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Abstract

This paper reports on using continuous space
language models for large vocabulary speech
transcription systems. This approach is used
to overcome the data sparseness problem
which always arises for STT systems as there
are never enough speech transcriptions to
build representative large N -gram models.
The architecture of these models is described,
along with the methods that were deployed to
make model training and decoding effective
for an LVCSR system. Experimental results
report significant word error reductions on the
GALE data for Arabic and Mandarin on top
of a well-tuned STT system. Some machine
translation results are also reported to demon-
strate the effectiveness of the approach.

1 Introduction

During the last years there has been growing inter-
est in using neural networks for language modeling.
Instead of relying on a back-off component, the neu-
ral network approach attempts to overcome the data
sparseness problem by performing the estimation in
a continuous space. In early work, this type of lan-
guage model was mostly used for tasks for which
only a very limited amount of in-domain training
data is available. In the context of the EARS and
GALE programs new algorithms were developed to
train a neural network language model on very large
text corpora. This made possible the use of the ap-
proach in domains where several hundreds of mil-
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lions words of texts are available. The neural net-
work language model has been evaluated in a state-
of-the-art continuous speech recognizers for several
languages and tasks. Word error reductions on the
order of 0.5% to 1% absolute have been obtained.

The basic idea of the neural network LM, also
called continuous space LM, is to project the word
indices onto a continuous space and to use a proba-
bility estimator operating on this space (Bengio and
Ducharme, 2001). Since the resulting probability
functions are smooth functions of the word represen-
tation, better generalization to unknown n-grams can
be expected. A neural network can be used to simul-
taneously learn the projection of the words onto the
continuous space and to estimate the n-gram proba-
bilities. This is still a n-gram approach, but the LM
posterior probabilities are interpolated for any pos-
sible context of length n-1 instead of backing-off to
shorter contexts. The architecture of this approach
is described in detail in section 2.

Until today, this new language modeling method
has been applied to large vocabulary speech recog-
nition in six different languages (English, French,
Spanish, Arabic, Mandarin and Dutch) achieving
systematically consistent improvements in the word
error rate. We describe here the work performed in
the framework of the GALE project to use this tech-
nology in our Arabic and Mandarin speech recogni-
tion systems. In addition, the continuous space lan-
guage model was used in a statistical machine trans-
lation system based on the open-source Moses de-
coder. Improvements of about 1 point BLEU were
observed in in a large Arabic/English translation
systems (Schwenk and Estève, 2008).



2 Architecture of the continuous space LM

The basic idea of the continuous space LM (CSLM)
is to project the word indices onto a continuous
space and to use a probability estimator operating
on this space (Bengio and Ducharme, 2001). Since
the resulting probability functions are smooth func-
tions of the word representation, better generaliza-
tion to unknown n-grams can be expected. A neural
network can be used to simultaneously learn the pro-
jection of the words onto the continuous space and
to estimate the n-gram probabilities. This is still a
n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length
n-1 instead of backing-off to shorter contexts.

The architecture of the continuous space n-gram
LM is shown in Figure 1. A standard fully-
connected multi-layer perceptron is used. The
inputs to the neural network are the indices of
the n−1 previous words in the vocabulary hj =
wj−n+1, ..., wj−2, wj−1 and the outputs are the pos-
terior probabilities of all words of the vocabulary:

P (wj = i|hj) ∀i ∈ [1, N ] (1)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the i-th word
of the vocabulary is coded by setting the i-th ele-
ment of the vector to 1 and all the other elements to
0. The i-th line of the N ×P dimensional projection
matrix corresponds to the continuous representation
of the i-th word. Let us denote ck these projections,
dj the hidden layer activities, oi the outputs, pi their
softmax normalization, and mjl, bj , vij and ki the
hidden and output layer weights and the correspond-
ing biases. Using these notations the neural network
performs the following operations:

dj = tanh

(∑

l

mjl cl + bj

)
(2)

oi =
∑

j

vij dj + ki (3)

pi = eoi /
N∑

k=1

eok (4)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
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Figure 1: Architecture of the continuous space language
model. hj denotes the context wj−n+1, ..., wj−1. P is
the size of one projection and H and N is the size of the
hidden and output layer respectively. When shortlists are
used the size of the output layer is much smaller then the
size of the vocabulary.

