LATTICE-BASED UNSUPERVISED ACOUSTIC MODEL TRAINING

Thiago Fraga-Silva, Jean-Luc Gauvain, Lori Lamel

Spoken Language Processing Group
LIMSI - CNRS B.P. 133 91403 Orsay cedex FRANCE

{thfraga, gauvain, lamel}@limsi.fr

ABSTRACT

Unsupervised acoustic model training has been successfully
used to improve the performance of automatic speech recog-
nition systems when only a small amount of manually tran-
scribed data is available for the target domain. The most com-
mon approach is use automatic transcriptions to guide acous-
tic model estimation. However, since the best recognition hy-
potheses are known to contain errors, we propose to consider
multiple transcription hypotheses during training. The idea is
that the EM process can benefit from the estimated posterior
probabilities of the hypotheses to converge to a better solu-
tion. The proposed unsupervised training method is based on
lattices. Lattice-based training gives a relative improvement
of 2.2% over 1-best training on a Broadcast News transcrip-
tion task and converges faster with the iterative incremental
training.

Index Terms— Unsupervised training, Acoustic Model-
ing, Lattice-based training, Speech recognition

1. INTRODUCTION

Acoustic model development for Automatic System Recogni-
tion (ASR) relies on a large amount of transcribed audio data
to achieve suitable performance levels. However, obtaining
manual transcriptions is both expensive and time-consuming.
A well known technique that has been gaining popularity as
a means to reduce the human effort for this task is to train an
acoustic model on a small amount of manually annotated data
and, then, use this model to recognize several hours of train-
ing data. Once automatic transcriptions are available, they can
be used to train a new acoustic model. This method, known as
unsupervised training, has been used with success for Broad-
cast News and Broadcast Conversation data [1] and has been
applied to different languages [1, 2, 3, 4, 5].

The main problem of the unsupervised training method
is that the automatic transcriptions contain more errors than
the manual ones. The lightly supervised method [3] provides
an efficient way to remove incorrectly recognized words, but
only if approximate transcriptions, such as closed captions,
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are available. Since this is not always the case, other fil-
tering techniques should be applied to improve the perfor-
mance. The most common method to errors filter out is based
on lattice confidence measures at the word [2, 6, 7] or state
level [8]. In this case, a segment is used for training only if
its confidence measure is greater than a given threshold. Nev-
ertheless, this data selection method is not exempt of errors.
For instance, if a small threshold is chosen, some incorrectly
recognized words remain in the training data, misleading the
parameter estimation. On the other hand, if a high threshold
is set, not enough information is added to the model, i.e., the
system only learns what it already knows.

Unsupervised training is evidently an incomplete data
problem since the transcription is unknown, in addition to the
HMM state and Gaussian level alignments. The Expectation-
Maximization (EM) algorithm can be used to solve this prob-
lem by iteratively estimating the word hypothesis with the
current acoustic model. Here we propose to consider a set of
possible hypotheses to obtain a better estimate (in the maxi-
mum likelihood sense) of the model parameters. In our case,
the different hypotheses for each utterance are limited to a
word lattice generated with the current best acoustic model
and appropriate pruning thresholds. The hypothesis posterior
probabilities are derived from the corresponding lattice.

Lattices have been successfully used in many areas of
speech recognition. For instance, in [9] the authors compare
lattice and 1-best based MLLR for speaker adaptation. How-
ever, to the best of our knowledge, these are the first experi-
ments reported on the use of lattices on Maximum Likelihood
(ML) based unsupervised acoustic training.

The unsupervised training method has been used with
both ML estimation [2, 3, 8] or discriminative training ap-
proaches [1]. This study is restricted to the ML framework,
but the work can be extended to discriminative training.

The remainder of this paper is organized as follows. Af-
ter a brief presentation of the 1-best unsupervised training
method, the next section describes lattice-based training, fo-
cusing on the influence of the posterior probability estima-
tion and the size of the lattice on model estimation. Section
3 reports the results obtained comparing the 1-best and the
lattice-based methods and the impact of some parameters on
lattice-based training.



