMM was trained
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on about 1h of acoustic data, extracted from the training using cepstral mean removal and variance normalization.
data after segmentation with the transcriptions. The dpeec  Gender-dependent acoustic models were built using
model was trained on data of all types, with the exception MAP adaptation of S| seed models for wideband and
of pure music segments and silence portions of segmentstelephone band speech[3]. For computational reasons, a
transcribed as speech over music. In order to detect speeclsmaller set of acoustic models is used in the bigram pass
in noisy conditions, a second speech GMM was trained on to generate a word graph. These position-dependent, cross-
only data labeled as speech in noise.The music model wasword triphone models cover 5416 contexts, with 11500 tied
trained only on portions of the data that were labeled as states and 32 Gaussians per state. For trigram decoding
pure music, so as to avoid mistakenly detecting speech overa larger set of 27506 position-dependent, cross-word tri-
music segments. The background model was trained on thephone models with 11500 tied states was used. Acoustic
segments labeled as silence during forced alignment, ex-model development aimed to minimize the word error rate
cluding silences in segments labeled as speech in the presen the eval96 test data.

ence of background music. All test segments labeled as State-tying was done via divisive decision tree cluster-
music or silence are rejected prior to further processing.  ing using a set of 184 questions about the phone position,

A maximum likelihood segmentation/clustering iterative the distinctive features (and identities) of the phone dued t
procedure is then applied to the speech segments usingheighboring phones. This is particularly interesting when
GMMs and an agglomerative clustering algorithm. Given there are a very large number of states to cluster since it is
the sequence of cepstral vectors corresponding to a showat the same time both faster and more robust than a bottom-
(z1,...,27), the goal is to find the number of sources up greedy algorithm.
of homogeneous data (each modeled by a p&4\x)
with a known number of parameters) and the places of
source changes. The result of the procedure is a sequence._
of non-overlaping segments , . . ., sx) with their associ-
ated segment cluster lab€ls, . . ., cy), wheree; € [1, K]
and K < N. Each segment cluster is assumed to represent
one speaker in a particular acoustic environment.

The process is initialized using a simple segmentation al-
gorithm based on the detection of spectral change (similar
to the first step used in the CMU’96 system[10]). The pro-
cedure is controlled by 3 parameters: the minimum cluster
erfg t(hleoz)e,gtgeenTab)gﬁL:jrgr:/ogélr;I;eltlg/h?/?/?\elzcr)lsrslg?rrl;emniregrg,e t_rained on the_differe_nt data sets resulted in lower pgiplex
are possible, the segment boundar.ies are refined using theIes than training a single model on E.Jl” _the texts (weighted)
last set of G,MMS and an additional relative energy-based as we have done in the past[S]. This is a better _approach,

I . . both cleaner and more accurate. The perplexity of the
boundary penalty, within a 1s interval. This is done to lo-

. : . . eval97 test set with an interpolated 4-gram LM is 162.0,
cate the segment boundaries at silence portions, attegnptin . . . o
to avoid cutting words (but sometimes this still occurs) compared with 179.5 with a 4-gram trained on empirically
. . e weighted data. The resulting 4-gram LM was interpolated
Speaker-independent GMMs corresponding to wideband g 940 b

: . with a 3-gram class based language model, with 270 au-
speech and telephone speech (each with 64 Gaussians) arf?)matically determined word classes[8]. The classificatio

then used to locate telep_hone_ segments. Thisis followed byprocedure uses a Monte-Carlo algorithm to minimize the
se_gment-basepl gender identification, using 2 sets of GIv”\/lsconditional relative entropy between a word-based bigram
with 64 Gaussians (one for each bandwidth). The result of distribution and a class-based bigram distribution. Bigra

tt|1e tpartltlon(;ng prgiefs Ihs a 78'[_d0fb5pede|0fll) slegments W'thand trigram LMs were built in a similar manner for use in
cluster, gender and telephone/wideband labels. the first two decoding steps.

RECOGNIZER OVERVIEW The broadcast news training texts were cleaned in or-
Acoustic Modeling der to be homogeneous with the previous tex'Fs, and filler
words such asH anduHM, were mapped to a unique form.
: i o L . As was done in previous years, the training text were pro-
transcribed task-specific training data, amounting to bou cessed to add a proportion of breath markers (4%), and of

150 hours of audio data. This data was used to train thefillerwords (0.5%)[4]: some frequent word sequences were
Gaussian mixture models needed for segmentation and the 7L, 9 q

acoustic models for use in word recognition. The acoustic ?Ciggeg;?nct%rg?;?:ﬂ V\;Z:(ctlg,trae‘zg(tjetclhzslv?/g? d;nizzief;edqgfe gst
analysis derives cepstral parameters from a Mel frequency y 9

spectrum estimated on the 0-8kHz band (0-3.5kHz for tele- sequences of independent letters.