performed with the standard back-propagation algo-
rithm minimizing the following error function:

E =
N∑

i=1

ti log pi + β(
∑

jl

m2
jl +

∑

ij

v2
ij) (5)

where ti denotes the desired output, i.e., the proba-
bility should be 1.0 for the next word in the training
sentence and 0.0 for all the other ones. The first part
of this equation is the cross-entropy between the out-
put and the target probability distributions, and the
second part is a regularization term that aims to pre-
vent the neural network from overfitting the training
data (weight decay). The parameter β has to be de-
termined experimentally.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior
probabilities. Therefore, the neural network directly
minimizes the perplexity on the training data. Note
also that the gradient is back-propagated through the
projection-layer, which means that the neural net-
work learns the projection of the words onto the con-
tinuous space that is best for the probability estima-
tion task.

This basic architecture has a quite high complex-
ity. The following methods were deployed resulting
in processing times of less than 0.1xRT:



1. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

2. Lattice rescoring: speech recognition is done
with a standard back-off LM and a word lattice
is generated. The CSLM is then used to rescore
the lattice.

3. grouping: all LM probabilities needed for one
lattice are collected and sorted. By these means
all LM probability requests with the same con-
text ht lead to only one forward pass through
the neural network.

4. Block mode: several examples are propagated
at once through the neural network, allowing
the use of faster matrix/matrix operations.

5. CPU optimization: machine specific BLAS li-
braries are used for fast matrix and vector oper-
ations.

6. resampling: instead of cycling sequentially
through all the data, we resample examples
from the large corpora.

The idea behind shortlists is to use the neural
network only to predict the s most frequent words,
s ¿ |V |, reducing by these means drastically the
complexity. All words of the word list are still con-
sidered at the input of the neural network. The LM
probabilities of words in the shortlist (P̂N ) are cal-
culated by the neural network and the LM probabil-
ities of the remaining words (P̂B) are obtained from
a standard 4-gram back-off LM:

P̂ (wt|ht) =

{
P̂N (wt|ht)PS(ht) if wt ∈ shortlist
P̂B(wt|ht) else

(6)

PS(ht) =
∑

w∈shortlist(ht)

P̂B(w|ht) (7)

It can be considered that the neural network redis-
tributes the probability mass of all the words in the
shortlist. This probability mass is precalculated and
stored in the data structures of the back-off LM. A
back-off technique is used if the probability mass for
a requested input context is not directly available. A
detailed description of the speed-up techniques can

be found in (Schwenk, 2004; Schwenk and Gauvain,
2005b).

Although some fast training algorithms were al-
ready proposed (Schwenk, 2004) , using a standard
fully connected multi-layer perceptron, training on
very large corpora can be time consuming. There-
fore, an algorithm was proposed in (Schwenk and
Gauvain, 2005b) to enable training the neural net-
work on any arbitrarily large corpus. The basic idea
is quite simple and consists of selecting small ran-
dom subsets of the data for each epoch rather than
using all the available data. This procedure has the
advantages that there is no limit on the amount of
training data; that after several epochs, most of the
examples have been seen at least once; and that
changing the examples after each epoch may poten-
tially increase the generalization performance. This
procedure has been used with more than 3 billion
words of training data.

3 Experimental evaluation in ASR

Word error reductions using a continuous space
LM for LVCSR were first reported on the
EARS conversational telephone speech recognition
task (Schwenk and Gauvain, 2002). Since then sig-
nificant improvements have been reported on many
speech recognition tasks and languages. Here results
are reported on GALE broadcast data for both Ara-
bic and Mandarin.

Continuous space language models were trained
using a 290k word list for Arabic and a 56k word list
for Mandarin. The short-list was of size 12k for Ara-
bic and 8k for Mandarin. A traditional 4-gram lan-
guage model was trained on all the available data for
each language and pruned with high pruning thresh-
old, and used as a short-list back-off model to cal-
culate the probability masses and to cover the prob-
abilities of words not included in the short-list.

Since training the neural network is quite long, the
text data was sampled according to the size of the
corpus and its importance. For Arabic, the manual
transcriptions of the audio data and the web tran-
scripts are used in their entirety. Across the text
sources a total of about 26 million contexts are pro-
jected, and each training iteration takes about a day.
Table 1 shows the approximate number of contexts
by Arabic text source for a training iteration.



