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ABSTRACT

Transcription of broadcast news shows (radio and television)
is a major step in developing automatic tools for indexationand
retrieval of the vast amounts of information generated on a daily
basis. Broadcast shows are challenging to transcribe as they con-
sist of a continuous data stream with segments of different lin-
guistic and acoustic natures. Transcribing such data requires ad-
dressing two main problems: those related to the varied acoustic
properties of the signal, and those related to the linguistic prop-
erties of the speech. Prior to word transcription, the data is par-
titioned into homogeneous acoustic segments. Non-speech seg-
ments are identified and rejected, and the speech segments are
clustered and labeled according to bandwidth and gender. The
speaker-independent large vocabulary, continuous speechrecog-
nizer makes use of n-gram statistics for language modeling and
of continuous density HMMs with Gaussian mixtures for acoustic
modeling. The LIMSI system has consistently obtained top-level
performance in DARPA evaluations, with an overall word tran-
scription error on the Nov98 evaluation test data of 13.6%. The
average word error on unrestricted American English broadcast
news data is under 20%.

INTRODUCTION

In this paper we report on recent progress in transcrib-
ing the television and radio broadcast news, and describe
the LIMSI system used in the Nov98 ARPA benchmark
test. This system is an extension of our Nov97 Hub4E
system [5], using maximum likelihood partitioning and a
3-step decoding approach with acoustic model adaptation.

Radio and television broadcasts contain signal segments
of various linguistic and acoustic natures, with abrupt or
gradual transitions between segments. Data partitioning
serves to divide the acoustic signal into homegenous seg-
ments, and to associate appropriate labels with the seg-
ments. The segmentation and labeling procedure[4] first
detects and rejects non-speech segments using GMMs. An
iterative maximum likelihood segmentation/clustering pro-
cedure is then applied to the speech segments using GMMs
and an agglomerative clustering algorithm. The result of
the partitioning process is a set of speech segments with
cluster, gender and telephone/wideband labels.

The speech recognizer uses context-dependent (word-
independent but position-dependent) triphone-based phone
models. Each phone model is a tied state left-to-right CD-
HMMs with Gaussian mixtures, where the state tying is ob-

tained by means of a decision tree. Word recognition is
performed in three steps: 1) initial hypothesis generation,
2) word graph generation, 3) final hypothesis generation,
each with two passes. The initial hypothesis are used for
cluster-based acoustic model adaptation using the MLLR
technique. The final hypothesis is generated using a 4-gram
interpolated with a category trigram model with 270 auto-
matically generated word classes [8].

Our development work aimed at improving the partition-
ing algorithm[5, 6] and improving the acoustic and lan-
guage models. The main differences from our Nov97 sys-
tem are the use of additional acoustic and language model
training data, the use of divisive decision tree clusteringin-
stead of agglomerative clustering for state-tying, the gener-
ation of word graphs using adapted acoustic models as well
as acoustic model adaptation prior to successive decoding
passes, the use of interpolated LMs trained on different data
sets instead of training a single model on weighted texts,
and a 4-gram LM interpolated with a category model.

DATA PARTITIONING

While it is evidently possible to transcribe the continuous
stream of audio data without any prior segmentation, parti-
tioning offers several advantages over this straight-foward
solution. First, in addition to the transcription of what was
said, other interesting information can be extracted such as
the division into speaker turns and the speaker identities.
Prior segmentation can avoid problems caused by linguistic
discontinuity at speaker changes. By using acoustic mod-
els trained on particular acoustic conditions, overall per-
formance can be significantly improved, particularly when
cluster-based adaptation is performed. Finally, eliminating
non-speech segments and dividing the data into shorter seg-
ments (which can still be several minutes long), reduces the
computation time and simplifies decoding.

The segmentation and labeling procedure introduced
in [5] is as follows. First, the non-speech segments
are detected and rejected using Gaussian mixture models
(GMMs). The GMMs, each with 64 Gaussians, serve to
detect speech, pure-music and other (background). The
acoustic feature vector used for segmentation contains 38
parameters. It is the same as the recognition feature vector
except that it does not include the energy, although the delta
energy parameters are included. Each GMM was trained
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on about 1h of acoustic data, extracted from the training
data after segmentation with the transcriptions. The speech
model was trained on data of all types, with the exception
of pure music segments and silence portions of segments
transcribed as speech over music. In order to detect speech
in noisy conditions, a second speech GMM was trained on
only data labeled as speech in noise.The music model was
trained only on portions of the data that were labeled as
pure music, so as to avoid mistakenly detecting speech over
music segments. The background model was trained on the
segments labeled as silence during forced alignment, ex-
cluding silences in segments labeled as speech in the pres-
ence of background music. All test segments labeled as
music or silence are rejected prior to further processing.

