
Continuous Speech Dictation at LIMSIyJ.L. Gauvain, L.F. Lamel, M. Adda-DeckerLIMSI-CNRS, BP 13391403 Orsay cedex, FRANCEfgauvain,lamel,maddag@limsi.frAbstractOne of our major research activities at LIMSI is multilingual, speaker-independent,large vocabulary speech dictation. The multilingual aspect of this work is of particularimportance in Europe, where each country has it's own national language. Speaker-independence and large vocabulary are characteristics necessary to envision real worldapplications of such technology. The recognizer makes use of phone-based continuousdensity HMM for acoustic modeling and n-gram statistics estimated on newspaper textsfor language modeling. The system has been evaluated on two dictation tasks developedwith read, newspaper-based corpora, the ARPA Wall Street Journal corpus of AmericanEnglish and the BREF Le Monde corpus of French. Experimental results under closelymatched conditions are reported. For both languages an average word accuracy of 95%is obtained for a 5k vocabulary test. For a 20,000 word lexicon with an unrestrictedvocabulary test the word error for WSJ is 10% and for BREF is 16%.1 IntroductionSpeech recognition research at LIMSI aims to develop recognizers that are task-, speaker-, andvocabulary-independent so as to be easily adapted to a variety of applications. The applicabilityof speech recognition techniques used for one language to other languages is of particularimportance in Europe. The multilingual aspects are in part carried out in the context of theLRE SQALE (Speech recognizer Quality Assessment for Linguistic Engineering) project, whichis aimed at assessing language dependent issues in multilingual recognizer evaluation. In thisproject, the same system will be evaluated on comparable tasks in di�erent languages (English,French and German) to determine cross-lingual di�erences, and di�erent recognizers will becompared on the same language to compare advantages of di�erent recognition strategies.In this paper some of the primary issues in large vocabulary, speaker-independent, contin-uous speech recognition for dictation are addressed. These issues include language modeling,acoustic modeling , lexical representation, and decoding. Acoustic modeling makes use of con-tinuous density HMMwith Gaussian mixture of context-dependent phone models. For languagemodeling n-gram statistics are estimated on text material. To deal with phonological variabil-ity alternate pronunciations are included in the lexicon, and optional phonological rules areapplied during training and recognition. The decoder uses a time-synchronous graph-searchstrategy[Ney84] for a �rst pass with a bigram back-o� language model (LM)[Kat87]. A trigramLM is used in a second acoustic decoding pass which incorporates the word graph generatedyThis work is partially funded by the LRE project 62-058 SQALE.1



in the �rst pass[Gau94b]. Experimental results are reported on the ARPA Wall Street Journal(WSJ)[Pau92] and BREF[Gau90, Lam91] corpora, using for both corpora over 37k utterancesfor acoustic training and more than 37M words of newspaper text for language model training.It has been shown[Gau94a] that for both corpora increasing the amount of training utterancesby an order of magnitude reduces the word error by about 30%. The use of a trigram LM in asecond pass also gives an error reduction of 20% to 30%. The combined error reduction is onthe order of 50%.2 Background and Problem De�nitionIn speech dictation we are principally concerned with the problem of transcribing the speechsignal as a sequence of words. Today's most performant systems are for the most part based on astatistical modelisation of the talker. From this point of view, message generation is representedby a language model which provides estimates of Pr(w) for all word strings w, and the acousticchannel encoding the message w in the signal x is represented by a probability density functionf(xjw). The speech decoding problem consists then of maximizing the a posteriori probabilityof w, or equivalently, maximizing the product Pr(w)f(xjw).The principles on which these systems are based have been known for many years now, andinclude the application of information theory to speech recognition[Bah76, Jel76], the use of aspectral representation of the speech signal [Dre49, Dud58], the use of dynamic programming fordecoding[Vin68, Vin71], and the use of context-dependent phone models[Sch84, Cho86, Lee88].Despite the fact that some these techniques were proposed well over a decade ago, considerableprogress has been made in recent years that makes speaker-independent, continuous speechdictation feasible for vocabularies of at least 20,000 words. This progress has been substantiallyaided by the availability of large speech and text corpora and by signi�cant advances made inmicro-electronics which has enabled the development of more complex models and algorithms.The same modeling techniques can be adapted to other related applications, such as