phone speech models) every 10ms[4]. For each 30ms framel- exical Modeling

the Mel scale power spectrum is computed, and the cubic The recognition vocabulary contains 65,122 words and
root taken followed by an inverse Fourier transform. Then 72,788 phone transcriptions, and is comprised of all words
LPC-based cepstrum coefficients are computed. The cep-occuring at least 15 times in the broadcast news texts
stral coefficients are normalized on a segment cluster basis(63,954 words) or at least twice in the acoustic training

L anguage modeling

All language models used in the different steps were ob-
ined by interpolation of backoff n-gram language models
trained on different text sets: 203M words of BN transcrip-
tions, 343M words of NAB newspaper texts and AP Word-
stream; and 1.6M words corresponding to the transcriptions
of the BN acoustic training data. The interpolation coeffi-
cients of the LMs were chosen in order to minimize the
perplexity on the Nov96 and Nov97 evaluation test sets.
A backoff 4-gram LM was derived from this interpolation
by merging the LM components[11]. Interpolating LMs

The acoustic models were trained on all the available



Test set (Word Error)
with Partion Map System Step  Eval96  Eval97  Eval9s

Stepl 3gram 24.7/25.3 18.2/18.4 18.0/18.3

Cepstral Mean and

Variance Normalizatiol Step2 3gram 20.2/21.0 14.2/14.6 13.5/14.2
for each Segment Clusfer
I Table 1: Word error with manual/automatic segmentations using

Chop into Segments the Nov98 system.

Smaller than 30s
¢ are used for the telephone speech segments.

The second step generates accurate word graphs. Unsu-
Small Acoustic
and Trigram Models

Generate
Initial Hypotheses

i

MLLR Adaptation &

pervised acoustic model adaptation (both means and vari-
ances) is performed for each segment cluster using the
MLLR technique[9]. The mean vectors are adaptated using

Word Graph Generatign a single block-diagonal regression matrix, and a diagonal
] matrix is used to adapt the variances. Each segment is de-
MLLR Adaptation arge Acoustic Moddls code_d first with a bigram Ianguage model and an _adapted
& 4-gram Decoding 4-gram & class 3-grap version of small set of acoustic models, and then with a tri-

I gram language model (8M bigrams and 17M trigrams) and
Final Transcription adapte(_j versions of t_he_ larger acousti(_: model set. _
The final hypothesisis generated using a 4-gram interpo-
_ _ lated with a category trigram model with 270 automatically
Figure 1: Word decoding. generated word classes[8]. The first pass of this step uses

data (23,234 words). The lexical coverage is 99.14% and the large set of acoustic models adapted with the hypothesis

99.53% on the eval96 and eval97 test sets respectively, and‘ro_m_Step 2, and a 4-gram IangL_Jage model. . This hypqth-
99.73% on the eval9s test data. esis is used to adapt the acoustic models prior to the final

Pronunciations are based on a 48 phone set (3 of themdecoding step with the interpolated category trigram model

are used for silence, filler words, and breath noises). The EXPERIMENTAL RESULTS
filler and breath phones were added to model these events,
which are relatively frequent in the broadcast data and are
not used in transcribing other lexical entries. A pronuncia
tion graph is associated with each word so as to allow for al-
ternate pronunciations, including optional phones. Asadon
in previous years, the lexicon contains compound words for
about 300 frequent word sequences, as well as word entrie
for common acronyms. This provides an easy way to allow
for reduced pronunciations[4].

This section provides experimental results on the seg-
mentation and partitioning process, compares recognition
performance with manual and automatic partitioning, and
summarizes the recognizer performance after each step on
three test sets. All of our system development was carried
out using the eval96 data.

S The frame level segmentation error (as used in [7]) was
evaluated on the eval96 test data using the manual segmen-
tation provided in the reference transcriptions [6]. The av

Word Decoding erage speech/non-speech segmentation frame error rate on

The word decoding procedure is shown in Figure 1. Prior the 4 half-hour shows was 3.7%, and the gender label frame
to decoding, segments longer than 30s are chopped intoerror was 1%. The first show had a significantly higher
smaller pieces so as to limit the memory required for the frame error rate of 7.9% due to deletion of a long, very
trigram and 4-gram decoding passes[4]. To do so a bimodal noisy speech segment.

distribution is estimated by fitting a mixture of 2 Gaussians  In general more clusters are found than true speakers in

to the log-RMS power for all frames of the segment. This the show, as a cluster can represent a speaker in a given

distribution is used to determine locations which are lkel acoustic environment. We looked at two measures of clus-
to correspond to pauses, thus being reasonable places téer homogeneity: the cluster purity, defined as the percent-
cut the segment. Cuts are made at the most probable pausage of frames in the given cluster associated with the most
15s to 30s from the previous cut. Word recognition is per- represented speaker in the cluster (A similar measure was
formed in three steps: 1) initial hypothesis generation, 2) proposed in [2], but at the segment level.); and the “best
word graph generation, 3) final hypothesis generation, eachcluster” coverage which is a measure of the dispersion of
with two passes. a given speaker’s data across clusters. The average cluster

