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ABSTRACT
In the context of the ESPRIT MASK project we face the problem of
adapting a “state-of-the-art” laboratory speech recognizer for use in
the real world with naive users. The speech recognizer is a software-
only system that runs in real-time on a standard Risc processor. All
aspects of the speech recognizer have been reconsidered from sig-
nal capture to adaptive acoustic models and language models. The
resulting system includes such features as microphone selection, re-
sponse cancellation, noise compensation, query rejection capability
and decoding strategies for real-time recognition.

1. INTRODUCTION
In this paper we address issues that must be faced in adapting a
“state-of-the-art” speech recognizer developed in a laboratory for
real-world use. All aspects of the speech recognizer must be re-
considered from signal capture to adaptive acoustic and language
models. We have confronted these issues in the context of the ES-
PRIT MASK (Multimodal-Multimedia Automated Service Kiosk)
project, aimed at providing access to rail travel information[6].
The speech recognition requirements for the MASK information
kiosk are: speaker-independence; real-time spontaneous, continu-
ous speech recognition; a recognition vocabulary of 1500 words,
including almost 600 station/city names; and robustness to noise as
the expected backgound noise level for the MASK kiosk located in
a Parisan train station is on the order of 63dBA SPL.
In order to better simulate the acoustic conditions of the final kiosk,
at LIMSI we built a data collection kiosk according to the physical
specifications supplied by ergonomics experts[4]. This data collec-
tion kiosk, shown in Figure 1, is being used to carry out laboratory
experiments prior to the availability of the final MASK prototype.
The touch screen (1) is located so as to accomodate a wide variety
of user heights, as per the recommendation of ergonomic experts.
On the top (2), left (3) and right (4) of the screen are 3 microphones
placed to allow for different heights and positions of users. This
data collection kiosk allows us to carry out measurements and to
record data under more realistic conditions, by placing the users in
conditions closer to that of real use.
The spoken language system runs on a standard RISC workstation
(Silicon Graphics Indy) with a standard UNIX operating system.
This choice allows easily modification of the system, by simply
transfering new executable versions to be incorporated in the kiosk.
This is the same design choice as was taken for the MASK proto-
type, where communication with other system components is via an

�This work was partially financed by the ESPRIT project 9075 - MASK.

Ethernet connection. The MASK kiosk will have multimedia output,
as well as a numeric keyboard and card slot for simulation of credit
card payment, and a printer for information and tickets.
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Figure 1: The LIMSI MASK data collection kiosk, (1) touch screen, (2), (3)
and (4) are microphones, and (5) loudspeaker.

The MASK spoken language system[10] consists of a speaker-
independent continuous speech recognizer who outputs the most
probable word sequence or a word graph, which is passed to a nat-
ural language (NL) component. The NL component is concerned
with understanding the meaning of the spoken query and includes
the semantic analysis[3] and dialog management. Natural lan-
guage responses are generated from the semantic frame, the dialog
history and retrieved DBMS information. The text is typed on the
screen and may be accompaniedby other visual information (tabular
form, ticket, etc) and/or vocal feedback using concatenated speech
from stored dictionary units.

The continuousspeechrecognizer is a software-only system (written
in ANSI C) that runs in real-time on a standard Risc processor. The
system is independent of the speaker, so that no speaker-specific
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enrollment data is needed for a new user. Speaker-independence
is obtained by training the acoustic models on speech data from a
large number of representative speakers, covering a wide variety of
accents and voice qualities. The recognizer uses continuous density
HMM with Gaussian mixture for acoustic modeling and a n-gram
backoff language models[14]. By using statistical language models,
the user is not constrained to speak in complete sentences nor to
to adhere to a preconstrained syntax. The system is evidently also
able to recognize short phrases or isolated words. The recognition
vocabulary for the MASK task currently contains about 1500 words,
including 580 station names.

We are currently using the LIMSI kiosk to collect data with speech
input only. A touch-to-talk mode is used, where subjects are asked
to keep their hand on the screen while they are talking. WOz
studies[17] found that subjects did not object to touch-to-talk, which
substantially simplifies the work of the speech detection. This is im-
portant as if the system is continuously listening it needs to differen-
tiate queries directed at the system from those directed at a traveling
companion. Later rounds of data collection will allow both vocal
and tactile inputs, in which case touch inputs will be mapped into
the same semantic frame representation as used for spoken inputs.1

