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ABSTRACT

An investigation into the use of Bayesian learning of the parame-
ters of a multivariate Gaussian mixture density has been carried out.
In a continuous density hidden Markov model (CDHMM) framework,
Bayesian learning serves as a unified approach for parameter smoothing,
speaker adaptation, speaker clustering and corrective training. The goal
is to enhance model robustness in a CDHMM-based speech recognition
system so.as to improve performance. Qur approach is to use Bayesian
learning to incorporate prior knowledge into the training process in the
form of prior densities of the HMM parameters. The theoretical basis
for this procedure is presented and results applying it to HMM param-
eter smoothing, speaker adaptation, speaker clustering, and corrective
training are given.

The following word error reductions were observed on the DARPA
RM task: 10% with HMM parameter smoothing, 31% for speaker adap-
tation with 2 minutes of speaker specific training data, and 15% with
sex-dependent modeling.

INTRODUCTION

When training sub-word units for continuous speech recogni-
tion using probabilistic methods, we are faced with the general
problem of sparse training data. This limits the effectiveness of
the conventional mazimum likelihood approach. The sparse train-
ing data problem can not always be solved by the acquisition of
more training data. For example, in the case of rapid adaptation
to new speakers or environments, the amount of data available for
adaptation is usually much less than what is needed to achieve
good performance for speaker-dependent applications.

Techniques used to alleviate the insufficient training data prob-
lem include probability density function (pdf) smoothing, model
interpolation, corrective training, and parameter sharing. The
first three techniques have been developed for HMM with dis-
crete pdfs and cannot be directly extended to the general case of
continuous density hidden Markov model (CDHMM). For exam-
ple, the classical scheme of model interpolation [3] can be applied
to CDHMM only if tied mixture HMMs or an increased number
of mixture components are used.

Our solution to the problem is to use Bayesian learning to
incorporate prior knowledge into the CDHMM training process
[10]. The prior information consists of prior densities of the
HMM parameters. Such an approach was shown to be effective
for speaker adaptation in isolated word recognition where adap-
tation involved only the parameters of a multivariate Gaussian
state observation density of whole-word HMMs [9]. In this paper,
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Bayesian adaptation is extended to handle parameters of mix-
tures of Gaussian densities. The theoretical basis for Bayesian
learning of parameters of a multivariate Gaussian mixture den-
sity for HMM is developed. In 2 CDHMM {ramework, Bayesian
learning serves as a unified approach for parameter smoothing,
speaker adaptation, speaker clustering, and corrective training.

MAP ESTIMATE OF CDHMM

The difference between maximum likelihood (ML) estimation
and Bayesian learning lies in the assumption of an appropriate
prior distribution of the parameters to be estimated. If 6 is the
parameter vector to be estimated from a sequence of n observa-
tions z,, ..., Zn, given a prior density P(#), then one estimate for ¢
is the maximum a posteriori {MAP) estimate which corresponds
to the mode of the posterior density,

Opmap = argmax P(zy,...,z,|8)P(0) (1)

Alternatively, if 6 is assumed to be a fixed but unknown parameter
vector, then there is no knowledge about 8. This is equivalent to
assuming a non-informative prior, i.e. P(#) =constant. Equation
1 is now the familiar maximum likelihood formulation.

Given the MAP formulation in Equation 1 two problems re-
main: the choice of the prior distribution family and the effective
evaluation of the maximum a posteriori. In fact these two prob-
lems are closely related, since the choice of an appropriate prior
distribution can greatly simplify the estimation of the maximum
a posteriori. The most practical choice is to use conjugate densi-
ties which are related to the existence of a sufficient statistic of
a fixed dimension [1]. If the observation density possesses such a

. statistic s and if g(f|s,n) is the associated kernel density, MAP

estimation is reduced to the evaluation of the mode of the prod-
uct g(8]s,n)P(0). In addition, if the prior density is chosen in the
same family as the kernel density, P(8) = g(8}t,m), the previous
product is simply equal to g(8|u,m + n) since the kernel density
family is closed under multiplication. In this case, the MAP esti-
mation problem is closely related to the MLE problem - finding
the mode of the kernel density. In fact, g(f|u,m+ n) can be seen
as the kernel of the likelihood of a sequence of m + n observations.