A maximum likelihood segmentation/clustering iterative
procedure is then applied to the speech segments using
GMMs and an agglomerative clustering algorithm. Given
the sequence of cepstral vectors corresponding to a show(x1; : : : ; xT ), the goal is to find the number of sources
of homogeneous data (each modeled by a p.d.f.f(�j�k)
with a known number of parameters) and the places of
source changes. The result of the procedure is a sequence
of non-overlaping segments(s1; : : : ; sN ) with their associ-
ated segment cluster labels(c1; : : : ; cN ), whereci 2 [1;K]
andK � N . Each segment cluster is assumed to represent
one speaker in a particular acoustic environment.

The process is initialized using a simple segmentation al-
gorithm based on the detection of spectral change (similar
to the first step used in the CMU’96 system[10]). The pro-
cedure is controlled by 3 parameters: the minimum cluster
size (10s), the maximum log-likelihood loss for a merge,
and the segment boundary penalty. When no more merges
are possible, the segment boundaries are refined using the
last set of GMMs and an additional relative energy-based
boundary penalty, within a 1s interval. This is done to lo-
cate the segment boundaries at silence portions, attempting
to avoid cutting words (but sometimes this still occurs).

Speaker-independent GMMs corresponding to wideband
speech and telephone speech (each with 64 Gaussians) are
then used to locate telephone segments. This is followed by
segment-based gender identification, using 2 sets of GMMs
with 64 Gaussians (one for each bandwidth). The result of
the partitioning process is a set of speech segments with
cluster, gender and telephone/wideband labels.

RECOGNIZER OVERVIEW
Acoustic Modeling

The acoustic models were trained on all the available
transcribed task-specific training data, amounting to about
150 hours of audio data. This data was used to train the
Gaussian mixture models needed for segmentation and the
acoustic models for use in word recognition. The acoustic
analysis derives cepstral parameters from a Mel frequency
spectrum estimated on the 0-8kHz band (0-3.5kHz for tele-
phone speech models) every 10ms[4]. For each 30ms frame
the Mel scale power spectrum is computed, and the cubic
root taken followed by an inverse Fourier transform. Then
LPC-based cepstrum coefficients are computed. The cep-
stral coefficients are normalized on a segment cluster basis

using cepstral mean removal and variance normalization.
Gender-dependent acoustic models were built using

MAP adaptation of SI seed models for wideband and
telephone band speech[3]. For computational reasons, a
smaller set of acoustic models is used in the bigram pass
to generate a word graph. These position-dependent, cross-
word triphone models cover 5416 contexts, with 11500 tied
states and 32 Gaussians per state. For trigram decoding
a larger set of 27506 position-dependent, cross-word tri-
phone models with 11500 tied states was used. Acoustic
model development aimed to minimize the word error rate
on the eval96 test data.

State-tying was done via divisive decision tree cluster-
ing using a set of 184 questions about the phone position,
the distinctive features (and identities) of the phone and the
neighboring phones. This is particularly interesting when
there are a very large number of states to cluster since it is
at the same time both faster and more robust than a bottom-
up greedy algorithm.

Language modeling
All language models used in the different steps were ob-

tained by interpolation of backoff n-gram language models
trained on different text sets: 203M words of BN transcrip-
tions, 343M words of NAB newspaper texts and AP Word-
stream; and 1.6M words corresponding to the transcriptions
of the BN acoustic training data. The interpolation coeffi-
cients of the LMs were chosen in order to minimize the
perplexity on the Nov96 and Nov97 evaluation test sets.
A backoff 4-gram LM was derived from this interpolation
by merging the LM components[11]. Interpolating LMs
trained on the different data sets resulted in lower perplexi-
ties than training a single model on all the texts (weighted)
as we have done in the past[5]. This is a better approach,
both cleaner and more accurate. The perplexity of the
eval97 test set with an interpolated 4-gram LM is 162.0,
compared with 179.5 with a 4-gram trained on empirically
weighted data. The resulting 4-gram LM was interpolated
with a 3-gram class based language model, with 270 au-
tomatically determined word classes[8]. The classification
procedure uses a Monte-Carlo algorithm to minimize the
conditional relative entropy between a word-based bigram
distribution and a class-based bigram distribution. Bigram
and trigram LMs were built in a similar manner for use in
the first two decoding steps.