2. LATTICE-BASED TRAINING

Usually 1-best unsupervised training is an iterative and in-
cremental procedure which is briefly described as follows.
First, a bootstrap acoustic model is trained on a very small
amount of manually transcribed data. Alternatively, one can
use an existing model trained for another target domain or
language. This model is used to generate transcriptions of
a larger amount of training data. These transcriptions can
be optionally filtered to remove incorrectly recognized seg-
ments. The automatic transcriptions are then used to estimate
a new acoustic model. The process is reiterated using a larger
amount of data at each time, usually doubling the amount of
training data at each iteration.

HMM training requires alignment between audio and
phone models. On traditional unsupervised training, the rec-
ognizer provides a unique hypothesis of alignment for the
EM-based training. Assuming that we use the alignment as
non-observable variable, the HMM parameters are estimated
by the following maximization step:

A= arg max FX, WA (1)

where A\ represents the model parameters, X the audio ob-
served and W is the word hypothesis.

The 1-best approach assumes that the given hypothesis,
filtered or not, is a good estimation of the true transcription.
However, as discussed in [2], the training data will still con-
tain errors if a weak filter is applied. Using several relevant
hypotheses with their probabilities should be a better repre-
sentation of the truth of the recognized data.

Considering this new representation, some adjustments to
the training procedure need to be made. The various hypothe-
ses considered can be associated with different words, phones
and alignments. The hypothesis probabilities also have to be
taken into account during parameter estimation.

The likelihood maximization is now performed consider-
ing the different lattice hypotheses as follows:

A = arg max Zwec F(X, WA )

where the summation is taken over all the word hypotheses
W in the lattice L.

The success of the process described above relies on a
good estimation of the hypothesis posterior probabilities used
to solve equation 2. Let us consider that the posterior proba-
bility is given by the following equation:
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where the parameter « represents the well-known acoustic
model scaling factor and ~y controls the likelihood ratio among
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the hypotheses. As ~y increases the posterior probability ap-
proaches a delta distribution, that is approaching the 1-best
solution. Alternatively, as v decreases, the posterior distribu-
tion becomes uniform. Both « and ~ can be used to adjust
the ratio probabilities among the many hypothesis. However,
since « also changes the 1-best solution (and y does not), this
work has focused only on the impact of ~.

Besides the posterior probabilities, other parameters may
affect the performance of the lattice based models, in partic-
ular the number of relevant hypotheses considered. Usually,
the hypotheses with lower probabilities do not carry any sig-
nificant improvement to the system and, not rarely, may be
harmful. Moreover, increasing the size of the lattices also in-
creases the time spent on training.

To choose the most relevant hypotheses in a lattice, a well
known technique that can be used is simply reject the seg-
ments for which the posterior probabilities are inferior to a
given threshold. The lattice can also be reduced by a likeli-
hood pruning. Basically, in this method, if the probability of
any path leading to a node is lower than a certain threshold,
the path is removed from the lattice. In this case, this thresh-
old is calculated by the probability of the best path leading
to this same node multiplied by a given parameter B. The
impact of both methods are reported in this work.

3. EXPERIMENTS

The experiments were carried out using the LIMSI speech
recognition toolkit, with acoustic, lexical and language mod-
els developed for the Portuguese language and tested for a
Broadcast News (BN) task.

3.1. Corpora

The manually transcribed training data used in these experi-
ments were collected from the Portuguese channel RTP from
different shows broadcast on April 2000. The amount of us-
able data is about 3h. The untranscribed corpus used in this
work consists of over 173h of usable data collected from dif-
ferent shows and epochs from three sources: RTP from 2001
(56h) and 2010 (78h), Voice of America (VOA) from 2009
(21h) and Euronews (Euro) from 2008 to 2010 (18h). These
sources have significant differences in terms of quality. VOA
and Euronews are composed by clean speech data with good
background conditions and a small number of speakers. On
the other hand, the RTP shows contain many different speak-
ers, have rapid turns between speakers and varied background
conditions. Results are reported on four evaluation sets, each
set containing data from the same training source. The RTP0O
and RTPO09 evaluation sets have about 76 and 71 minutes re-
spectively, while Voa09 and Euro10 have about 2 hours each.
All the acoustic data available for training and evaluation are
in European Portuguese.