speechunderstanding or spoken language systems or in the identi�cation of what we can refer to as\non-linguistic" speech features[Lam93b]. These feature-speci�c models may also be directlyused to more accurately model the speech signal thus in consequence improving the performanceof the speech recognizer.3 Language ModelingLanguage modeling entails incorporating constraints on the allowable sequences of words whichform a sentence. Statistical n-gram models attempt to capture the syntactic and semanticconstraints by estimating the frequencies of sequences of n words. A backo� mechanism[Kat87]is used to smooth the estimates of the probabilities of rare n-grams by relying on a lower order n-gram when there is insu�cient training data, and to provide a means of modeling unobservedn-grams. Another advantage of the backo� mechanism is that LM size can be arbitrarilyreduced by relying more on the backo�, by increasing the minimum number of required n-gramobservations needed to include the n-gram. This property can be used in the �rst bigramdecoding pass to reduce computational requirements. The LM training data consists of 37Mwords of theWSJ and 38M words of Le Monde. In order to be able to construct LMs for BREF,it was necessary to normalize the text material of Le Monde newspaper[Gau93], which entaileda pre-treatment rather di�erent from that used to normalize the WSJ texts[Pau92].Table 1 compares some characteristics of the WSJ and Le Monde text corpora. In thesame size training texts, there are almost 60% more distinct words for Le Monde than for WSJwithout taking case into account. If case is kept when distinctive (the numbers in parentheses),2



Corpus WSJ Le Monde# training speakers 284 80# training utterances 37.5k 38.5kTraining text size 37.2M 37.7M#distinct words 165k 259k (280)5k coverage 90.6% 85.5% (85.2)20k coverage 97.5% 94.9% (94.7)Homophone rate 20k lexicon 9% 57%Homophone rate 20k text 23% 75%Monophone words (20k) 3% 17%Table 1: Comparison of WSJ and BREF-Le Monde corpora.there are 280k words in the Le Monde training material. As a consequence, the lexical coveragefor a given size lexicon is smaller for Le Monde than forWSJ. For example, the 20kWSJ lexiconaccounts for 97.5% of word occurrences, but the 20k BREF lexicon only covers 94.9% of wordoccurrences in the training texts. For lexicons in the range of 5k to 40k words, the number ofwords must be doubled for Le Monde in order to obtain the same word coverage as for WSJ.The lexical ambiguity is also higher for French than for English. The homophone rate (thenumber of words which have a homophone divided by the total number of words) in the 20kBREF lexicon is 57% compared to 9% in 20k-open WSJ lexicon. This e�ect is even greaterif the word frequencies are taken into account. Given a perfect phonemic transcription, 23%of words in the WSJ training texts is ambiguous, whereas 75% of the words in the Le Mondetraining texts have an ambiguous phonemic transcription. Not only does one phonemic formcorrespond to di�erent orthographic forms, there can also be a relatively large number of possi-ble pronunciations for a given word. In French, the alternate pronunciations arise mainly fromoptional word-�nal phones, due to liaison and optional word-�nal consonant cluster reduction.There are also a larger number of frequent, monophone words for Le Monde than for WSJ,accounting for about 17% and 3% of all word occurrences in the respective training texts.4 Acoustic-Phonetic ModelingThe recognizer makes use of continuous density HMM (CDHMM ) with Gaussian mixture foracoustic modeling. The main advantage continuous density modeling o�ers over discrete orsemi-continuous (or tied-mixture) observation density modeling is that the number of param-eters used to model an HMM observation distribution can easily be adapted to the amountof available training data associated to this state. As a consequence, high precision modelingcan be achieved for highly frequented states without the explicit need of smoothing techniquesfor the densities of less frequented states. Discrete and semi-continuous modeling use a �xednumber of parameters to represent a given observation density and therefore cannot achievehigh precision without the use of smoothing techniques. This problem can be alleviated bytying some states of the Markov models. However, since this requires careful design and some apriori assumptions, these techniques are primarily of interest when the training data is limitedand cannot easily be increased.A 48-component feature vector is computed every 10 ms. This feature vector consists of 16Bark-frequency scale cepstrum coe�cients computed on the 8kHz bandwidth and their �rst andsecond order derivatives. The acoustic models are sets of context-dependent (CD), position in-dependent phone models, which include both intra-word and cross-word contexts. The contextsare automatically selected based on their frequencies in the training data. The models include3



