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ABSTRACT
In this paper different model configurations for language iden-

tification using a phonotactic approach are explored. Identifica-
tion experiments were carried out on the 11-language telephone
speech corpus OGI-TS, containing calls in French, English,Ger-
man, Spanish, Japanese, Korean, Mandarin, Tamil, Farsi, Hindi,
and Vietnamese. Phone sequences output by one or multiple
phone recognizers are rescored with language-dependent phono-
tactic models approximated by phone bigrams. The parameters of
different sets of acoustic phone models were estimated using the
4-language IDEAL corpus. Sets of language-specific phonotac-
tic models were trained using the training portion of the OGI-
TS CORPUS. Error rates are significantly reduced by combin-
ing language-dependent and language-independent acoustic de-
coders, especially for short segments. A 9.9% LID error rate
was obtained on the 11-language task using phonotactic models
trained on spontaneous speech data. These results show thatthe
phonotactic approach is relative insensitive to an acoustic mis-
match between training and test conditions.

INTRODUCTION

Various information sources can be exploited in order
to identify a given language: acoustic, phonetic, phono-
tactic, lexical, etc. Automatic language identification
(LID) may be based on different types and combinations
of these information sources. Their modeling requires
specific resources, knowledge and corpora, for each lan-
guage. Acoustic-phonetic and lexical approaches typically
make use of language-dependent acoustic phone models,
language-dependent phone bigrams, and for a lexical ap-
proach, a more or less comprehensive vocabulary for each
language [1]. In addition to speech corpora, orthographic
and/or phonemic transcripts are needed for model esti-
mation. Phonemic transcripts are commonly obtained by
aligning the speech signal with the acoustic phone model
graph corresponding to predictable pronunciations of the
words in the orthographic transcription. These resources
may be difficult or impossible to gather, preventing easy ex-
tension to a new language. If such an extension is a required
feature for an LID system, a phonotactic approach may be
more appropriate. Previous work (see for example, [2, 3])
has demonstrated the interest of a phonotactic approach for
LID, especially in dealing with new and/or unknown lan-
guages. The acoustic stream of a given language is con-
verted by one (or multiple) phone-based acoustic decoders
into one (or multiple) phone label streams which serve dur-
ing model training as input for phonotactic language model

(LM) estimation. During the identification phase, the de-
coded phone stream serves as input to the phonotactic de-
coder. This decoder uses the language-dependent phono-
tactic models to score the input, and a decision module uses
the set of language-dependent LM scores to hypothesize the
identified language.

In previous work [3] the use of 4 parallel language-
dependent (LD) acoustic decoders was compared to the use
of one single language-independent (LI) or more accurately
one multi-language acoustic decoder. We showed that com-
parable results could be obtained applying a phonotac-
tic approach to multiple LD phone label streams and to
one LI label stream. These results were based on the 4-
language (French, English, German, Spanish) IDEAL tele-
phone database. The experiments presented in this paper
use the OGI-TS corpus to extend the phonotactic approach
to an 11-language task. The use of the OGI data also allows
easier comparison with other research.

In this contribution we focus on several aspects of a
phonotactic LID system. A major part is devoted to the role
of the acoustic decoder providing the phone label streams
which are the inputs to the phonotactic decoder which uses
the language-specific phonotactic models. Special atten-
tion is focused on the use of language-independent acous-
tic decoders and the parallel use of multiple acoustic de-
coders. Another aspect concerns the estimation of phone
bigrams providing the phonotactic constraints. The influ-
ence of training material selection on the phonotacticmodel
accuracy is investigated.

METHOD

The phonotactic approach is particularly useful when la-
beled speech corpora are not available or are difficult to ob-
tain. Language-specific phonotactic models can be trained
using automatically labeled data. The only resources re-
quired are one or more acoustic-phonetic decoders. The
acoustic signalx of languagel is automatically transcribed
using a given acoustic-decoder (e.g. of languagek) result-
ing in the phone sequence�k. The resulting phone se-
quences are then used to train decoder-dependent language-
specific phone bigrams as shown in Figure 1.

The acoustic decoder of languagek can optionally in-
clude a phone bigram language model for the language,
where the phone sequence�k is obtained by maximizingf(xj�; k) Pr(�jk). However since we are interested in ap-
plying the decoder to languages for which acoustic models
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Figure 1: Training of decoder-dependent, language-specific
phonotactic models for languagel usingK = 2 acoustic decoders
in parallel.
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Figure 2: LID system architecture using a phonotactic approach
with K = 2 decoders andL = 3 languages to be identified.

are not available (ie., in general languagel 6= k) it may be
more appropriate to use only acoustic information, defining�k as follows: �k = argmax� f(xj�; k)
The phone sequence�k for languagel can be used to esti-
mate a language-specific phonotactic modelPr(�kjl).

The LID problem can then be viewed as follows:l� = argmaxl Pr(�kjl)
If acoustic decoders are available forK languages,K

phone streams(�1; : : : ;�k; : : : ;�K) can be produced in
parallel for a given signalx, and corresponding phonotactic
models may be estimated. Under the assumption that theK phone streams are independent, the LID decision can be
written as follows:l� = argmaxl Yk Pr(�kjl)

The corresponding LID system can then be represented
as shown in Figure 2 withK = 2 decoders andL = 3
languages.