Text source #contexts
trans+webstrans 16.6 M
nhr 2.0 M
albayan 1.5 M
hyt 1.5 M
aljaz 1.0 M
addustour 0.4 M
raya 0.4 M
levantine 0.3 M
ahram 0.3 M
akhbar 0.3 M
xin 0.3 M
al-watan 0.2 M
asb 0.1 M

Table 1: Number of contexts by Arabic text source for a
CSLM training iteration.

Several neural networks were trained using dif-
ferent projection sizes, 200, 220 and 250. The evo-
lution of the perplexity on the training and the full
development data set (dev06+dev07) with a network
having a projection size of 200 is given in Table 2.
The first few iterations result in a large decrease in
perplexity of the training data, and to a lesser degree
on the dev data. After 8 or 9 iterations there is still
a small gain on the training data, but this is not al-
ways the case for the dev data, for which the change
in perplexity is seen to fluctuate.

Iteration Train delta Dev06+Dev07 delta
1 364.8 - 791.2 -
2 236.0 128.8 717.9 73.2
3 208.0 28.0 686.6 31.4
4 193.5 14.4 671.3 15.3
5 184.2 9.3 662.0 9.3
6 177.3 6.9 657.7 4.3
7 172.4 4.9 648.7 9.0
8 168.5 4.0 647.9 0.8
9 165.0 3.5 640.1 7.8
10 162.2 2.8 640.7 -0.7
11 159.8 2.4 638.3 2.4
12 157.7 2.1 638.0 0.4

Table 2: Perplexity and change in perplexity of the Arabic
training and development data as a function of training
iteration for the CSLM.

The Mandarin continuous space model was
trained on only a portion of the available text data

Corpus Size Resampling Coeff.& Size
audio transcripts 17.3M 1.000 17.3M
giga xin 319.9M 0.006 1.92M
giga cna 2 247.7M 0.008 1.98M
agile bitex ce 178.0M 0.010 1.78M
VOARFA 35.4M 0.056 1.98M
phoenixtv 88.0M 0.023 2.02M
ibm sina 283.3M 0.007 1.98M
bbn webdata 187.3M 0.010 1.87M

Table 3: The Mandarin text corpora used to train the con-
tinuous space language model, with the resampling coef-
ficient and corpus sizes.

Language Hidden Layer Size
Model 200 250 300
CSLM 220.11 219.24 217.29
Interp. weight 0.164 0.169 0.183

Table 4: Perplexity of the combined dev07+eval07+
dev08 data and interpolation weights of the 3 component
CSLMs.

as listed in Table 3. As for Arabic, all of the avail-
able transcripts of audio data (17.3M words) were
used as well as other sources based on their recency
and relevancy for a total of 1.3 billion words. The
resampling coefficients of each individual source is
also given in the table. It is 100% for the audio tran-
scripts, and varies for the other sources in order to
have on the order of 2 million words each at each
iteration. These can be seen to range from 0.6% to
5% of the corpus size. Three neural networks were
trained, having 200/250/300 hidden layers respec-
tively. The corresponding perplexities on the com-
bined development data set (dev07+eval07+dev08)
are given in Table 4. A standard 4-gram language
model was formed by interpolating component LMs
trained on 28 subcorpora. The perplexity on the
combined dev07+eval07+dev08 data with this lan-
guage model is 192.6. Interpolating this model (in-
terpolation weight 0.484) with the three continu-
ous space LMs using the weights shown in Table 4
reduces the perplexity of the development data to
171.8. This interpolated language model is what is
referred to as the 4-gram CSLM.

A two-pass decoding is used with PLP+MLP
acoustic models (Fousek et al., 2008). The first pass
generates a word lattice, followed by consensus de-
coding with 4-gram LM. This output is used for un-



train LM Perplexity Dev06 BLEU Dev06 BLEU Eval08
System #words size all Nwire Web All NW Web All NW Web
Gigaword LM 3.4G 3.7G 128.1 104.7 206.5 44.40 47.27 34.90 42.13
+ Google LM 169M4-grams 5.5G 114.5 99.0 161.7 44.70 47.22 36.11 41.90 47.20 33.50
CSLM 3.4G ≈ 1G 98.3 85.3 137.4 45.96 48.56 36.69 42.98 48.30 34.31

Table 6: Result summary for the baseline SMT system, adding parts of the Google n-grams and using the CSLM.

