
Interpolation of Acoustic Models for Speech Recognition

Thiago Fraga-Silva1,2, Jean-Luc Gauvain1, Lori Lamel1

1 LIMSI - CNRS, B.P. 133, 91403 Orsay, France
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Abstract
Acoustic models for speech recognition are often trained on
data coming from a variety of sources. The usual approach is to
pool together all of the available training data, considering them
all to be part of a unique training set. In this work, assuming that
each source may have a different degree of relevance for a given
target task, two techniques are proposed to weigh subsets of the
training data. The first one is based on the interpolation of the
model probability densities, while the other on data weighting.
An method to automatically select the mixture coefficients is
also proposed. The best technique presented here outperformed
unsupervised MAP adaptation and led to improvements in word
accuracy (up to 6% relative) over the pooled model.
Index Terms: Acoustic modeling, model interpolation, adapta-
tion

1. Introduction
In Large Vocabulary Continuous Speech Recognition (LVCSR)
systems, the acoustic phenomena is usually modeled by hidden
Markov models (HMM). The parameters of such models are
often estimated by maximizing the likelihood function on the
training data [1]. The accuracy of the models estimated via the
maximum likelihood (ML) criterion are strongly dependent on
at least two factors. First, the ML estimation assumes that the
training and the test sets are drawn from the same distribution
function. In other words, the acoustic model will be applied to
recognize some data that are similar to the training set. Sec-
ond, the method relies on the use of a large amount of data to
generate robust estimates.

The most common approach used for acoustic modeling is
to pool together all of the available training data, considering
them all to be part of a unique training set. This method leads
to good accuracy if the two aforementioned assumptions hold.
However, gathering a fair amount of acoustic training data that
matches well the target is a hard task for many different do-
mains, such as conversational telephone speech recognition [2]
or non-native speech recognition [3, 4]. This problem is of-
ten treated using an adaptation method [4, 5, 6], such as Maxi-
mum Likelihood Linear Regression [7] or Maximum a Posteri-
ori (MAP) [8, 9] adaptation. In such cases, an initial (and more
general) well-trained model is adapted to some specific domain
using a training subset that matches better the target task.

For some tasks, such as broadcast recognition, a large
amount of acoustic data can be easily collected from a variety of
sources. In such a case, pooling the training data usually leads
to overall good performance levels on test sets that also come
from a wide variety of sources [10]. However, it is reasonable
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to consider that each of the training sources can match differ-
ently a given test set or another. In general, some improvement
of performance can be obtained by adapting the pooled model
to some data coming from the same source of the target set [11].
However, the adaptation techniques allow similarity levels to be
adjusted to only one of the sources. This work hypothesizes
that better parameter estimates can be obtained by considering
different degrees of relevance for each of the training sets.

In this direction, this paper proposes a method to measure
these degrees of relevance, assigning a mixture coefficient to
each training source. These coefficients are estimated using an
Expectation-Maximization (EM) algorithm and a held-out data
set with its associated manual or automatic transcriptions. In
the same manner, two methods to take into account these co-
efficients are presented. They are both derived from the linear
interpolation of the component models associated to each of the
training sources. In the first method, the combination of the
component models is performed only at the decoding phase. In
the second method, the combination of the models is performed
at the training phase and requires the re-estimation of the model
parameters. It follows that the latter method is approximately
equivalent to perform a data weighting during the model pa-
rameter estimation.

The principle applied here is strongly inspired by a sim-
ilar approach widely used on language model training. Such
models are commonly obtained by the interpolation of compo-
nent language models, each one estimated from a different text
source. The mixture coefficients are usually obtained by maxi-
mizing the likelihood function (or equivalently, minimizing the
perplexity) on some held-out data.

Interpolation of acoustic models has been used in other
tasks related to speech processing. For instance, for speech syn-
thesis, it has been used to combine models of different speaking
styles [12] or models trained for different speakers [13]. For
speech recognition, model interpolation has been used to com-
bine native and non-native acoustic models for a non-native
speech recognition task as an alternative to acoustic model
adaptation [4, 14]. However, in the previously report work, the
mixture coefficients were manually selected and the model in-
terpolation technique was assessed only at the decoding phase.
This work shows that better performance levels can be achieved
by considering the interpolation coefficients during model pa-
rameter estimation. Furthermore, it is shown that optimal coef-
ficients (in the likelihood sense) can be automatically estimated.