2. SIGNAL CAPTURE
Acoustic signal capture is an important design consideration. In
our laboratory systems, we typically collect data using two micro-
phone channels, a close-talking, noise cancelling microphone and
a tabletop PCC microphone. However, for an information kiosk
the microphones must be fixed, and must take into account vari-
ous customer heights and positions when using the kiosk. We have
chosen to position 3 PCC microphones around the screen cavity
perpendicularly to the screen (see fig. 1). Based on the SNR of each
channel, the output of one of the three microphones is selected. The
speech signal is bandlimited to 8kHz and sampled at 16kHz. Beam
forming was considered but found to not be efficient for the kiosk
configuration, since the distance between the speakerand the closest
microphone is less than the distance between microphones. A fourth
channel is used to capture the signal played over the loudspeaker,
coming from the message synthesizer or from video soundtracks, in
order to compensate for the acoustic feedback on the microphones.

Measurements were carried out in a Parisian train station to estimate
the expected mid working day background noise. Over a 2 hour
period the average noise with a sound meter was found to be 63dBA
SPL. Using the 3 microphone configuration without additional pro-
tection such as an acoustic hood,2 we obtain an SNR of 18dB3 if the
customer is looking at the screen and is close enough to touch it.

In order to allow the user to start talking while the system is playing
a message, a speech response cancellation module[19] was imple-

1Even when both tactile and vocal inputs are available, we do not allow
simultaneous speech and touch input within a single query. WOz studies[17]
found that this is not an important limitation, as subjects tend to prefer a single
mode (speech or touch), and even when they changed modes, they almost
never did so within a single utterance.

2For the MASK kiosk different types of sound isolation are being tested
- an enclosed cabin (like a telephone booth, a semi-closed cabin, and an
isolating hood).

3The SNR definition used here, is the ratio of the averaged short term
energies of the speech signal and the noise measured on 30ms windows after
preemphasis with the following filter 1� 0:95z�1.

mented. The kiosk impulse response at each microphone is modeled
with an adaptive FIR filter, controlled by the Normalised LMS al-
gorithm. Speech recognition experiments were carried using the
response canceller in order to estimate the interest of such costly
processing. We found that use of the algorithm improved the word
accuracy when the user started speaking during the response. How-
ever, an even better result was obtained by cancelling the response
signal only until the user’s speech was detected, and stopping the
response signal as soon as possible. The reason for this is that the
kiosk’s impulse response is dependent on the user’s position, and
that most users move while speaking, making filter estimation very
inaccurate. We therefore only kept the speech detecter which given
the response signal is able to accurately detect when the user has
started to speak. Even though signal capture is continuously per-
formed, a touch-to-talk mechanism is used to get a rough estimate
of the query endpoints, as well as to avoid processing queries not
directed to the system.

3. ACOUSTIC MODELS

We experimented with two front ends (MFCC and PLP based) and
various configurations to find the best suited to our problem. With-
out use of a noise compensation technique[11], we found the PLP
cepstrum[13] to be somewhat more robust to background noise than
classical MFCC, i.e. the word error was reduced by 10%. Presently
our noise compensation scheme is based on MFCC features and had
not yet been ported to PLP cepstrum, so for noisy conditions we still
use a classical MFCC analysis for the training data recorded in a
quiet environment. More experiments are needed to compare both
analyses with noise compensation. The PLP signal processing con-
sists of a Mel-scale spectrum (no preemphasis, 21 triangular filters)
computed on the 8kHz band using a 30ms frame window and a 10ms
frame rate. This is followed by a root-LPCC analysis[1] yielding 13
cepstrum coefficients. The feature vector used for acoustic model-
ing is composed of the 13 cepstrum coefficients, 11 delta cepstrum
coefficients and 6 delta-delta cepstrum coefficients. This reduced
feature set gives the same recognition word accuracy as the full 39
feature set. Data is collected with the kiosk in an office environ-
ment, with an background noise level of about 46 dBA SPL due to
computer equipment and ventilation.

Acoustic modeling is based on continuous density HMM with Gaus-
sian mixture. Different acoustic model sets have been used for ex-
perimentation, comparing performance (speed and accuracy) using
context-independent (CI) and context-dependent (CD) models sets,
as well as gender-specific and speaker-independent models. When
CD phone models are used, the contexts are automatically selected
based on their frequencies in the training data. The contexts are
independent of the word-position. When there is not enough train-
ing data to model a given triphone context, we backoff to right- and
left-context phone models, and CI phone models.

The acoustic models were trained on 15k utterances from 300 speak-
ers collected using interim versions of the spoken language system.
The majority of the data was recorded at LIMSI (12k sentences from
194 speakers), with a smaller amount (3412 queries, 121 subjects)
recorded by LIMSI at the Gare St. Lazare in Paris during the period
of the MASK WOz experiments[16, 17].