The broadcast news training texts were cleaned in or-
der to be homogeneous with the previous texts, and filler
words such asUH andUHM, were mapped to a unique form.
As was done in previous years, the training text were pro-
cessed to add a proportion of breath markers (4%), and of
filler words (0.5%)[4]; some frequent word sequences were
mapped to compound words, and the 1000 most frequent
acronyms in the training texts treated as words instead of as
sequences of independent letters.

Lexical Modeling
The recognition vocabulary contains 65,122 words and

72,788 phone transcriptions, and is comprised of all words
occuring at least 15 times in the broadcast news texts
(63,954 words) or at least twice in the acoustic training



4-gram & class 3-gram

Final Transcription

Chop into Segments
Smaller than 30s

Audio Stream

Cepstral Mean and
Variance Normalization
for each Segment Cluster

Large Acoustic Models

Word Graph Generation
MLLR Adaptation &

& 4-gram Decoding
MLLR Adaptation

Generate 

and Trigram Models
Small Acoustic

Initial Hypotheses

with Partition Map

Figure 1: Word decoding.

data (23,234 words). The lexical coverage is 99.14% and
99.53% on the eval96 and eval97 test sets respectively, and
99.73% on the eval98 test data.

Pronunciations are based on a 48 phone set (3 of them
are used for silence, filler words, and breath noises). The
filler and breath phones were added to model these events,
which are relatively frequent in the broadcast data and are
not used in transcribing other lexical entries. A pronuncia-
tion graph is associated with each word so as to allow for al-
ternate pronunciations, including optional phones. As done
in previous years, the lexicon contains compound words for
about 300 frequent word sequences, as well as word entries
for common acronyms. This provides an easy way to allow
for reduced pronunciations[4].

Word Decoding
The word decoding procedure is shown in Figure 1. Prior

to decoding, segments longer than 30s are chopped into
smaller pieces so as to limit the memory required for the
trigram and 4-gram decoding passes[4]. To do so a bimodal
distribution is estimated by fitting a mixture of 2 Gaussians
to the log-RMS power for all frames of the segment. This
distribution is used to determine locations which are likely
to correspond to pauses, thus being reasonable places to
cut the segment. Cuts are made at the most probable pause
15s to 30s from the previous cut. Word recognition is per-
formed in three steps: 1) initial hypothesis generation, 2)
word graph generation, 3) final hypothesis generation, each
with two passes.

Initial hypothesis generation (fast decoding), is carried
out in two passes. The first pass of this step generates a
word graph using a small bigram backoff language model
and gender-specific sets of 5416 position-dependent tri-
phones. This is followed by a second decoding pass with
a larger set of acoustic models (27506 triphones) and a tri-
gram language model (8M trigrams and 15M bigrams) to
generate initial hypotheses which are used for cluster-based
acoustic model adaptation. Band-limited acoustic models

Test set (Word Error)
System Step Eval96 Eval97 Eval98
Step1 3gram 24.7/25.3 18.2/18.4 18.0/18.3
Step2 3gram 20.2/21.0 14.2/14.6 13.5/14.2

Table 1: Word error with manual/automatic segmentations using
the Nov98 system.

are used for the telephone speech segments.
The second step generates accurate word graphs. Unsu-

pervised acoustic model adaptation (both means and vari-
ances) is performed for each segment cluster using the
MLLR technique[9]. The mean vectors are adaptated using
a single block-diagonal regression matrix, and a diagonal
matrix is used to adapt the variances. Each segment is de-
coded first with a bigram language model and an adapted
version of small set of acoustic models, and then with a tri-
gram language model (8M bigrams and 17M trigrams) and
adapted versions of the larger acoustic model set.

The final hypothesis is generated using a 4-gram interpo-
lated with a category trigram model with 270 automatically
generated word classes[8]. The first pass of this step uses
the large set of acoustic models adapted with the hypothesis
from Step 2, and a 4-gram language model. This hypoth-
esis is used to adapt the acoustic models prior to the final
decoding step with the interpolated category trigram model.

EXPERIMENTAL RESULTS
This section provides experimental results on the seg-

mentation and partitioning process, compares recognition
performance with manual and automatic partitioning, and
summarizes the recognizer performance after each step on
three test sets. All of our system development was carried
out using the eval96 data.

The frame level segmentation error (as used in [7]) was
evaluated on the eval96 test data using the manual segmen-
tation provided in the reference transcriptions [6]. The av-
erage speech/non-speech segmentation frame error rate on
the 4 half-hour shows was 3.7%, and the gender label frame
error was 1%. The first show had a significantly higher
frame error rate of 7.9% due to deletion of a long, very
noisy speech segment.