This paper is organized as follows. Section 2 briefly de-
scribes acoustic model training and its use in the recognition
system. In Section 3, we propose two methods to interpolate
component acoustic models. Section 4 describes the method
used to estimate the mixture coefficients. Section 5 describes
the recognition system. In the Section 6, the experiments and
results are discussed. A brief conclusion is given in Section 7.
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2. Acoustic models
In automatic speech recognition, the speech units are usually
modeled by continuous density HMMs with Gaussian mixture
state observation densities. Training these models requires an
alignment between the audio stream and the associated phone-
mic representation. When manual reference transcriptions are
available, the audio data is segmented in phones by a forced
alignment procedure, using a pronunciation dictionary and an
initial acoustic model. If no transcription is available, unsuper-
vised training [15] can be applied. In this case, an initial system
is used to decode the untranscribed data. The acoustic model
parameter estimation is guided by one or many segmentation
hypotheses given by the decoder. In this work, the acoustic
models were trained using the unsupervised method with the
best hypothesis given by the decoder as ground truth.

The HMM parameters and the state Gaussian mixture
model (GMM) parameters can be obtained by a ML estimation
procedure, usually defined as:

λ∗ = argmax
λ

f(X|λ) (1)

where λ represents the model parameters, X the observed fea-
ture vectors and f(.) the likelihood function.

Equation 1 is an incomplete data problem [16] for both,
the HMM and GMM parameters. This problem can be solved
iteratively using an EM algorithm. The focus of this paper is on
the estimation of the GMM parameters, but can be extended to
the HMM parameter estimation.

3. Acoustic model interpolation
The acoustic model estimation is commonly performed consid-
ering the training data as a single homogeneous data set. The
ML estimation is performed over all the available data. At the
decoding phase, the likelihood function f(x|λ) of the estimated
model λ is used together with a language and a pronunciation
models in order to find the best possible sequence of words
given an observed feature vector x.

The usual approach do not take into account the different
degrees of relevance of each of the training sources. The fol-
lowing sections propose two methods to consider them. In
this work, it was assumed that all the acoustic models have
the same structure. Hence, the methods presented were used
to interpolate the GMMs of each of the HMM states. It was
also assumed that the training data can be split into K inde-
pendent subsets, such as X = {X1 · · ·XK}. Each subset Xk

contains a training vector with dimension Tk , represented by
Xk = {xk1 · · ·xkTk

}.

3.1. Gaussian mixture model interpolation

The first interpolation method proposed is straightforward.
First, a model λk is estimated on each of the Xk subsets. The
state GMMs are linearly interpolated at the decoding phase, as-
suming that each model contributes to the acoustic likelihood of
an observed vector xt with a coefficient αk as follows:

fst(xt|λ) =

K∑

k=1

αk · fst(xt|λk) (2)

where fst(.) is the GMM density function of a state st at time
t and

∑
αk = 1.

This interpolation approach can be used in two different
ways. First, one can perform the interpolation of the component

models λk at runtime. It is also possible to build a model be-
forehand, by merging the parameters of the component models
and adjusting them according to the interpolation coefficients.
Despite some technical issues, these approaches are equivalent.
In this work, the latter approach was used.

In comparison with the method presented in the next sec-
tion, the GMM interpolation has the advantage that each of
the component models λk can be estimated only once indepen-
dently of the target. By properly adjusting the coefficients, the
interpolated model can be be quickly adapted to different tasks.

3.2. Data weighting

In the second method proposed, the mixture coefficients are
considered during the parameter estimation by maximizing the
likelihood function of the interpolated model given by Equa-
tion 2. It follows that this problem can be solved by maximizing
the so-called auxiliary function Q(λ, λ̂), which is in this case:

Q(λ, λ̂) =

K∑

k=1

Tk∑

t=1

I∑

i=1

·γkit · log(αkω̂ifst(x
k
t |µ̂i, Σ̂i)) (3)

where ω̂i, µ̂i and Σ̂i are, respectively, the mixture coefficient,
the mean vector and the covariance matrix of the i-th Gaussian
component of the model λ̂. In this equation, γkit = P (i|xkt , λ)
is the probability of being in the Gaussian i at time t, given that
the model λ generates xkt .

