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Abstract

This contribution reports on work carried out
in part under the GALE program to incorpo-
rate discriminative features from a multi layer
perceptron (MLP) into an optimized Arabic
broadcast data transcription system based on
cepstral features. The recently proposed 4-
layer Bottle-Neck MLP architecture (Grézl
and Fousek, 2008) is explored and used to pro-
duce three types of MLP features differing in
their input speech representations. Initial ex-
periments carried out with a development tran-
scription system (300 hour acoustic training)
demonstrated that standard techniques used
in state-of-the-art systems with PLP features
(SAT, CMLLR, MLLR, MMI) could be suc-
cessfully used with MLP features alone and
in combination with PLP ones. Further stud-
ies extend the model training to the full set of
available audio data (over 1380 hours). Ex-
perimental results are reported on GALE data
to illustrate the influence of the different MLP
features, the amount of data used to train the
MLP and the HMMs, and the different means
of combining the PLP and MLP features on
the system performance.. The improvements
obtained with MLP features have been con-
firmed on other tasks and languages.

1 Introduction

One of the recent trends in speech recognition is
using discriminative techniques with large corpora
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for more accurate acoustic modeling. Maximum
likelihood training of Gaussian mixture HMMs is
often replaced by Maximum Mutual Information
(MMI), Minimum Classification Error (MCE), or
Minimum Phone Error (MPE) criteria and features
are being modified by discriminatively trained trans-
forms such as feature-level MPE (Povey et al., 2005).
There has been growing interest in incorporating
some discriminative estimation in the feature ex-
traction by using discriminative classifiers such as
multi layer perceptrons. Since MLP features cover
a wide temporal context, they can potentially cap-
ture different speech properties than are captured by
the widely used cepstral features. In addition, MLPs
can be trained to deliver estimates of class posteriors
which can be directly used as emission probabilities
in Hidden Markov Models. Over the years, ICSI,
SRI, UW and other groups have developed mature
techniques for extracting probabilistic MLP features
such as TRAPs (TempoRAl Patterns), and have sub-
stantial experience incorporating these MLP features
in speech-to-text (STT) systems (Zhu et al., 2005;
Stolcke et al., 2006). While probabilistic features
have never been shown to consistently outperform
cepstral features in LVCSR, they have been shown
to improve performance when used in conjunction
with them. The MLP and PLP features being comple-
mentary, an important consideration is determining
the best manner to incorporate both in an STT sys-
tem. Different means of multi-stream combination
have been successfully used for this purpose, four of
which were studied in (Fousek et al., 2008a).

This contribution summarizes the most important
results obtained on incorporating MLP features in a



transcription system for broadcast data. Two types
of raw features are used: 9 frames of PLP based fea-
tures and time-warped linear predictive TRAP fea-
tures (Fousek, 2007). To the best of our knowledge
this was the first time that the latter features were
incorporated in a state-of-the-art system. Since the
MLP topology, as well as the speech representations
at the MLP input used here differ from the better
known ones, it is of interest to explore the proper-
ties of these features and suitable ways of combining
them with cepstral ones.

The experiments reported here use a 4-layer
Bottle-Neck MLP architecture (Grézl and Fousek,
2008) to deliver two types of MLP features differ-
ing in the speech representation used at the MLP in-
put. Extending previous work with smaller amounts
of audio data (Fousek et al., 2008a), acoustic mod-
els are trained with PLP and MLP features as well
as their combination. Using a full state-of-the-art
Arabic STT system trained on over 1380 hours of
raw data with model adaptation techniques such as
speaker adaptive training (SAT), Constrained Max-
imum Likelihood Linear Regression (MLLR) and
MLLR, experiments were carried out to examine
how the MLP features compare to cepstral ones, how
both features combine, how the system performance
is dependent on the amount of training data (for the
MLP and the HMM), and how the acoustic models
utilizing MLP features can benefit from discrimina-
tive training and from model adaptation.