triphone models, right- and left-context phone models, and context-independent phone models.Each phone model is a left-to-right CDHMM with Gaussian mixture observation densities (typ-ically 32 components). The covariance matrices of all the Gaussians are diagonal. Duration ismodeled with a gamma distribution per phone model. The HMM and duration parameters areestimated separately and combined in the recognition process for the Viterbi search. Maximuma posteriori estimators are used for the HMM parameters[Gau92] and moment estimators forthe gamma distributions. Separate male and female models are used to more accurately modelthe speech data.During system development phone recognition has been used to evaluate di�erent acousticmodel sets. It has been shown that improvements in phone accuracy are directly indicative ofimprovements in word accuracy when the same phone models are used for recognition[Lam93a].Phone recognition provides the added bene�t that the recognized phone string can be used tounderstand word recognition errors and problems in the lexical representation.5 Lexical RepresentationThe lexicons are represented phonemically,1 using language-speci�c sets of phonemes. Alternatepronunciations are provided for about 10% of the words.2 A pronunciation graph is generatedfor each word from the baseform transcription to which word internal phonological rules areoptionally applied during training and recognition to account for some of the phonologicalvariations observed in 
uent speech.Word boundary phonological rules are applied in building the phone graph used by the rec-ognizer so as to allow for some of the phonological variations observed in 
uent speech[Lam92].The principle behind the phonological rules is to modify the phone network to take into ac-count such variations. These rules are optionally applied during training and recognition. Usingphonological rules during training results in better acoustic models, as they are less \polluted"by wrong transcriptions. Their use during recognition reduces the number of mismatches. ForEnglish, only well known phonological rules, such as glide insertion, stop deletion, homorganicstop insertion, palatalization, and voicing assimilation have been incorporated in the system.The same mechanism has been used to handle liaisons, mute-e, and �nal consonant clusterreduction for French.6 Decoding strategyOne of the most important problems in implementing the decoder of a large vocabulary speechrecognizer is the design of an e�cient search algorithm to deal with the huge search space,especially when using language models with a longer span than two successive words, such astrigrams. The most commonly used approach for small and medium vocabulary sizes is theone-pass frame-synchronous beam search [Ney84] which uses a dynamic programming proce-dure. This basic strategy has been recently extended by adding other features such as \fastmatch"[Gil90, Bah92], N-best rescoring[Sch92], progressive search[Mur93] and one-pass dy-namic network decoding[Ode94]. The two-pass approach used in our system is based on theidea of progressive search where the information between levels is transmitted via word graphs.Prior to word recognition, sex identi�cation is performed for each sentence using phone-based1The lexicons were all developed at LIMSI. For French, the base pronunciations were obtained using text-to-phoneme rules[Pro80] and extended to annotate potential liaisons and pronunciation variants.2This does not count word �nal optional phonemes marking possible liaisons for French. Including theseraises the number of entries with multiple transcriptions to almost 40%.4



ergodic HMMs[Lam93b]. The word recognizer is then run with a bigram LM using the acousticmodel set corresponding to the identi�ed sex.The �rst pass of the decoder uses a bigram-backo� LM with a tree organization of the lexiconfor the backo� component. This one-pass frame-synchronous beam search, which includes intra-and inter-word CD phone models, intra- and inter-word phonological rules, phone durationmodels, and gender-dependent models, generates a list of word hypotheses resulting in a wordlattice. Two considerations need to be taken into account at this level. The �rst is whether ornot the dynamic programming procedure used in the �rst pass, which guarantees the optimalityof the search for the bigram, generates an \optimal" lattice to be used with a trigram LM. Forexample, any given word in the lattice will have many possible ending points, but only a fewstarting points. This problem is in fact less severe than expected since the time information isnot critical to generate an \optimal" word graph from the lattice, i.e. the multiple word endingsprovide enough 