Arabic LM eval06 dev07 eval07
4-gram 19.1 12.1 13.7
CSLM 18.4 11.6 13.0
Mandarin LM dev07 evrt07ns dev08
4-gram 11.3 10.3 10.5
CSLM 10.8 9.9 10.1

Table 5: Results comparing standard 4-gram backoff LM
alone and interpolated with continuous space LMs on
three data sets. Arabic WER (%) with automatic segmen-
tation (top). Mandarin CER (%) with manual segmenta-
tion (bottom).

supervised acoustic model adaptation using CMLLR
and MLLR, prior to a second decoding using the LM
formed by interpolating the 4-gram LM with the 3
component CSLMs for the consensus decoding.

Table 5 reports recognition error rates for Ara-
bic and Mandarin on three data sets. For Arabic, a
WER reduction of 0.5 to 0.7% is obtained using the
CSLM. The gain in Mandarin CER is a bit smaller,
0.4 to 0.5%. Continuous space models have been
trained for other languages (French, Spanish, Dutch,
English) and tasks (Schwenk, 2007). In all cases one
or more CSLMs are interpolated with a standard 4-
gram backoff language model and improvements of
the same order of magnitude have been consistently
obtained.

4 Experimental evaluation in SMT

The continuous space LM was also used in a state-
of-the-art phrase-based statistical machine transla-
tion (SMT) system. It is well known that the LM
on the target language plays a crucial role in phrase-
based MT system. It helps choosing among differ-
ent possible translations of a word or phrase, de-
cides whether reordering of the words should be
performed and assures of course the smoothness of
the produced sentence. Here we report on results

with the CSLM achieved by the first author in an
Arabic/English system that participated in the 2008
NIST MT evaluation (Schwenk and Estève, 2008).

The translation model was trained on all provided
data (about 165M words) and the baseline 4-gram
LM on all the texts of the English LDC Gigaword
corpus (more than 3.5G words). In addition, a large
collection of 1 billion 5-grams were used, obtained
from texts collected by Google on the Internet. It has
been reported that significant improvements of the
performance of an SMT system can be obtained us-
ing all this data (Brants et al., 2007), but this requires
substantial hardware equipment that exceeded by
far our possibilities. Therefore, we applied various
steps of filtering with the goal to keep only the most
important n-grams (about 139M 4-grams). The re-
sults of this SMT system are summarized in Table 6.
Adding this “Google LM” reduced the perplexity by
about 9% in average, but most of the improvement
is obtained on the WEB part of Dev06, which is ac-
tually not surprising given the source of this data.
The CSLM achieved an additional perplexity reduc-
tion of almost 14% on top of the large LM which
includes the filtered Google data. The storage re-
quirements of the CSLM are also lower since it use
a distributed representation of the knowledge.

The Google LM brought an improvement of 0.3
BLEU on the Dev data, all the improvements being
again concentrated to the WEB part. Unfortunately,
it turned out to be not useful on the Eval08 test data.
The CSLM achieved an improvement of 1.1 BLEU
on the test data, on top of this heavily optimized sys-
tem. This final system achieved a very good ranking
in the 2008 NIST MT evaluation. The official results
of all participants have been published by NIST.1

1http://www.nist.gov/speech/tests/mt/
2008/



5 Conclusion

Continuous space language models were initially
developed in order to improve the generalization be-
havior when only a limited amount of in-domain
language model training data is available (Schwenk
and Gauvain, 2002). They were in particular used
in the frame work of the DARPA EARS project to
improve the modeling of conversational language.
We have continuously improved the initial approach
(Schwenk, 2004; Schwenk and Gauvain, 2005b;
Schwenk, 2007). Today it is successfully used in
all large vocabulary speech recognition systems de-
veloped at the LIMSI, consistently obtaining reduc-
tions of the word error rate of up to 1% absolute.
We have developed very efficient algorithms to train
the system on billions of words of text and to deploy
it in real-time speech recognition system (Schwenk
and Gauvain, 2005a). In this work, we have re-
ported results obtained in LIMSI’s Arabic and Man-
darin speech recognition systems that were used in
the DARPA GALE program. Finally, the same tech-
nique was successfully ported to a large phrase-
based Arabic/English statistical machine translation
system.
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