The language model training data include 483M words
of newspaper, newswire and blog texts, closed captions and



fine transcriptions from different sources from 1991 to 2010.
They are comprised of both European Portuguese (79%) and
Brazilian Portuguese (21%) texts. The vast majority of the
training texts are from written sources with about only 5.9M
words of closed caption data. The transcriptions used for lan-
guage modeling are the same ones that are used for supervised
acoustic model training, containing about 32k words.

3.2. System description

The system used in these experiments is quite similar to other
BN transcription systems used at LIMSI [10].

For acoustic modeling, context-dependent triphone mod-
els are used. The acoustic feature vector has 39 components,
compounded of 12 cepstrum coefficients and the log energy,
with their first and second derivatives. The phone set contains
35 phones, as well as special units for silence, breath and hes-
itation markers.

Language models were obtained by interpolation of com-
ponent backoff n-gram models trained on the different text
sources. Three language models were used, one for each tar-
get data type (RTP, VOA and Euro). For each one, a devel-
opment set containing the same type of data, but having no
overlap with the training or evaluation sets, was used to opti-
mize the interpolation coefficients.

A large lexicon containing 158k words was used so as
to limit out-of-vocabulary (OOV) rate of the development
data. With this vocabulary the OOV rate of all three LM
development text sets is under 1%. A pronunciation dic-
tionary was obtained for this word list via a ruled-based
grapheme to phoneme (G2P) converter that has four main
steps: 1) pre-syllabification; 2) stress syllable marking; 3)
post-syllabification; and 4) G2P conversion. The G2P system
used in these experiments has about 530 rules and generates
(with few exceptions) a unique pronunciation for each word.
Some pronunciation variants were manually added for a few
frequent words. Alternative pronunciations for acronyms
were automatically generated.

3.3. Results
3.3.1. Impact of v and lattice size reduction

The baseline acoustic model, trained on 3 hours of manually
transcribed data, gives an average Word Error Rate (WER)
of 27.0% on the combined evaluation sets, as shown in the
top entry of Table 1. This acoustic model set was used to
decode the first 11 hours of training data, with which a 1-best
and a lattice-based models were trained. During decoding,
the same o was used for both models, the a that maximizes
the performance of the 1-best model. For the lattice model,
this first decoding was performed with v = 1, B = 1078
and a probability threshold of 0.01. The performance of the
unsupervised 1-best and lattice trained models is given in the
lower part of Table 1. Even with only 11 hours of audio data,

Table 1. WER on individual evaluation sets and average
WER for the first iteration of unsupervised acoustic training
with 1-best hypotheses and lattices. Baseline corresponds to
supervised AM training on a 3 hour corpus.

Model [ RTPOO [ RTPO9 | VOA09 | Eurol0 | Avg |

Baseline | 36.1 36.2 21.4 225 | 27.0

1-best 32.7 33.1 16.0 18.1 | 22.7
Lattice 322 32.8 15.7 176 | 223

Table 2. Impact of y on lattice-based models.
vy 01| 05| 10 | 15 | 3.0 10
WER [%] | 22.7 | 22.4 | 22.3 | 222 | 22.3 | 22.6

both methods of unsupervised acoustic training outperform
supervised training with only 3 hours of data.

Since the baseline model was trained only on RTP data,
the relative improvement obtained on the Voa09 and Euro10
test sets are much greater (> 19%) than the improvement on
the RTP test data (9-11%). On average, the model trained with
the 1-best hypotheses has a relative improvement of 15.9%
over the baseline model, while, for the model trained with
lattices, the improvement is about 17.8%. In a direct com-
parison of the two unsupervised methods, there is an absolute
improvement of 0.4% (1.7% relative) with lattices.

Before carrying out incremental unsupervised training,
the impact of ¥ when estimating the lattice-based models was
assessed. Table 2 shows the WER of different lattice-trained
models with values of v varying from 0.1 to 10.

It can be seen that with the extreme values of v, 0.1 and
10, the performance of the lattice-based model is affected.
Particularly, we observe that for v = 10 the performance is
quite similar to the 1-best model, as expected, since the lattice
approaches the 1-best solution for high values of . For
in the range of 0.5 to 3.0, there is only a slight impact on
performance with the WER varying less than 0.2% absolute.
Since the best performance is for the model estimated with
v = 1.5, this value was used in the remaining experiments.