When there is no sufficient statistic of a fixed dimension, MAP
estimatjon, like ML estimation, has no analytical solution. How-
ever, the problems are still very similar. For the general case of
mixture densities of the exponential family, we propose to use
a product of kernel densities of the exponential family assum-
ing independence between the parameters of the mixture com-
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ponents in the joint prior density. To simplify solving Equa-
tion 1, we can restrict our choice to a product of a Dirichiet
density and kernel densities of the mixture exponential density,
P(6) o< TTX , wP™ g(6k[tk,mi), where K is the number of mix-
ture components and wi’s are the mixture weights. However,
this choice may be too restrictive to adequately represent the real
prior information and in practice it may be of interest to choose
a slightly larger family.

In the following subsections, we focus our attention on the
cases of normal density and mixture of normal densities for two
reasons: solutions for the MLE problem are well known and we
are using CDHMM based on mixtures of normal densities.

Normal density case

Bayesian learning of a normal density is well known [1]. If
Z1,..., Ty is 2 random sample from A(z{m,r), where m and r are
respectively the mean and the precision (reciprocal of the vari-
ance), and if P(m,7)is a normal-gamma prior density, P(m,r) x
71/ exp(~Z(m — p)?)r*~! exp(—fr), the joint posterior density
is also a normal-gamma density whose parameters f, ﬁ, & and
+ may be directly obtained from the prior parameters and the
sample mean and variance. The MAP estimates of m and r are
respectively jt and a-05

This approach has been widely used for sequential learning
of the mean vectors of feature- and template-based recognizers,
see for example [4, 7]. Ferretti and Scarci [8) used Bayesian esti-
mation of mean vectors to build speaker-specific codebooks in an
HMM framework. In all these cases, the precision parameter was
assumed to be known and the prior density limited to a Gaussian.

Brown et al. [5] used Bayesian estimation for speaker adap-
tation of CDHMM parameters in a connected digit recognizer.
More recently Lee et al. [9] investigated various training schemes
of Gaussian mean and variance parameters using normal-gamma
prior densities for speaker adaptation. They showed that on the
alpha-digit vocabulary, with a small amount of speaker specific
data (1 to 3 utterances of each word), the MAP ‘estimates gave
better results than the ML estimates.

Mixture of normal densities

For this study we used CDHMM where the state observation
densities are mixtures of multivariate normal densities [11, 12].
However, to simplify the presentation of our approach, we assume
here a mixture of univariate normal densities:

K
P(zif) = > weN(x|my, 7i) (2)
k=1

where § = (w1, ooy WK, M, .y M, 1, o0y TK ). For such a density
there exists no sufficient statistic of fixed dimension for § and
therefore no conjugate distribution.

We propose to use a joint prior density which is the product
of a Dirichlet density and gamma-normal densities:

K
P(8) x H w,’c\"r}c/z exp(—

TkT, Q-
_kQ—k(mk - )P )re* " exp(—Bire) (3)
k=1

The choice of such a prior density can be justified by the fact that
the Dirichlet density is the conjugate distribution of the multi-
nomial distribution (for the mixture weights) and the gamma-
normal density is the conjugate density of the normal distribution
(for the mean and the precision parameters). The problem now
is to find the mode of the joint posterior density.
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If we assume the following regularity conditions, 1) A\ = 7%
and 2) a = (7 + 1)/2, then the posterior density P(f|z, ..., z,,)
can be seen as the likelihood of a stochastically independent union
of a set of TF | 7, categorized observations and a set of 7 un-
categorized observations. (A mixture of K densities can be in-
terpreted as the density of a mixture of K populations, and an
observation is said to be categorized if its population of origin
is known with probability 1.) This suggests the use of the E.M.
algorithm [2] to find the maximum a posteriori. The following
recursive formulas estimate the MAP of the 3 parameter sets.

e 2 we N (2| Mg, ) (4)
P(z,]6)

- >‘k + Z?:] Cik (5)
n+ Zl}c{zl Ak
Thik T 37=1 CikTi
Tk + e Cik
"= 200 - 1+ 0, ik 7

28 + Xy cirl@i = m)? + T — my)?