exibility to compensate for single word beginnings. The second considerationis that the lattice generated in this way cannot be too large or there is no interest in a two passapproach. To solve this second problem, two pruning thresholds are used during the �rst pass,a beam search pruning threshold which is kept to a level insuring almost no search errors (fromthe bigram point of view) and a word lattice pruning threshold used to control the lattice size.The following steps give the key elements behind the procedure used to generate the wordgraph from the word lattice.3 First, a word graph is generated from the lattice by merging threeconsecutive frames (i.e. the minimum duration for a word in our system). Then, \similar"graph nodes are merged with the goal of reducing the overall graph size and generalizing theword lattice. This step is reiterated until no further reductions are possible. Finally, basedon the trigram backo� language model a trigram word graph is then generated by duplicatingthe nodes having multiple language model contexts. Bigram backo� nodes are created whenpossible to limit the graph expansion.It should be noted that this decoding strategy based on two forward passes can in fact beimplemented in a single forward pass using one or two processors. We are using a two passsolution because it is conceptually simpler, and also due to memory constraints.7 Experimental ResultsThe recognizer was evaluated under closely matched conditions for American English and forFrench, with vocabularies of 5k and 20k words. For French the 20k test included both openand closed vocabulary data. The training data (see Table 1) include about 38k sentences foreach language. The standard WSJ0/WSJ1 SI284 training material containing 37,518 sentencesfrom 284 speakers was used for English. For French, the BREF training data contains 38,550sentences from 80 speakers.The WSJ system was evaluated in the Nov92 ARPA evaluation test[Pal93] for the 5k-closedvocabulary and in the Nov93 ARPA evaluation test[Pal94] for the 5k and 20k/64k hubs.4 Theword errors using 3306 CD models are given in Table 2. With a bigram LM, word errors of 4.8%and 6.8% are obtained respectively on the Nov92 and Nov93 5k test data. The trigram secondpass reduces the word error by 35% on the Nov92 test data and by 22% on the Nov93 test data.On the 20k-open Nov92 and Nov93 test data the word errors with a bigram LM are 11.0% and15.2%. In this open-vocabulary test data there are slightly over 2% out-of-vocabulary (OOV)words. Using the trigram LM reduces the error rate by about 20%.3In our implementation, a word lattice di�ers from a word graph only because it includes word endpointinformation.4The 20k open test for WSJ is also referred to as a 64k test since all of the words in these sentences occurin the 63,495 most frequent words in the normalizedWSJ text material[Pau92].5



Word ErrorWSJ 5k 20k-openNov92, bg 4.8 11.0Nov92, tg 3.1 9.1Nov93, bg 6.8 15.2Nov93, tg 5.3 11.8Table 2: 5k and 20k-open word recognition results for Nov92 and Nov93 WSJ test data withbigram/trigram (bg/tg) grammars estimated on 37M word WSJ text data. The 20k data arean open-vocabulary test. Word ErrorBREF 5k 20k 20k-openFeb94, bg 9.0 12.9 19.5Feb94, tg 5.5 9.2 16.4Table 3: 5k, 20k, and 20k-open word recognition results on the Feb94 BREF test data withbigram/trigram (bg/tg) grammars estimated on 38M word Le Monde text data. 200 sentencesfor each condition.Recognition results for BREF are given in Table 3 for 1747 CD models with bigram andtrigram LMs. The word error on the 5k test data is 9.0%. The use of a trigram LM givesan error reduction of 39% to 5.5%. The word errors on the 20k and 20k-open test data are12.9% and 19.5% respectively with the bigram LM. The use of the trigram LM reduces theword error by an additional 29% for the closed vocabulary test data, but only 16% on the openvocabulary test data. This di�erence can be attributed to the 3.9% of the words which areOOV and occur in 72 of the 200 test sentences. There is almost a 50% increase in word error,including a three-fold increase in word insertions compared with the closed vocabulary test.Thus apparently the OOV words are not simply replaced by another word, but are more oftenreplaced by a sequence of words.8 SummaryIn this paper we have addressed some of the major issues in large vocabulary, speaker-independent,continuous speech dictation. These include acoustic modeling, language modeling, modelingphonological variations, and decoding. Experimental results have been presented for Englishand French using 5k and 20k vocabularies. Word accuracies on the order of 95% have beenobtained for 5k vocabularies for both languages. With 20k lexicons and an open vocabularytest the word error is on the order of 10% for WSJ and 16% for BREF. This di�erence in worderror can be largely attributed to the larger number of out-of-vocabulary words in French, ane�ect of the lower word coverage for the lexicon. Performance levels on this general news dic-tation task are su�cient to envision commercial application of this technology on simpler tasksin particular domain areas, such as dictation of medical, legal, police reports, insurance claimsand contracts and other professional limited domain documents.6
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