#phones (*1000) per decoder
Lang #calls #hours Fr Eng Ger Sp LI
Sp 84 2h19’ 69 74 85 81 66
Eng 84 2h18’ 70 72 86 86 66
Ger 79 2h11’ 69 72 83 83 65
Fr 80 2h11’ 64 68 80 79 60
Tam 82 2h07’ 61 65 75 74 58
Man 80 1h58’ 51 54 63 61 48
Viet 75 1h50’ 46 49 57 56 42
Far 73 1h52’ 53 56 66 64 50
Jap 66 1h44’ 52 54 63 61 48
Kor 63 1h34’ 43 46 53 52 40
Hin 99 1h18’ 35 37 43 42 33

Table 1: For each language of the OGI-TS training set the vol-
ume of data is given in terms of acoustic signal duration and the
number (*1000) of automatically decoded phone symbols by theK = 5 different acoustic decoders (Fr, Eng, Ger, Sp, LI).

EXPERIMENTAL SETUP

In these experiments the test data come from the OGI-
TS corpus, and the acoustic models were trained on the 4-
language IDEAL corpus. The IDEAL corpus was developed
to carry out research in automatic language identification,
and contains telephone speech in four-languages (French,
British English, German and Castillan Spanish). The cor-
pus is similar in style to the OGI-TS multi-language cor-
pus [6], containing read, elicited and spontaneous speech
for each caller, with a larger proportion of read and elicited
speech. The spontaneous data accounts for about 15% of
the IDEAL corpus. The corpus contains data from about
300 native speakers of each language calling from their
home country, of which 250 calls per language were used
for acoustic model training. This corresponds to over 10
hours of speech per language. Using these data context-
independent, gender-independent 3-state acoustic phone
models were trained for each language. There are 44,
24, 34 and 47 phone models for British English, Spanish,
French and German respectively (not including silence). A
language-independent (LI) phone set of 90 units was au-
tomatically defined by applying an agglomerative hierar-
chical clustering algorithm [3] to the 4 language-dependent
acoustic phone model sets. The 90 acoustic phone models
of the LI set have been trained using all the IDEAL training
data. More details about the IDEAL corpus and the acoustic
phone models may be found in [4, 1].

The 11-language OGI-TS corpus [6] is used for phono-
tactic model training and for testing. The 11 languages
are French, American English, German, Spanish, Japanese,
Korean, Mandarin, Tamil, Farsi, Hindi, Vietnamese. The
training and testing configurations roughly correspond to
the 1994 NIST evaluation. The test data correspond to the
1994 test set with about 20 calls per language. About 80
calls per language are available for training the phonotactic
models. The volume of training data is shown in Table 1
in terms of number of calls and duration. These calls in-
clude both spontaneous and elicited speech, with the excep-
tion of Hindi for which only spontaneous (story) data were
available. This explains the lower volume of data for this



language. In order to use comparable amounts of data for
each language, not all of the 164 calls in English were used.
Phonotactic models are thus trained on about 2 hours of
speech for almost all languages. The number of phone sym-
bols as decoded by the different acoustic-phonetic IDEAL

decoders (Fr, Eng, Ger, Sp, LI) are provided for informa-
tion.

A 39-dimensional feature vector including the energy
and 12 Mel-weighted cepstral parameters, and their first
and second order derivatives was used in all experiments.
Cepstral mean subtraction is carried out in order to normal-
ize to some extent for varying acoustic channel conditions.

EXPERIMENTAL RESULTS

Two types of results are presented. In the first set of
experiments, different acoustic decoding configurations are
compared, using the same phonotactic training material in
terms of training speech (the phone streams used for LM
training obviously vary with the acoustic decoder configu-
ration). Phonotactic models are estimated here using all the
training material as described in Table 1. The second part of
the experiments focuses on the impact of different training
material selections and phonotactic model combinations on
LID results.
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Figure 3: LID error rates on the 11-language OGI NIST eval’94
test set as a function of test segment duration (10s to 45s). Results
are given for 4 parallel language-dependent acoustic decoders and
1 language-independent decoder.
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Figure 4: LID error rates on the 11-language OGI NIST eval’94
test set as a function of test segment duration (10s to 45s). Results
correspond to 4 LD and 5 (4LD+1LI) decoders in parallel.

Acoustic Decoder Configurations

In previous work exploring phonotactic approaches for
LID [3], the use of 4 parallel language-specific acoustic-
phonetic decoders was compared with a single language-
independent (LI) decoder under both acoustic matched and
mismatched (crossed) conditions. Both systems achieved
comparable results on 10s chunks of test data, with the LI
decoder being slightly better under matched acoustic condi-
tions and slightly worse under mismatched conditions. The
experiments described below correspond to the mismatched
acoustic condition since the training and test corpora were
recorded in independent locations and under different con-
ditions.