By using a non-informative prior density (i.e. an improper
prior with Ay = 0, 7% = 0, ax = 1/2, and f; = 0) the classical
E.M. reestimation formulas to compute the maximum likelihood
estimates of the mixture parameters can be recognized.

Generalization to a mixture of multivariate normal densities
is relatively straightforward. For the general case where the co-
variance matrices are not diagonal, the joint prior density is the
product of a Dirichlet density and multivariate normal-Wishart
densities. In the case of diagonal covariance matrices, the prob-
lem for each component reduces to the 1-dimensional case, and
formulas 6 and 7 are applied to each vector component.

When the above regularity conditions on the prior joint den-
sity are not satisfied we have no proof of convergence of this algo-
rithm. However, in practice we have not encountered any prob-
lems when these conditions were only approximately satisfied.

Segmental MAP algorithm

The above procedure to evalnate the MAP of a2 mixture of
Gaussians can be applied to estimate the observation density pa-
rameters of an HMM state given a set of observations 1" assumed
to be independently drawn from the state distribution. Following
the scheme of the segmental k-means algorithm [6], we obtain a
segmental MAP algorithm [9, 10]. First, the HMM parameters
are initialized with values corresponding to the mode of the prior
density. Second, the Viterbi algorithm is used to segment the
training data .V into sets of observations associated with each
HMM state, and third, the MAP estimate procedure is applied
to each state. The second and third steps are iterated until con-
vergence.

In order to compare our results to results previously obtained
with the k-means segmental algorithm {11} we used the segmental
MAP algorithm to evaluate the HMM parameters. However, if it
is desired to maximize P(.Y|8)P(#) over the HMM and not only
state by state along the best state sequence, a Bayesian version
of the Baum-Welch algorithm can easily be designed [10].

w

-~

my =

(6)

Prior density estimation

The method of estimating the prior parameters depends on
the desired goals. We envisage the following three types of appli-
cations for Bayesian learning.

Sequential training: The goal is to update existing models
with new observations without reusing the original data in order
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to save time and memory. After each new data set has been pro-
cessed, the prior densities must be replaced by an estimzte of the
posterior densities. In order to approach the HMM MLE estima-
tors the size of each observation must be as large as possible. The
process is initialized with non-informative prior densities.

Model adaptation: For model adaptation most of the prior
density parameters are derived from parameters of an existing
HMM. (This justifies the term “model adaptation” even if the
only sources of information for Bayesian learning are the prior
densities and the new data.) To estimate parameters not directly
obtained from the existing model, training data is needed in which
the “missing” prior information can be found. This can be the
data already used to build the existing models or a larger set con-
taining the variability we want to model with the prior densities.

Parameter smoothing: Since the goal of parameter smooth-
ing is to obtain robust HMM parameters, shared prior parame-
ters must be used. These parameters are estimated on the same
training data used to estimate the HMM parameters via Bayesian
learning. For example, with this approach context-dependent
(CD) models can be built from context-independent (CI) ones.

In this study we were mainly interested in the problems of
speaker-independent training and speaker adaptation. Therefore
parameter smoothing and model adaptation in which the prior
density parameters must be evaluated from SI or SD models and
from SI training data were investigated. The prior density param-
eters were estimated along with the estimation of the SI model
parameters using the segmental k-means algorithm. Information
about the variability to be modeled by the prior densities was
associated with each frame of the SI training data. This infor-
mation was represented by a class number corresponding to the
speaker number, sex, or phonetic context. The prior density pa-
rameters were estimated from the class mean vectors and the SI
HMM parameters {10].