The equations used to compute the new parameter estimates
λ̂ = {ω̂i, µ̂i, Σ̂i}, can be obtained by taking the respective par-
tial derivatives of Q(., .). They can be expressed as:

ω̂i =

∑K
k=1

∑Tk
t=1 γ

k
itαk∑K

k=1Nk αk
(4)

µ̂i =

∑K
k=1

∑Tk
t=1 γ

k
itαk x

k
t∑K

k=1

∑Tk
t=1 γit αk

(5)

Σ̂i =

∑K
k=1

∑Tk
t=1 γ

k
itαk (xkt − µ̂i) (xkt − µ̂i)T∑K
k=1

∑Tk
t=1 γ

k
it αk

(6)

The usual ML re-estimation equations can be obtained by
setting K = 1 [17]. In practice, the presented method was
approximated by performing the usual ML estimation with
weighted training data sets.

In comparison with the precedent interpolation method, the
data weighting method has the advantage to generate models
with less parameters. On the other hand, it is necessary to re-
estimate the model parameters for each different target set.

4. Choice of interpolation coefficients
The interpolation coefficients can be estimated by an approach
that is quite similar to the one used on language model inter-
polation. At the first step, component acoustic models λk are
estimated for each training subset. Given some held-out data x,
an EM algorithm is used to estimate the coefficients, based on
the iterative formula [18]:

α̂k =

Tk∑

t=1

αkfst(xt|λk)∑K
k′=1 αk′fst(xt|λk′)

(7)

This task requires an alignment between the data stream
and their associated transcriptions in order to calculate the like-
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Table 1: Training corpora information. The size, given in hours,
corresponds to the amount of raw data in each subset.

Subset Sources Epoch Size
train1 RTP channel 2001 64
train2 RTP channel 2010 86
train3 Voice of America 2009 21
train4 Euronews 2009-2010 20
train5 Quaero data 2010 77

Table 2: Information of the data sets used for evaluation. Last
column givens the size of the dev set associated to each of the
eval set. Size is given in hours.

Source Epoch Eval Dev
Name Size Size

RTP channel 2000 eval1 1.3 3.9
Voice of America 2009 eval3 2.0 5.0
Euronews 2010 eval4 2.0 5.0
Quaero Evaluation 2010 eval5 3.5 3.5

lihood fst(x|λk) on each of the component models. This align-
ment can be performed using either, the manual or the automatic
transcriptions of the held-out data. The manner how the auto-
matic transcriptions are generated is a separate issue that is not
in the scope of this work. Here, they were obtained using the
baseline system with the pooled model.

5. Task and System Overview
The experiments were carried out using the LIMSI speech
recognition toolkit, with acoustic, lexical and language models
developed for Portuguese and tested with broadcast data.

5.1. Corpora

The audio data used in this work contains about 268 hours of
untranscribed data. The relevant information about the corpora
is shown in Table 1. The training data were separated into five
subsets, according to the source the shows come from and the
epoch they were broadcast. For the first experiments, the first
4 sources, shown in the upper part of the table, were grouped
into a unique set, henceforth train1-4. The train5 set consists
of data collected for the 2011 Quaero Programme Evaluation 1.
Although it consists of data coming from different sources, they
were considered to be homogeneous and treated as part of a
unique subset. Manual transcriptions of a portion of the train5
data were available, but they were not used here.

The systems were evaluated on four data sets, coming from
the same sources. The relevant information about the evaluation
sets is given in Table 2. For each of these sets, an associated
development set was used to estimate the interpolation coeffi-
cients. The development set of the Quaero data is the only one
for which manual transcriptions were available. All the system
parameters were tuned on this set. Automatic transcriptions for
all the dev sets were generated using the baseline system.

The language model training data include about 640 million
words from nine different written sources, such as newspapers,
newswires and blogs. These data cover the period from 1991
to 2010. About 30k words of manual transcriptions from RTP

1http://www.quaero.org

shows broadcast in 2000 were also used. The text data was nor-
malized in order to convert numerical forms and abbreviations
to spoken forms.