2 Task & System Overview

The speech recognizer was derived from the LIMSI

Arabic STT component system used in the AG-
ILE participations in the GALE evaluations. The
transcription system has two main parts, an audio
partitioner and a word recognizer (Gauvain et al.,
2002). The recognizer makes use of continuous
density HMMs for acoustic modeling and n-gram
statistics for language modeling. Each context-
dependent phone model is a tied-state left-to-right
CD-HMM with Gaussian mixture observation den-
sities. Word recognition is performed in one or
more passes, where each decoding pass generates a
word lattice with cross-word acoustic models, fol-
lowed by consensus decoding with 4-gram language
model (LM) and pronunciation probabilities (Gau-

vain et al., 2002; Lamel et al., 2007). Unsupervised
acoustic model adaptation is performed for each seg-
ment cluster using the CMLLR and MLLR (Leggetter
and Woodland, 1995) techniques between decoding
passes.

The manually transcribed Arabic broadcast news
(bn) and broadcast conversation (bv) data distributed
by the Linguistic Data Consortium were used to
train the acoustic models. There are over 1380
hours of raw data, with roughly 730 hours bn and
550 hours of bc. After removing non-speech por-
tions (music, publicity) and portions that fail forced
alignment, about 1250 hours of data remain for
HMM training. This is referred to as the 1200
hour training set, used to train the baseline gender-
independent acoustic models, covering 44k word
position-dependent contexts with 11.5k tied states
(32 Gaussians/state) (Fousek et al., 2008b). Some
results are reported for a development system, using
300 hours of data for acoustic model training.

Various language models were trained on cor-
pora comprised of 11 M words of audio transcrip-
tions and 1 B words of texts from a wide variety of
sources. The language models result from the inter-
polation of models trained on subsets of the avail-
able data, with the interpolation weights optimized
on the combined GALE development data from 2006
and 2007. The coefficients associated with the au-
dio transcriptions are assigned almost half the LM
weight, even though these texts represent only about
1% of the available data. Language models were
estimated on the normalized texts and morpholog-
ically decomposed texts (Lamel et al., 2008). For
multipass decoding, lattices are rescored by a neu-
ral network LM (Schwenk, 2007) interpolated with
a 4-gram backoff LM. Results are reported for sev-
eral GALE data sets, where each set contains about
3 hours of broadcast data.

3 Training MLP Features

The neural network feature extraction has two steps.
The first step is raw feature extraction which consti-
tutes the input to the MLP. Typically this vector cov-
ers a wide temporal context (100–500 ms) and there-
fore is highly dimensional. Second, the raw features
are processed by the MLP followed by a PCA trans-
form to yield the HMM features.



ID Raw features (#) HMM features (#)

PLP PLP (13) PLP+∆+∆2 (39)
MLP9xPLP 9x(PLP+∆+∆2) (351) MLP (39)
MLPwLP wLP-TRAP (475) MLP (39)
MLPcomb 9x(PLP+∆+∆2) + wLP-TRAP (826) MLP (39)

Table 1: Naming conventions for MLP features and how the raw input features relate to the features for HMM.
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Figure 1: MLP feature computation with a four layer bottle-neck network, using phoneme-like training targets.

3.1 Raw features

Two sets of raw features are used which cover dif-
ferent temporal contexts: 9 frames of PLP (9xPLP)
and time-warped linear predictive TRAP (wLP-
TRAP) (Fousek, 2007). The 9xPLP set is based on
the PLP features from the baseline system which are
mean and variance normalized per speaker. The raw
features are formed by 9 neighboring frames of PLP
(12 coefficients plus energy, with derivatives ∆ and
∆2), centered at the current frame. The feature vec-
tor has 9 × 39 = 351 values and covers a 150 ms
window. The wLP-TRAP raw features are obtained
by warping the temporal axis in the LP-TRAP feature
calculation. Linear prediction is used to model the
Hilbert envelopes of 500 ms long energy trajecto-
ries in auditory-like frequency sub-bands (Athineos
et al., 2004). 25 LPC coefficients in 19 frequency
bands form the raw features, yielding 19×25 = 475
values which cover a 500 ms window. wLP-TRAPs
use a different bank of filters than are used for the
PLP and they do not apply a short-term FFT, so
they have a potential of producing more comple-
mentary features to PLP than 9-PLP or TRAPs, which
should be an advantage for feature combination. The