EXPERIMENTS

The 3 first experiments used a set of 1769 CD phone mod-
els. Each model is a 3 state left-to-right HMM with Gaussian
mixture state observation densities (except for silence which is a
one-state model). Diagonal covariance matrices are used and the
transition probabilities are assumed to be fixed and known. A
38-dimensional feature vector {12] composed of 12 cepstrum co-
efficients, 12 delta cepstrum coefficients, the delta log energy, 12
delta-delta cepstrum coeflicients, and the delta-delta log energy
is used. The training and testing materials were taken from the
DARPA Naval Resource Management task as provided by NIST.
For telephone bandwidth compatibility, the original speech sig-
nal was filtered from 100 Hz to 3.8 kHz and down-sampled at
8 kHz. Results are reported using the standard word-pair gram-
mar with a perplexity of about 60. The SI training data consisted
of 3969 sentences from 109 speakers (78 males and 31 females),
subsequently referred to as the SI-109 training data.

CD model smoothing

It is well known that HMM training requires smoothing, par-
ticularly if a large number of CD phone models are used with
limited training data. While several solutions have been inves-
tigated to smooth discrete HMMs, such as model interpolation,
co-occurence smoothing, and fuzzy VQ, only variance smoothing
has been proposed for continuous density HMMs. We investigated
the use of Bayesian learning to train CD phone models with prior
densities obtained from CI phone training. This approach can be
seen as model interpolation between Cl and CD models for the
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case of continuocus density HMMs.

Models were built with MLE and MAP approaches using the
$1-109 training data. For the MAP estimation, the prior densities
were based on a 47 CI model set. Covariance clipping, as reported
in {11}, has been used for the two approaches. Experiments were
carried out using mixtures of 16 Gaussian components on the
FEB89, OCT89, JUN90 and FEB91 DARPA tests including 1380
sentences (11843 words). An average word error reduction of
10% (from 6.0 to 5.5) was obtained using parameter smoothing.
This improvement is small since the 1769 phone model set had
originally been designed to be trained with a MLE approach on
the SI-109 training data [11] but it validates the approach.

Speaker adaptation

In the framework of Bayesian learning, speaker adaptation
may be viewed as adjusting speaker-independent models to form
speaker-specific ones, using the available prior information and a
small amount of speaker-specific adaptation data. Along with the
estimation of the parameters for the SI CD models, the prior den-
sities are simultaneously estimated during the speaker-independent
training process. The speaker-specific models are built from the
adaptation data using the segmental MAP zalgorithm. The SI
models are used to initialize the iterative adaptation process. Af-
ter segmenting all of the training sentences with the models gen-
erated in the previous iteration, the speaker-specific training data
is used to adapt the CD phone models both with and without ref-
erence to the segmental labels. Three types of adaptation were
investigated: adapting all CD phones with the exact triphone la-
bel (type 1), those with the same CI phone label (type 2), and
all models without regard to the label (type 3). Each frame of
the sentence is distributed over the models based on the observa-
tion densities of the preceding iteration. When the mode] labels
are not used, this method can be viewed as probabilistic spectral
mapping constrained by the prior densities. It was found that a
combination of adaptation types 1 and 2 was the most effective
for fast speaker adaptation. While a maximum of 8 mixture com-
ponents per density was allowed, the actual average number of
components was 7. This represents a total of 3 million parame-
ters to be estimated and adapted.

Experiments were conducted using approximately 1 and 2
minutes of adaptation data to build the speaker-specific models.
In 40 utterances, roughly 2 minutes of speech, only about 45% of
the CD phones appear (28% for 20 sentences), whereas typically
all the CI phones appear. Table 1 summarizes the test results? on
the JUN90 data for the last 80 utterances of each speaker, where
the first 20 (or 40) utterances were used for supervised adapta-
tion of types 1 and 2. Speaker-independent recognition results are
shown for comparison. With 1 minute and 2 minutes of speaker-
specific training data, a 16% and 31% reduction in word error
were obtained compared to the SI results. On this test speaker
adaptation appears to be effective only for the female speakers
for whom SI results were lower than for the male speakers.

Experiments have also been carried out using unsupervised
speaker adaptation, which is more applicable to on-line situations.
Starting with the SI models, adaptation of SI phone models is per-
formed every 40 utterances using type 2 adaptation. The results
on the JUN9O test are shown in Table 2 for the lasi 80 sentences
of each speaker. There is an overall error reduction of 16%.