5.2. System description

The system used in this work is quite similar to other systems
developed at LIMSI [19]. It makes use of a pronunciation dic-
tionary, n-gram language models and acoustic models based on
continuous density HMMs. Each phone is modeled by a tied-
state left-to-right context-dependent triphone HMM, with Gaus-
sian mixture observation densities. Only PLP [20] features were
used. The PLP feature vector contains 39 components, includ-
ing 12 cepstrum coefficients and log energy with their first and
second derivatives. The phone set contains 35 phones, as well
as special units for silence, breath and hesitation markers.

In this work, the vocabulary, language models and pronun-
ciation dictionary described in [11] were used. The vocabulary
was automatically selected based on interpolation of unigram
language models. With the selected vocabulary, 2-, 3- and 4-
gram component language models were estimated from each of
the 10 different sources. The final language models were ob-
tained by interpolation of the component models, with coeffi-
cients automatically chosen in order to minimize the perplexity
on the Quaero development set. The pronunciation dictionary
was obtained via a rule-based grapheme to phoneme converter.
For all the experiments, the language models, pronunciation
dictionary and decoding parameters were kept fixed. At each
test, only the acoustic models were changed.

6. Experiments
The acoustic models were estimated using an unsupervised
training approach with the best hypothesis taken as ground
truth. The system used to transcribe the training data is de-
scribed in [10]. In this work, only one iteration of unsupervised
training was performed for each model created. All the mod-
els trained have the same structure, covering about 15.7k phone
contexts and having about 11.5k tied-states. The speech units
are modeled by GMMs with up to 32 components, while silence
is modeled by mixtures of 1024 components.

6.1. Impact of interpolation coefficients

The first experiments were performed in order to validate the
automatic choice of the interpolation coefficients. To better
take into account the impact of the coefficients, the training
data were separated only into two different sets, train1-4 and
train5 (See Table 1). Different pairs of coefficients were manu-
ally set. Two pairs of coefficients were automatically obtained
using the proposed method, with the estimation guided by ei-
ther, the manual or the automatic transcriptions of the Quaero
development set. For each pair of coefficients, a model was esti-
mated using both interpolation methods proposed. The models
were evaluated on the eval5 set.

Table 3 shows the main results obtained. Despite some
small differences, the data weighting (DW) and the GMM in-
terpolation (GMMI) methods led to equivalent WER perfor-
mance levels. The first and last rows show the performances of
the component models, trained only on the train1-4 and train5
sets. The model estimated on train5 leads to a WER of 31.7%,
which is 2.1% (absolute) smaller than the WER obtained with
the model train1-4, even if this latter was trained on a subset 2.5
times bigger. Thus, as expected, the train5 data match better the
eval5 data, since they come from the same source.
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Table 3: WER(%) on the eval5 set with acoustic models esti-
mated using different pairs of mixture coefficients defined for
the subsets train1-4 and train5. Data weighting (DW) and GMM
interpolation (GMMI) methods were assessed.

AM Coefficients WER(%)
train1-4 train5 DW GMMI

train1-4 1.00 0.00 33.8
baseline 0.50 0.50 31.7 31.7

auto, 1-best dev 0.22 0.78 31.3 31.4
auto, manual dev 0.20 0.80 31.3 31.3

train5 0.00 1.00 31.7

The WER obtained with the pooled (baseline) model is
given in the second row. The pooled model is equivalent to the
weighted model with the coefficients uniformly assigned to the
training subsets. This model leads to a WER of 31.7%, which
is the same performance obtained with the train5 model alone.
Different WER performance levels were obtained by manu-
ally varying the interpolation coefficients, reaching a minimum
(31.3%) with the coefficients 0.20/0.80. It turns out that these
were the coefficients estimated via the manual transcriptions of
the Quaero development data. Both interpolation methods led to
the best WER performance in this case. The estimation guided
by the automatic transcriptions led to a slight different pair of
coefficients (0.22/0.78). However, these coefficients still led to
the best performance with the data weighting method. A small
absolute loss (0.1%) was obtained with the GMM interpolation
method, although the performance obtained (31.4%) is still bet-
ter than the baseline (31.7%).