adopted naming conventions for the raw features and
the HMM features derived from them are given in Ta-
ble 1. The last feature set is obtained by combining
the 9xPLP and the wLP-TRAP features at the input to
the MLP and produces a 39-parameter feature vector.

3.2 MLP architecture

The MLP architecture is based on a four layer bottle-
neck network with an input layer, two hidden layers
and an output layer, as shown in Figure 1. The input
layer distributes the raw features in the second layer,
which is large in order to provide the necessary mod-
eling power. The third layer is small, its size is equal
to the required number of features, which in this
work was fixed to 39 for easy comparison with PLP
features.1 The output layer computes the estimates
of the target class posteriors. The classes are con-
text independent phone states obtained from a HMM
automatic alignment which were shown to outper-
form phone targets (Grézl and Fousek, 2008). There
are 69 three-state phones and 3 units with all states
merged (silence, filler, breath) resulting in 210 target

1The optimal number of features was explored in (Grézl and
Fousek, 2008).



MLP train set bnat06 WER (%)

17 hrs 24.7
63 hrs 24.2

300 hrs 23.4
1200 hrs 22.2

PLP baseline 25.1

Table 2: Word error rates on the bnat06 data set
as a function of the amount of data use to train the
MLP9xPLP. All HMMs trained on 300 hours of speech.
Single decoding pass with 200k 4-gram LM, no adapta-
tion, no MLLT, no MMIE.

classes. The outputs of the small hidden layer neu-
rons (prior to a sigmoid function) are decorrelated
by a PCA transform and used as final features. Note
that this MLP architecture allows the feature vector
size to be arbitrarily chosen, independently of the
number of MLP targets.

3.3 MLP training data

The MLP features were trained on the 1200 hour
train set. Since the MLP features make use of a tem-
poral context up to 500ms, the frames from first and
last 250ms of each segment are not used for training
(except for providing a context), thus the data avail-
able to train the MLP is 1168 hours. It is known that
more data and/or more parameters in the MLP help,
but at certain point the gain is not worth the effort.
Table 2 gives the word error rate as a function of the
amount of MLP training data for a MLP with a fixed
number (1.4 million) of parameters with 9xPLP raw
features. The HMMs were always trained on the 300
hour training set and evaluated on bnat06 dev data.
The MLP performance is seen to improve with the
additional data, and no saturation is observed. The
WER of the baseline PLP system (single pass decod-
ing with speaker-independent models, no SAT, no
Maximum Likelihood Linear Transform (MLLT), no
Maximum Mutual Information Estimation (MMIE)
and no adaptation) trained on the 300 hour train set
is 25.1%.

3.4 Training process

Training a MLP on over thousand hours of speech re-
quired two modifications to the training process per-

MLP train set MLP parameters WER(%)

63 hrs 1.4M 24.2
63 hrs 6.5M 24.4
1200 hrs 1.4M 22.2
1200 hrs 5.3M 21.9

Table 3: Influence of MLP size on performance for two
quantities of data use to train the MLP9PLP. Results on
bnat06 data. All HMMs trained on 300 hours of speech.
Single decoding pass with 200k 4-gram LM, no adapta-
tion, no MLLT, no MMIE.