4. LEXICON AND LANGUAGE MODELS
The Mask task recognition vocabulary currently contains about
1500 words, including 600 station names selected to cover the SNCF
commercial needs. Except for the station names, the word list con-
tains all words occuring at least twice in the training data. With this
lexicon, the out-of-vocabulary (OOV) rate on the development test
data is 0.6%. The lexicon is represented using a set of 35 phones.
Frequent pronunciation variants are included in the lexicon, which
also includes pseudo words such as “euh”, “ah”, “hum” and filler
words such as “bon”, “ben” as they are commonly observed in
spontaneous speech.

Bigram and trigram language models have been estimated on the
transcriptions of the training material, i.e about 15k utterances. A
backoff mechanism[14] is used to smooth the estimates of the prob-
abilities of rare n-grams by relying on a lower order n-gram when
there is insufficient training data, and to provide a means of model-
ing unobserved n-grams. An advantage of the backoff mechanism
is that language model size can be arbitrarily reduced by relying
more on the backoff component, by increasing the minimum num-
ber of required n-gram observations needed to include the n-gram.
This property is used in the first bigram decoding pass to reduce
computational requirements. The trigram language model (LM) is
optionally used in a second decoding pass. Word classes are used to
provide better estimates for dates and times. The development set
perplexities are 19 for the bigram and 16 for the trigram.

5. DECODER
An important aspect of real-time speech recognition is the design
of a fast search algorithm that maintains high recognition accuracy.
In the MASK system several techniques are combined, including a
lexicon tree, multipass decoding, distributed LM weights, Gaussian
shortlists and gender dependent (GD) acoustic models.

When using a bigram-backoff LM, decoding can be done with a
static network, where the backoff component of the bigram is im-
plemented with a tree organization of the lexicon[7]. In our system,
the network is built in such a way that the word tails are shared be-
tween the lexicon tree and the linear representation of the words, so
as to minimize the number of interword connections. With this im-
plementation, the network size can be arbitrarily reduced by relying
more on the backoff component. Bigram decoding with CI phone
models is realized in real-time (RT), where real time is defined as
taking 1s to process a 1s utterance. When a trigram LM is used, a
second decoding pass is carried using a word graph generated with
the bigram. We also use the result of the first decoding pass to
guide the search of the second pass, and therefore can use a tighter
pruning threshold. The second pass with more accurate acoustic and
language models can be carried out in about 20% of CPU time of
the first pass.

The language model weights are distributed over the phone graph
so as to allow the use of a reduced pruning threshold, enabling both
faster and more accurate search.

For small and medium vocabulary tasks, the state likelihood compu-
tation can represent a significant portion of the overall computation.
One way to speed up this computation is to reduce the number of
Gaussians needing to be considered to compute the likelihood for a
state by preparing a Gaussian short list for each HMM state and each
region of the quantified feature space[5]. Doing so, only a fraction

of the Gaussians of each mixture is considered during decoding.
This approach allows us to reduce the average number of examined
Gaussians per mixture from 12 to 4 without any loss in accuracy.

One easy way to improve the accuracyof the recognizer is to use GD
acoustic models. By building two separate networks and carrying
out frame-synchronous decoding on the two networks in parallel,
recognition can be improved without increasing the decoding time
since after only a few frames the network corresponding to the
speaker’s gender is under consideration[15]. The small overhead of
searching the 2 networks at the start of the sentence is largely com-
pensated by more efficient pruning due to the use of more accurate
models.

In passing from a laboratory system to an application an im-
portant need is the capability to reject out of domain queries.
Our strategy is to estimate the a posteriori sentence probabil-
ity for the recognizer hypothesis, i.e. Pr(wjx), by modeling the
talker as a source of phones with phonotactic constraints provided
by phone bigrams. We approximate Pr(wjx) by Pr(�wjx) '
f(xj�w)Pr(�w)=max� f(xj�)Pr(�), where �w is the recognized
phone transcription corresponding to the recognizer hypothesis w.
Pr(�wjx) is then compared to a fixed threshold to decide whether
to accept or reject the query. This procedure requires only a small
amount of additional computation.

6. NOISE COMPENSATION
Acoustic compensation is used in the recognizer to account for
acoustic channel variability and background acoustic noise. We
apply a data-driven model adaptation scheme as was used in the
LIMSI Nov95 NAB system[11]. This adaptation is based on the
following model of the observed signal y given the input signal x:
y = (x+n)�h, wheren is the additive noise andh the convolutional
noise. In order to perform the speech analysis in real-time, sentence-
based cepstral mean removal is replaced by removing the mean of
the previously observedframes, where the cepstrum mean is updated
at each frame with a first order filter (1 - 0.998z�1).