Initial hypothesis generation (fast decoding), is carried purity for eval96 test data was 96%. Impure clusters tend
out in two passes. The first pass of this step generates @o merge data with similar acoustic conditions. The best
word graph using a small bigram backoff language model cluster coverage was obtained by averaging the percentage
and gender-specific sets of 5416 position-dependent tri- of data for each speaker in the cluster which has most of
phones. This is followed by a second decoding pass with his/her data. On average 80% of the speaker’s data goes to

a larger set of acoustic models (27506 triphones) and a tri- the same cluster. In fact, this average value is a bit mis-

gram language model (8M trigrams and 15M bigrams) to leading as there is a large variance in the best cluster cov-

generate initial hypotheses which are used for clusteedbas erage across speakers. For most speakers the cluster cover-
acoustic model adaptation. Band-limited acoustic models age is close to 100%, i.e., a single cluster covers essigntial



Test set (Word Error)

System Step Eval96 Eval97 Eval98

Stepl 3-gram 25.3 184 18.3
Step2 3-gram 21.0 14.6 14.2
Step3 4-gram 20.2 14.3 13.7

4-gramclass 19.8 13.9 13.6

Table2: Word error rates after each decoding step with the Nov98
system.

Test set (Word Error)

System Eval96 Eval97 Eval98

Nov96 system 27.1*
Nov97 system 25.3 183
Nov98 system 19.8 13.9 136

Table 3: Summary of BN transcription word error rates. Official
results shown in bold. *Nov96 system used a manual partition

all frames of their data. However, for a few speakers (for
whom there is a lot of data), the data is split into two or
more clusters containing comparable amounts of data.

Table 1 compares the word recognition performance with
automatic and manual (NIST) partitions on three evalua-
tion data sets. The performance loss is about 1.5% rela-
tive after the first decoding step (ie. no adaptation). It is
higher (2.4%) on the eval96 data due to the same deleted
segment in show 1. After adaptation (step 2) the relative
performance loss is about 4%, indicating that the clusgerin
process is inappropriately merging or splitting some of the
speakers’ data. It appears that clustering errors are more
detrimental to performance than segmentation ones.

Word error rates for the Nov98 system after each decod-
ing step are given in Table 2. The first decoding step (used
to generate the initial hypothesis) has a word error of about
25% on the eval96 data, and 18% on the eval97 and eval98
sets. A word error reduction of about 20% is obtained in

the second decoding step which uses the adapted acoustic

models. Relatively small gains are obtained in the 4-gram

decoding passes, even though these also include an extra

acoustic model adaptation pass.

Transcription results on the eval test sets from the last
three years are reported in Table 3. The results shown in
bold are the official NIST scores obtained by the different
LIMSI systems. Only the Nov96 system used a manual
partition. In Nov97 our main development effort was de-
voted to moving from a partitioned evaluation to the un-
partitioned one. The Nov97 system did not use focus-

condition specific acoustic models as had been used in the

Nov96 system[4]. This system nevertheless achieved a rel-
ative performance improvement of 6% on the eval96 test

data. The Nov98 system has more accurate acoustic and

language models, and achieves a relative word error reduc-
tion of over 20% compared to the Nov97 system.

SUMMARY & DISCUSSION

This paper has reported on recent advances in transcrib-
ing radio and television news broadcasts. Most of the work
was carried out in preparation for the Nov98 DARPA evalu-
ation. A main contribution to the improved recognition per-

formance is the generation of more accurate word graphs
with adapted acoustic models (based on an initial hypothe-
sis obtained in a fast decoding pass). This step is essential
for obtaining graphs with low word error rates. Unsuper-
vised HMM adaptation is performed prior to each decod-
ing pass using the hypothesized transcription of the pre-
vious pass. This strategy leads to a significant reduction
in word error rate. More accurate language models are ob-
tained by interpolation of LMs trained on different datasset
rather than training a single model on weighted texts. More
training data has been used for both acoustic and language
modeling. Concerning the acoustic models, state-tying use
divisive decision tree clustering instead of agglomemtiv
clustering. This is particularly interesting when there ar
very large number of states to cluster. All these improve-
ments have led to a performance gain of over 20% com-
pared to our Nov97 system. The overall word transcrip-
tion error on the DARPA Nov98 unpartitioned evaluation
test data (3 hours) was 13.6%. Although substantial per-
formance improvements have been obtained, there is still
plenty of room for improvement of the underlying speech
recognition technology. On unrestricted broadcast news
shows, such as the 1996 dev and eval data, the word error
rate is still about 20%.
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