formed by QuickNet 2 software. First, the storage
space requirements of the raw features were reduced
by almost a factor of four by using linear quanti-
zation of 32 bit float values to 8 bits, with no im-
pact on performance. Once the MLP is trained, out-
put features are created using non-compressed raw
features. Second, to reduce the computation time
of MLP training, a simplified training scheme was
adopted after (Zhu et al., 2005). Instead of iter-
ating on all training data about 10 times through
the MLP as determined by cross-validation perfor-
mance, a fixed number of 6 epochs with fixed learn-
ing rates is used with subsets of the data. The data
are randomized and split in three non-overlapping
subsets of 13%, 26%, and 52% of the frames. First,
three epochs are trained on 13% of the data, then
two subsequent epochs use 26% of the data, the last
epoch uses 52% of the data, with the remaining data
used to monitor the performance. This reduced the
training time by a factor of 5.4 with a negligible im-
pact on performance (in fact, tests with the 300 hour
set even improved from 24.4% to 24.2% WER on
the bnat06 data for the 9xPLP raw features, with un-
adapted models). All these modifications reduced
the training time to about one week on the 1200 hour
train set using one four-threaded computer, and the
wLP-TRAP raw training features occupy 200GB of
disk space.

3.5 MLP size

To get the most benefit from the larger amount of
training data may require using a more complex
model. An experiment was carried out by enlarg-
ing the first hidden layer in the MLP in order to raise

2http://www.icsi.berkeley.edu/Speech/qn.html



bnat06 WER (%)
# Features 1-pass 2-pass

1 PLP 25.1 22.5
2 MLP9xPLP 24.2 22.7
3 MLPwLP 25.8 23.1

4 MLPcomb 23.8 21.9

5 PLP + MLP9xPLP 22.7 21.2
6 PLP + MLPwLP 21.7 20.4
7 MLP9xPLP + MLPwLP 22.2 21.0

Table 4: Performance of PLP and MLP features, MLP
combined features and feature concatenation, without
and with unsupervised acoustic model adaptation on the
bnat06 data and 200k 4-gram ML. MLPs trained on 63
hours of data. HMMs trained on 300 hours of speech.

the number of free parameters. The results are given
in Table 3. For the small 63 hour train set, the larger
MLP degraded performance, while for the full 1168
hours it brought a 1.6% relative improvement. How-
ever, such a gain was not judged to be worth the
computation cost (almost 4 times longer to train the
MLP), so further experiments used the smaller MLP
with 1.4 million parameters.

4 Using MLP Features

This section presents contrastive results starting with
the baseline system, and going to more complex
models and decoding strategies.

4.1 Experiments with a small system

A first series of experiments were carried out to
compare the four basic features from Table 1 with-
out and with unsupervised acoustic model adapta-
tion, as shown in Table 4. The 1-pass results use a
4-gram LM, no adaptation, no MLLT, no MMIE. The
MLPs were all trained on 63 hours of data, and all
HMMs were trained on 300 hours of speech. The
baseline performance of the standard PLP features
without adaptation is 25.1% and with adaptation is
22.5%. Without adaptation, the MLP9xPLP features
are seen to perform a little better (about 4% relative)
than PLP, but with adaptation both MLP9xPLP and
MLPwLP are slightly worse than PLP. This leads to
the conclusion that MLLR adaptation is less effective
for MLP features than for PLP features.

bnat06 WER (%)
Combined systems 1-pass 2-pass

3 → 1 25.8 21.5
1 → 3 25.1 22.0
7 → 1 22.2 20.7
1 → 7 25.1 21.2

1 ⊕ 2 ⊕ 3 22.3 20.6
1 ⊕ 3 23.3 21.0
5 ⊕ 6 21.2 19.9
1 ⊕ 6 ⊕ 7 21.0 19.7

Table 5: Comparing cross-adaptation and ROVER for
combining multiple systems on bnat06 data.