Language-dependent vs. language-independent acoustic
models: Figure 3 provides results comparing the use of 4
language-dependent decoders in parallel to one language-
independent decoder. Whereas for shorter segments (10s,
20s) the 4 parallel decoder configuration provides better re-
sults, the situation is reversed on longer segments (45s).
Using the single LI decoder, the LID system achieves a
12.5% error rate on the 11-language task.

The combined use of language-dependent and language-
independent acoustic-phonetic decoders is illustrated in
Figure 4. The addition of the LI system is seen to pro-
vide a relative gain of 10-20% in language identification
across test durations. The absolute error rate is reduced
from 12.5% to 11.2% on 45s chunks.
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Figure 5: LID error rate on the 45s speech chunks of the 11-lan-
guage OGI NIST eval’94 test set, using 1 language-independent
acoustic decoder. Error rates are shown for different numbers of
LI acoustic units.

Language-independent acoustic models: In previous work
using the language-independent acoustic phone models, a
set of 90 phones was used. The number of classes was
manually fixed based on a linguistic analysis of automat-
ically determined phone classes [8]. Figure 5 investigates
the impact of the number of language-independent phone
classes on LID results. (For language-dependent acoustic
models there are typically between 25 amd 50 phone units.)
Results on 45s chunks show that the exact number of LI
phone models is not critical. A larger number of acous-
tic models (80 to 90) yields significantly better results than
smaller inventories (20 to 40).



LID err(%)
bigram LM 1LI phone stream 5 phone streams
training data Tred Tall Tred Tall
all 14.5 12.5 12.5 11.2
spontaneous 16.5 17.1 14.5 9.9
interpolated 13.2 12.5 11.2 10.5

Table 2: LID error rates with different phonotactic LMs using
45s chunks.Tred contains about 60 calls per language,Tall on
average 80 calls per language. Results are shown for 1 LI acoustic
decoder (left) and 5 decoders in parallel (right).

Phonotactic Model Estimation
The phonotactic models are approximated by phone bi-

grams, which are estimated from the automatically decoded
phone streams. To measure the dependence of LID results
on the amount of training data, the training materialTall
(roughly 80 calls per language) was reduced by 25% to
about 60 calls per languageTred. Three types of language
models (LMs) were estimated depending on the type of se-
lected material:all, spontaneous andinterpolated. The in-
terpolated LM is obtained fromLMall andLMspon using
an interpolation coefficient of 0.5. This is equivalent to giv-
ing a higher weight to the spontaneous speech as compared
to elicited speech.

LID results are shown in Table 2 using 1-LI and 5
(4LD+1LI) acoustic decoders respectively. Reducing the
training material from 80 to 60 calls entails an error rate
increase in almost all situations. Larger variations in the
error rate can be observed with the 1-LI configuration as
compared to the 5-decoder configuration. The best results
were obtained with the interpolated LMs. UsingTall and
the 5 acoustic decoder configuration the spontaneous LM
achieves the best result LID error rate of 9.9% .

DISCUSSION

Experiments have been carried out with a phonotactic-
based approach LID system on an 11-language task (OGI-
TS corpus). The main advantage of such an approach
is its straightforward extension to new languages. The
phonotactic approach generally requires longer test seg-
ments to obtain optimal results as compared to acoustic-
phonetic approaches, but it is less channel-sensitive [3].
Using a phonotactic approach LID results significantly im-
prove when the test segment length goes from 10s to 45s.
Combining several acoustic decoders in parallel yields im-
portant gains especially on shorter test segments.

Direct comparison between one single language-
independent decoder and 4 language-dependent decoders
showed that the LI configuration performs better on longer
test segments (45s), while the parallel architecture is more
effective on shorter segments (10s). Adding the language-
independent decoder to the 4 language-dependent decoders
resulted in a consistent gain in all configurations. We have
also carried out similar experiments by varying the number
of language-dependent decoders. More decoders did not
systematically improve LID performance: a configuration
using 2 LD decoders in parallel can perform as well as one
with 4 LD decoders in parallel.

A study concerning the number of LI models showed

that the exact number of acoustic phone models is not criti-
cal. Best performances were observed with 80 to 90 acous-
tic phone models. An interesting outcome of our experi-
ments concerns the robustness of the phonotactic approach
with respect to mismatched acoustical conditions for train-
ing and test. Our results show that state-of-the-art LID re-
sults [7, 2, 5] may be obtained with acoustic models trained
on independent corpora. In our experimental setup the
acoustic models were trained on a 4-language corpus con-
taining calls from 4 different European countries[4].

The results using the different phonotactic model sets
show that the volume of training data in our experimental
setup remains critical for reliably estimating the parame-
ters of the phonotactic model. Large variations were also
observed by varying the type of training data. These varia-
tions were reduced when moving from a single LI acoustic
decoder configuration to a multiple decoder configuration.
The multiple decoder configuration seems to be of partic-
ular interest in at least two situations: when the test seg-
ments are relatively short and when there is limited phono-
tactic model training data. We are presently investigating
the impact of adapting acoustic models to the test condition
and improving the LID decision module. In preliminary
experiments using the LDA (linear discriminant analysis)
technique an LID error rate of 8.5% was achieved on 45s
chunks with a 5 parallel acoustic decoder configuration and
OGI-adapted acoustic models.
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