In order to better understand the effect of the acoustic environment
on the performance of the speech recognizer, a series of experiments
using noise recorded at the Saint-Lazare train station in Paris. The
early version used for the experiments ran at 1.6xRT and had a word
accuracy of 11.6% on a “clean” test data set having a signal to noise
ratio of about 35dB. Various levels of SNR were simulated by adding
noise at various amplitude levels to the test data (30dB, 24dB, 18dB
and 12dB). The speech recognizer was evaluated with and without
noise compensation.

SNR No compensation With compensation

30dB 11.3% 11.3%
24dB 12.6% 11.6%
18dB 19.2% 13.2%
12dB 42.5% 17.8%

Table 1: Word error as a function of the SNR.

Without compensation, the word error rate increases dramatically as
the SNR is reduced. When the noise characteristics are known, the
word error rate is seen to increase with the noise level, but the effect
is less severe. Even in the worst condition (SNR of 12dB) the word
error rate increases by only 50% compared to the 30dB SNR. From



these experiments we concluded that the speechrecognizerperforms
at its maximum level with a 30dB SNR but that the performance may
still be acceptable for a 12dB SNR. Based on these experiments a
design objective of the MASK acoustic capture system (microphone
setup, and acoustic isolation) was to obtain an SNR of 24dB. These
experiments can only approximate the expected MASK conditions.
The performance of the speech recognizer will depend not only
on the SNR but also on the noise characteristics which can vary
from station to station, and as a function of time. In addition, the
speaking style of the users may also change as a function of the type
and amount of noise. Finally, noisy conditions not only increase the
error rate but also increase the recognition time. Field evaluations
will be conductedwhen the first MASK prototype (ie. physicalkiosk)
is available, which will enable us to better estimate the effects of
noise on the performance of the overall system.

7. RESULTS
Since word accuracy is very dependent on many factors not related
to the acoustic data, such as the definition of a word, the out of
vocabulary rate, and the language model, it is often easier to use
a phone recognizer to compare acoustic model sets when trying to
build the best set of models. However, when real-time recognition
is a task constraint, performance may be more dependent upon
other factors (such as the pruning level) than on the accuracy of
the acoustic models, and the optimization procedure is a lot trickier.
Our experience has been that improving the model accuracy not
only improves recognition performance, but can also lead to better
decoding due to more efficient pruning. However, if the decoding
strategy remains the same, the trade off between accuracy and speed
is dependent upon the total number of model parameters.

Our development strategy was to fix the constraint of real-time
decoding and to find the best set of models given this constraint. We
found that under this condition GD CI phone models outperformed
GD CD phonemodels. The current best system configurationcarries
out decoding in 2 passes. The first pass decoding uses 2 sets of GD
CI phone models (12 Gaussians/mixture) with a bigram LM (cutoff
1) to generate a word graph. The word graph, generated in real-time,
contains on average 80 arcs per sentence and has a graph error of
4.7%. The second decoding pass is carried out with the selected set
of 422 GD CD models (32 Gaussians/mixture)and a trigram-backoff
LM (cutoffs 1 and 1). This decoding pass is carried out in 0.2xRT,
and the resulting word error rate is 7.9% (the OOV rate of the test
data is 0.6%). The use of CD models in the second pass reduces the
word error by about 16%. This relatively small gain is surprising
given that with the same CD models a phone error rate of 13.7% is
obtained, compared to 24.3% obtained with a set of 35 CI models.
This difference may be due to inadequecies in the language model.

About 20% of the errors are due to incorrect genderor number agree-
ment, which are important for written French even though many of
the words have the same pronunciation. If these errors (which are
not important for understanding) are excluded the resulting word
error rate is 6.3%.

8. CONCLUSIONS
This paper has described the work we have carrried out adapting
our state-of-the-art laboratory speaker-independent, large vocabu-
lary continuous speech recognizer for use in the MASK task. Signal

capture is via multiple microphones, selecting the microphone with
the highest SNR. In order to allow a natural interation with the ma-
chine, a response cancellation algorithm has been implemented so
that the user can start talking during playback. Using a multipass
decoding strategy, recognition is carried out in 1.2 x real-time with
CD phone models and a trigram language model. To achieve real-
time decoding distributed language model weights and Gaussian
shortlists are used. Noise compensation and rejection capabilities
are included to suit the needs of the MASK task.
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