Different means of fusing the information coming
from the cepstral and the MLP features were inves-
tigated. The MLPcomb results are for combination
at the input to the MLP. These models give the best
results with 39 parameters. A simple approach is
to concatenate together the features at the input to
the HMM system (this doubles the size of the feature
vector, 2×39 = 78 features) and to train an acoustic
model. Three possible pairwise feature concatena-
tions were evaluated and the results are given in the
lower part of Table 4. These concatenated features
all substantially outperform the PLP baseline, by up
to 9% relative, showing that feature concatenation is
a very effective approach. Given the significantly
better performance of the PLP+MLPwLP features
over the PLP+MLP9xPLP and MLP9xPLP + MLPwLP
features, the three-way concatenation was not tested
as it was judged to be not worth the increased com-
putational complexity needed to deal with the result-
ing feature vector size (3×39).

Two other more computationally expensive ap-
proaches were studied, cross model adaptation and
ROVER (Fiscus, 1997). Table 5 gives some com-
bination results using cross adaptation (top) and
ROVER (bottom). The first entry is the result of
adapting the PLP models with the hypotheses of the
MLPwLP system. The second entry corresponds to
the reverse adaptation order, i.e. the MLPwLP are
adapted using the hypotheses of the PLP system. The
next two entries use cross adaptation on top of fea-
ture concatenation. In the first 3 cases, cross adap-
tation reduces the WER (note that the 2nd pass er-



MLP train set 63 hrs 300 hrs

MLP9PLP 24.2 23.4
MLPwLP 25.8 23.5

PLP+MLP9PLP 22.7 22.5
PLP+MLPwLP 21.7 21.3

Table 6: Performance on the bnat06 data set of two types
of MLP features, stand-alone or concatenated with PLP
as a function of the amount of data used to train the MLP.
All HMMs trained on 300 hours of speech. Single decod-
ing pass with 200k 4-gram LM, no adaptation, no MLLT,
no MMIE.

ror rates must be compared with those in Table 4).
Larger gains are obtained when the PLP models are
used in the second pass, supporting the earlier ob-
servation that MLLR adaptation is more effective for
PLP features than for MLP features. This may be be-
cause the MLP already removes the variability due
to the speaker or because other, perhaps non-linear,
transformations are needed to adapt MLP features.
The WERs in the bottom part of the table result from
ROVER combination of the first or second pass hy-
potheses of the listed systems. ROVER combination
of the three basic features performed better than the
best pair-wise cross-adaptation amongst them (3 →
1) however, neither combination outperformed the
simple feature concatenation WER of 20.4% (en-
try 6 in Table 4). ROVER also helps when applied
jointly with other combination methods (see the last
two rows in Table 5), beating the baseline PLP sys-
tem by up to 12% relative. This best ROVER result
however requires 6 decoding passes.

It is interesting to observe that the PLP features are
generally best combined with MLPwLP, even though
the MLP9xPLP gives better score than MLPwLP.
This may be due on one side to the fact that the
MLP9xPLP features are derived from the PLP, and
on the other side that there is a larger difference in
time spans between the standard PLP and the wLP-
TRAP features.

4.2 Amount of MLP training data

Table 6 compares performances of the MLP features
when used stand-alone and when concatenated with
PLP features at the input to the HMM system as a
function of the amount of data used to train the MLP.

bnat06 WER (%)
Features 300h 300h/1200h 1200h

PLP 22.7 21.8

MLP9xPLP 21.8 21.3 20.3
MLPwLP 21.9 21.3 20.7

PLP + MLP9xPLP - 20.4 19.9
PLP+MLPwLP 20.1 19.7 19.2

Table 7: Performance of PLP, MLP and concatenated
features. The amount of data used to train the MLP/HMM
are given in the column headers. Single decoding pass
with an improved 290k 4-gram LM, improved pronuncia-
tion modeling, gender-dependent models, no adaptation,
no MMIE, with MLLT for PLP.