These results suggest that the optimal interpolation coeffi-
cients can be automatically selected by maximizing the likeli-
hood function on the development data. Furthermore, they can
be chosen using an unsupervised approach, in which the esti-
mation is guided by the automatic transcriptions of the dev set.

6.2. Training with all subsets

This section describes the experiments performed to evaluate
the two interpolation methods proposed on all of the available
test sets. To better take into account the relevance of each of the
data sources, the training set was divided into five subsets as in-
dicated in Table 1. For each evaluation set, mixture coefficients
were estimated using the automatic transcriptions of the associ-
ated development set. The interpolated models were compared
with the pooled model and the related MAP adapted models.
For each evaluation subset, a MAP model was estimated via
the automatic transcriptions of the most similar training subset,
with the prior distributions obtained from the pooled model.

Table 4 summarizes the results. The second column gives
the WERs obtained with the pooled model, which led to an av-
erage WER of 22.5% over the four evaluation sets. The last
column shows the results obtained with the MAP models. In av-
erage, the adapted models led to a slight absolute improvement
of 0.1% over the pooled model, but with a gain of performance
on two sets, eval3 (-0.5%) and eval5 (-0.2%), and a loss on the
other two, eval1 (+0.4%) and eval4 (+0.1%).

The interpolated models obtained with the automatically es-
timated coefficients performed better than the equivalent mod-
els trained with equally set coefficients for both methods pro-
posed. For all the evaluation sets, the best performance levels
were obtained using the data weighting method and the esti-

Table 4: WER(%) on all the evaluation sets obtained with MAP
adapted and interpolated models. The interpolated models were
obtained using the data weighting (DW) and GMM interpola-
tion (GMMI) methods. In both cases, equally set coefficients
(equal) are compared with automatically selected (auto) ones.

Test set
DW GMMI

MAPequal
(pooled) auto equal auto

eval1 24.7 24.5 25.1 25.0 25.1
eval3 14.4 13.6 14.3 13.9 13.9
eval4 13.2 13.1 13.7 13.6 13.3
eval5 31.7 31.2 32.0 31.5 31.5

average 22.5 22.1 22.8 22.4 22.4

mated coefficients. Compared to the baseline pooled model,
this method led to an average absolute WER reduction of 0.4%,
achieving an improvement up to 0.8% on eval3. It also led to
absolute improvements from 0.2% on eval4 to 0.6% on eval1
over the MAP adapted models.

For all the cases, models estimated using weighted data per-
formed better than the equivalent models interpolated at the de-
coding phase. A possible explanation to this behavior may be
the fact that the parameters of some of the component mod-
els were poorly estimated. In particular, two of the component
models were trained on only about 20 hours of untranscribed
data. This hypothesis can be supported observing the results
obtained on eval5: when only two subsets were used, no sig-
nificant difference of performance was observed between the
two methods. Nevertheless, for two of the test sets (eval3 and
eval5), the models trained with the GMMI method and automat-
ically estimated coefficients performed better than the pooled
model. For three sets (except eval4), the recognition perfor-
mance is comparable with the MAP adapted models.

7. Conclusion
This paper has proposed an approach to take into account the
relevance of different sources used on acoustic modeling. Two
methods to combine subsets of the training data have been pre-
sented. In the first one, component models estimated on each
source are interpolated at the decoding phase. The second
method can be approximated by the parameter estimation with
weighted training data. A method to estimate the optimal mix-
ture coefficients using an EM approach has been proposed. It
consists in maximizing the likelihood on some acoustic held-out
data using either the manual or automatic transcriptions associ-
ated to them.

The data weighting method has led to the best WER perfor-
mances on four different evaluation sets compared to the base-
line pooled models, the maximum a posteriori adapted models
and the GMM interpolated models. Absolute gains of perfor-
mance up to 0.8% have been observed over the pooled models
and up to 0.6% over the MAP adapted models.

This work can be extended in different ways. For instance,
instead of estimating a global mixture coefficient for each com-
ponent model, better performance levels might be achieved by
estimating coefficients per phoneme or per phone model. Be-
sides that, the GMM interpolation method could be improved to
perform model adaptation at recognition time. It could be done
by assigning mixture coefficients to each show (or speaker) after
a first decoding pass, at the condition that each of the compo-
nent models are well-trained.
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