In general more clusters are found than true speakers in
the show, as a cluster can represent a speaker in a given
acoustic environment. We looked at two measures of clus-
ter homogeneity: the cluster purity, defined as the percent-
age of frames in the given cluster associated with the most
represented speaker in the cluster (A similar measure was
proposed in [2], but at the segment level.); and the “best
cluster” coverage which is a measure of the dispersion of
a given speaker’s data across clusters. The average cluster
purity for eval96 test data was 96%. Impure clusters tend
to merge data with similar acoustic conditions. The best
cluster coverage was obtained by averaging the percentage
of data for each speaker in the cluster which has most of
his/her data. On average 80% of the speaker’s data goes to
the same cluster. In fact, this average value is a bit mis-
leading as there is a large variance in the best cluster cov-
erage across speakers. For most speakers the cluster cover-
age is close to 100%, i.e., a single cluster covers essentially



Test set (Word Error)
System Step Eval96 Eval97 Eval98
Step1 3-gram 25.3 18.4 18.3
Step2 3-gram 21.0 14.6 14.2
Step3 4-gram 20.2 14.3 13.7

4-gram class 19.8 13.9 13.6

Table 2: Word error rates after each decoding step with the Nov98
system.

Test set (Word Error)
System Eval96 Eval97 Eval98
Nov96 system 27.1*
Nov97 system 25.3 18.3
Nov98 system 19.8 13.9 13.6

Table 3: Summary of BN transcription word error rates. Official
results shown in bold. *Nov96 system used a manual partition.

all frames of their data. However, for a few speakers (for
whom there is a lot of data), the data is split into two or
more clusters containing comparable amounts of data.

Table 1 compares the word recognition performance with
automatic and manual (NIST) partitions on three evalua-
tion data sets. The performance loss is about 1.5% rela-
tive after the first decoding step (ie. no adaptation). It is
higher (2.4%) on the eval96 data due to the same deleted
segment in show 1. After adaptation (step 2) the relative
performance loss is about 4%, indicating that the clustering
process is inappropriately merging or splitting some of the
speakers’ data. It appears that clustering errors are more
detrimental to performance than segmentation ones.

Word error rates for the Nov98 system after each decod-
ing step are given in Table 2. The first decoding step (used
to generate the initial hypothesis) has a word error of about
25% on the eval96 data, and 18% on the eval97 and eval98
sets. A word error reduction of about 20% is obtained in
the second decoding step which uses the adapted acoustic
models. Relatively small gains are obtained in the 4-gram
decoding passes, even though these also include an extra
acoustic model adaptation pass.

Transcription results on the eval test sets from the last
three years are reported in Table 3. The results shown in
bold are the official NIST scores obtained by the different
LIMSI systems. Only the Nov96 system used a manual
partition. In Nov97 our main development effort was de-
voted to moving from a partitioned evaluation to the un-
partitioned one. The Nov97 system did not use focus-
condition specific acoustic models as had been used in the
Nov96 system[4]. This system nevertheless achieved a rel-
ative performance improvement of 6% on the eval96 test
data. The Nov98 system has more accurate acoustic and
language models, and achieves a relative word error reduc-
tion of over 20% compared to the Nov97 system.

SUMMARY & DISCUSSION

This paper has reported on recent advances in transcrib-
ing radio and television news broadcasts. Most of the work
was carried out in preparation for the Nov98 DARPA evalu-
ation. A main contribution to the improved recognition per-

formance is the generation of more accurate word graphs
with adapted acoustic models (based on an initial hypothe-
sis obtained in a fast decoding pass). This step is essential
for obtaining graphs with low word error rates. Unsuper-
vised HMM adaptation is performed prior to each decod-
ing pass using the hypothesized transcription of the pre-
vious pass. This strategy leads to a significant reduction
in word error rate. More accurate language models are ob-
tained by interpolation of LMs trained on different data sets
rather than training a single model on weighted texts. More
training data has been used for both acoustic and language
modeling. Concerning the acoustic models, state-tying uses
divisive decision tree clustering instead of agglomerative
clustering. This is particularly interesting when there are a
very large number of states to cluster. All these improve-
ments have led to a performance gain of over 20% com-
pared to our Nov97 system. The overall word transcrip-
tion error on the DARPA Nov98 unpartitioned evaluation
test data (3 hours) was 13.6%. Although substantial per-
formance improvements have been obtained, there is still
plenty of room for improvement of the underlying speech
recognition technology. On unrestricted broadcast news
shows, such as the 1996 dev and eval data, the word error
rate is still about 20%.
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