Note that the concatenated vector has 78 features,
whereas the stand-alone vector has 39 features. The
HMMs were all trained on the 300 hour data set. For
all feature sets there is a significant WER reduc-
tion when the MLP training data is increased from
63 to 300 hours. The results with the two types
of MLP features stand-alone are comparable when
300 hours are used to train the MLPs. HMMs trained
with both MLP features outperform the PLP baseline
(25.1%). Concatenating the PLP features with the
MLP ones gives the best performance (the last two
entries), however the improvement from training the
MLP on more data is less than for the systems using
only MLP features (the top two table entries). The
best results are obtained with the HMM trained on
the PLP+MLPwLP features.

Table 7 gives results with an updated system: it
has an improved 290k 4-gram LM, improved pro-
nunciation modeling and gender-dependent models.
The PLP-based system also has MLLT. The table
summarizes further exploration of performance as
a function of the amount of data used to train the
MLP. In column 300h, both the MLP and the HMM
are trained on 300 hours. In the second column,
the same MLP is used, but the HMMs are trained on
1200 hours. Finally last column both the MLP and
HMM are trained on 1200 hours. Comparable per-
formance is seen for both MLP features, with a slight
advantage for the MLP9xPLP features with the larger
HMM training. As already observed with HMMs
trained on 300 hours of data (see Table 6), the best



bnat06 WER (%)
Features No adapt. SAT+CMLLR+MLLR

PLP 21.8 19.0
MLPwLP 20.7 18.9
PLP + MLPwLP 19.2 17.8

Table 8: Performance on bnat06 with improved 290k
4-gram LM for PLP and MLPwLP features, and fea-
ture concatenation without and with adaptation. Gender-
dependent models, no MMIE, and with MLLT for PLP.
MLP and HMM both trained on 1200 hours of data.

results are obtained with the concatenated features
PLP+MLPwLP. This feature set gives an absolute
gain of 1.2-1.6% over all other features.

Table 8 compares three feature sets with the im-
proved system. The first entry corresponds to a
single pass unadapted decoding, and the second to
a two-pass decoding using the standard techniques
of SAT training, and CMLLR and MLLR adapta-
tion. These results show that without adaptation the
MLPwLP and concatenated PLP+MLPwLP features
clearly outperform the PLP ones. However, with
adaptation, only the concatenated features perform
significantly better than the PLP.

The last set of experimental results were produced
with a more complete system, including gender-
dependent SAT, MMIE acoustic models with word
duration models and MLLT for PLP, trained on 1200
hours of manually transcribed data. It uses a mul-
tiple pass decoding with CMLLR and MLLR adap-
tation, a word- or morph-based 290k 4-gram neural
network (NN) language model, and improved pro-
nunciation models. What is referred to as the NN
LM results from the interpolation of a connection-
ist language model with a standard 4-gram back-
off LM. Table 9 gives the word error rates for three
acoustic models (PLP, MLPwLP and PLP+MLPwLP)
for seven GALE test sets, with two NN LMs (word
based and with morphological decomposition), as
well as ROVER (Fiscus, 1997) combinations. It
can be seen that the PLP and MLPwLP based sys-
tems give comparable results, with small differences
across test sets. Based on the combination exper-
iments reported in (Fousek et al., 2008a), we se-
lected a 2-way ROVER combining the PLP and the

PLP+MLPwLP based systems, which gives an aver-
age gain of almost 0.5%. The results with the mor-
phologically decomposed LM (Lamel et al., 2008)
are seen to be comparable to those with the word-
based LM. A 4-way ROVER combination gives an
additional 0.4% gain over the 2-way ROVER. The
performance of the PLP system has been improved
from the baseline of 25.1% to 16.7% on the bnat06
data set (a relative WER reduction of 33%). The
combined PLP+MLPwLP based system is seen to ob-
tain a lower WER for all test sets, with an average
gain of 1.2% absolute. ROVER combination of the
PLP and PLP+MLPwLP based systems gives a gain
of over 4% absolute, even though the PLP features
are in there twice.