In addition to the influence of v, we also evaluated the im-
pact of lattice size on training. First, a likelihood based prun-
ing was used with values of B varying from 10~% to 1010,
The best performance was obtained with B = 10~8, with
less than 0.2% absolute loss in performance for the other val-
ues tested. Second, a posterior probability threshold pruning
was applied. Table 3 shows the results obtained with models
trained on the reduced lattices for threshold values varying
from 0.001 to 0.3. Applying a threshold of 0.01 gives the best
performance for the lattice-based models, with, again, about
0.2% absolute loss in performance for the extreme values.

The results show that training is quite robust to the lattice
size, with a small loss in performance for the range of val-
ues tested. However, the pruning parameter affects the result-
ing acoustic model quality. If a weak pruning is applied, low



Table 3. Impact of the posterior probability threshold on
lattice-based models.

Threshold | 0.001 | 0.01 | 0.1 | 0.3

WER [%] | 224 | 222 | 223 | 224

Table 4. WER of 1-best and lattice models after each iteration
of incremental unsupervised training, as well as the WER of
the baseline models with supervised training.

| System [ Dur [ RTPOO [ RTPO9 | vOA09 | Eurol0 [ Avg |

[ Baseline [ 3h [ 361 [ 362 | 214 [ 225 [270]
I-b(Ix) [ 11h [ 327 [ 331 16.0 181 [227
lat(Ix) | 10h | 322 | 328 | 154 177 | 222
1-b2x) | 22h | 311 [ 313 | 146 16.6 | 212
lat(2x) | 20h | 30.5 | 309 | 142 162 | 207
1-b(3x) | 44h | 298 [ 302 | 136 151 | 199
lat(3x) | 4lh | 290 | 293 | 131 147 | 193
1-b(4x) | 87h | 276 | 284 | 129 143|187
lat(4x) | 80h | 27.5 | 280 | 126 139 | 184
1-b(x) [ 173h | 266 | 273 | 129 135 | 181
lat(5x) | 157h | 262 | 265 | 125 135 | 178
1-b(6x) | 173h | 264 [ 273 | 129 137 | 181
lat(6x) | 15%h | 260 | 268 | 126 133 | 177

probability segments that contain erroneous labels may mis-
lead the parameter estimation. Even if each of these segments
has only a minor influence, the joint effect is non-negligible.
On the other hand, with a higher pruning level fewer hypothe-
ses are used during training, approximating the 1-best model.

3.3.2. Incremental unsupervised training

Incremental unsupervised training was pursued with both the
1-best and lattice based methods at 6 iterations. At the first
5 iterations, the amount of training data was doubled and
all data decoded with acoustic models trained for the respec-
tive configuration. At the last iteration, no training data was
added. For the lattice-based models, the best parameters de-
termined before were used during all training. Table 4 shows
the results obtained. The column labeled ‘Dur’ specifies the
amount of data used at each iteration. For the lattice-based
models, the duration takes into account the probabilities of
each hypothesis. Since segments with low probabilities are
removed, the total amount of data is slightly smaller than that
used to train the 1-best models. It can be seen in Table 4 that
roughly 10% of the data are removed.

For all the evaluation sets, the lattice-based models out-
perform the 1-best models, with an average absolute improve-
ment of about 0.4%. Using NIST tools, it was found that the
results obtained at each iteration are statistically significant
(p < 0.01). The relative improvement of lattice over 1-best
based models increases at almost all iterations, except at the
4th, indicating that the lattice-based training converges faster.
At the end of the 6th iteration, a relative improvement of 2.2%

is obtained over 1-best based training.

4. CONCLUSIONS

In this paper, we have proposed a new unsupervised acous-
tic training method that takes into account various hypotheses
of transcriptions during the HMM parameter estimation. The
impact of optimizing the factor , which controls the pos-
terior probabilities distribution has been experimentally ex-
plored. We also demonstrated that the lattice-based training
is quite robust to lattice size reduction by likelihood prun-
ing or probability cutoff for the range of thresholds applied.
Concerning the incremental training, the present lattice-based
method converges faster than the classical 1-best one, and has
a relative error reduction of about 2.2%.
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