2Results reported in this subsection were obtained with a recognizer using
a guided search strategy [14] which has been found to give slightly biased and
better performance than a regular beam search strategy.
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Speaker [[ ST [SA (1 min) [SA (2 min) [Err. Red. (2 min) |
BIW(E) |47] 34 2.2 53%
JLS(M) [[36] 3.0 34 5%
TRM(F) |92 7.0 5.3 2%,
LPN(M)| 32| 47 3.2 0%

Overall |[5.1 4.3 3.5 1% |

Table 1: Speaker adaptation results on the JUN90 test data.

[ Speaker ]| ST [SA (2 x 2 min) |
BIW(F) [ 4.7 3.4
JLS(M) || 3.6 35
TRM(F) 9.2 6.6
LPN(M) |32 3.7

[ Overall ][5.1 4.3 |

Table 2: Unsupervised speaker adaptation results on the JUN90 test.

Sex-dependent modeling

It has recently been reported that the use of different mod-
els for male and female speakers reduced recognizer errors on
the RM task using a word-pair grammar with models trained on
the SI-109 data set (e.g. [13]). We investigated the same idea
within the framework of Bayesian learning. Two sets of 1769 CD
phone models were generated using data from the male speakers
for one set and from the female speakers for the other set. For
both sets the same prior density parameters, which had been es-
timated along with SI training on all 109 speakers, were used.
Recognition was performed by computing the likelihoods of the
sentence for the two sets of models and by selecting the solution
with to the highest likelihood. In order to avoid problems due to
likelihood disparities caused by implementation details, all HMM
parameters other than the Gaussian mean vectors were assumed
to be known and set to the parameter values of the SI models.

Recognition of the FEB91 test data (5m/5f speakers) gives a
4.6% word error rate with both sets of models as compared to
5.4% with the SI model set. This result confirms the interest of
the speaker clustering and validates Bayesian learning as a way
to generate sex-dependent models.

Corrective training

Bayesian learning provides a scheme for model adaptatlon
which can also be used for corrective training. Corrective training
maximizes the recognition rate on the training data hoping that
will also improve performance on the test data. One simple way
is to use the training sentences which were incorrectly recognized
as new data.

In order to do that, the second step of the segmental MAP
algorithm was modified to obtain not only the frame/state as-
sociation for the sentence madel states but also for the states
corresponding to the model of all the possible sentences (general
model). In the reestimation formulas, the values c;i for each state
J are replaced by yijwe N (zilmje, 75k )/ P(2il0;) where 7;; is equal
to 1 in the sentence mode] and to —1 in the general model. The
convergence is not guaranteed but in practice by using large values
for 7 (=~ 200) the number of training sentence errors decreased
after each iteration until convergence. It should be noted that if
the Viterbi alignment is replaced by the Baum-Welch algorithm
we obtain a corrective algorithm for CDHMMs very similar to the
corrective MMIE training proposed in [15] .-
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Preliminary experiments have been carried out on the TI/NIST
connected digits database using a set of 21 phonetic HMMs trained
on the 8565 digit strings. Only the Gaussian mean vectors and
the mixture weights were corrected. On the 8578 test strings,
string error rates of 1.5% and 1.3% were obtained with 16 and
32 mixture components per state respectively, compared to 2. 0%
and 1.5% without corrective training.

SUMMARY

An investigation into the use of Bayesian learning of CDHMM
parameters has been carried out. The theorical framework for
training HMMs with Gaussian mixture densities was presented. It
was shown that Bayesian learning can serve as a unified approach
for parameter smoothing, speaker adaptation, speaker clustering
and corrective training. Encouraging results have been obtained
for these applications. On the DARPA RM task we observed an
10% word error reduction with HMM parameter smoothing, 31%
for speaker adaptation with 2 minutes of speaker specific training
data, and 15% with sex-dependent modeling. On the TI con-
nected digit recognition task, 15% to 25% string error reduction
was achieved with corrective training.
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