5 Summary

This contribution has explored incorporating novel
MLP features, derived using the bottle-neck MLP ar-
chitecture, in a state-of-the-art Arabic broadcast data
transcription system. In particular the influence on
performance of the amount of data used to train the
MLP, the number of free parameters in the MLP, and
the amount of data used for HMM training was as-
sessed. Different means of combining MLP and cep-
stral features were also explored. Experiments were
carried out on the GALE Arabic broadcast task using
multiple data sets. When used without adaption, the
MLP features have better performance than standard
PLP features. However, once SAT training and CM-
LLR/MLLR adaptation are used, both feature types
have comparable performance. Feature concatena-
tion appears to be the most efficient combination
method, providing the best gain at the lowest decod-
ing cost. It seems best to combine features based
on different time spans as they provide high com-
plementarity. Since the PLP based system improves
more than the MLP based with unsupervised adap-
tation, an additional gain is obtained by combining
a PLP based system with one based on the concate-
nated features and with ROVER combination using
different language models. It also seems that gains
from MMI model training are additive to the gain
coming from discriminative MLP features.

Recently speech recognizers have been trained
using the combined PLP + wLP-TRAP features for
broadcast data transcription in Dutch, Flemish,



AM LM bnat06 bnad06 bcat06 bcad06 eval06 dev07 eval07

PLP word 16.7 15.5 22.8 20.4 19.3 12.1 13.5
MLPwLP word 16.8 15.7 22.7 20.5 20.1 12.7 14.3
PLP+MLPwLP word 15.4 14.3 21.1 18.6 18.4 11.6 13.0

PLP ⊕ PLP+MLPwLP word 15.0 13.8 20.7 18.3 17.7 11.2 12.4

PLP morph. 16.7 15.3 23.2 20.6 19.4 12.2 13.8
PLP+MLPwLP morph. 15.7 14.3 21.9 19.2 18.6 11.6 12.9

4-way ROVER both 14.5 13.2 20.2 17.9 17.1 10.6 11.9

Table 9: WER on various GALE data sets with broadcast news (bn) or broadcast conversation (bc) data. The eval06,
dev07, eval07 sets contain both bn and bc data. The acoustic models are gender-dependent SA, MMI trained PLP and
MLP models (also with MLLT for PLP) trained on 1200h of manually transcribed data, with word duration models.
Multiple pass decoding with CMLLR and MLLR adaptation, a 290k 4-gram NN LM, and improved pronunciation
models. Results in lines 4 and 7 are obtained with 2-way and 4-way ROVER combinations.

French and Mandarin, and have observed compara-
ble system behavoirs and performance gains. An at-
tempt was made use an MLP developed for one lan-
guage to produce features for another, but this was
not successful, suggesting that the MLP features are
capturing language-specific information. These fea-
tures were also found to improve performance for
the transcription of conversational telephone speech
in Dutch and Flemish (Despres et al., 2008).

One of the difficulties in carrying out such experi-
ments with a full system, is that generating the time-
warped linear predictive TRAP features and train-
ing the MLP are quite computationally expensive.
Some initial experiments have been carried out with
other features, Multi-RASTA (MR) and TRAP-DCT
(TD), that are much less costly to obtain (Herman-
sky and Fousek, 2005). The TRAP-DCT features are
obtained from a 19-band Mel scale spectrogram, us-
ing a 30 ms window and a 10 ms frame step. A
discrete cosine transform (DCT) is applied to each
band, resulting in 475 raw features, which are fed to
a 4-layer MLP (bottleneck architecture). Using the
small training, the MLPTD features give a word er-
ror rate of 24.4% alone and 21.4% when combined
with PLP features on the bnat06 data set, which
are comparable to results reported in Table 6 for
the MLPwLP features. With full training on 1200
hours, both feature sets obtain comparable results
(13.7 PLP+MLPwLP and 13.6 PLP+MLPTD), outper-
forming standard PLP features (14.5%) on the dev08
data. This result is very interesting since the raw TD

features are not much more costly to compute than
the PLP ones.
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