10.21437 /Interspeech.2015-565

INTERSPEECH 2015

Minimum Word Error Training of RNN-based Voice Activity Detection

Gregory Gelly*!, Jean-Luc Gauvain*

*LIMSI - CNRS, Spoken Language Processing Group, Orsay, France
TParis-Sud University, Orsay, France

gelly@limsi.fr,

Abstract

Voice Activity Detection (VAD) is critical in speech recog-
nition systems as it can dramatically impact the recognition ac-
curacy especially on noisy data. This paper presents a novel
method which applies Minimum Word Error (MWE) training
to a Long Short-Term Memory RNN to optimize Voice Activity
Detection for speech recognition. Experiments compare speech
recognition WERs using RNN VAD with other commonly used
VAD methods for two corpora: the conversational Vietnamese
corpus used in the NIST OpenKWS13 evaluation and a corpus
of French telephone conversations. The proposed VAD method
combining MWE training with RNN yields the best ASR re-
sults. This MWE training scheme appears to be particularly
useful for low resource ASR tasks, as exemplified by the IARPA
BABEL data.

Index Terms: speech recognition, minimum word error, voice
activity detection, recurrent neural networks, long short-term
memory, particle swarm optimization

1. Introduction

Voice Activity Detection (VAD) is a crucial task in any speech
processing system. Concerning ASR systems, it directly im-
pacts the accuracy as too much speech undetected speech will
result in undesired deletions, and too much non-speech labelled
as speech can increase the number of insertions and will also
slow down the decoding with unnecessary processing.

A variety of methods and models have been proposed ex-
ploiting the spectro-temporal properties of speech and noise to
effectively separate speech from non-speech. Some of these
methods are energy-based [1, 2], others use auto-correlation
coefficients [3, 4] or features that describe the degree of non-
stationarity of the signal over long window frames (200-300ms)
to successfully discriminate noise from noisy speech signal [5].

Neural Network (NN) based methods have also been pro-
posed both to provide VAD features [6, 7, 8] and to offer a
higher-level decision making mechanism [9, 10].

Two innovations to improve VAD performance for ASR are
introduced. We proposed a new optimization framework based
on Minimum Word Error to optimize VAD for speech recogni-
tion. This is applied to a new recurrent neural networks specifi-
cally designed for the VAD task.

To validate our Minimum Word Error training, a compari-
tive study with 5 different VAD methods is performed:

* CrossCorr: a feature based on the maximum peak of the nor-
malized autocorrelation function of the signal [4] ;

e LTSV: the Long-Term Signal Variability proposed by Ghosh
etal. [11];

¢ and 3 different NN-based methods described in the next sec-
tion.
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2. NN-based VAD

In this paper, we focus on three different types of neural net-
works that were used for VAD where the single output of the
NNs is used as a confidence score that the current frame is
speech. For the 3 proposed models (MLP, BLSTM, BLSTM+)
we used MFCCs (including delta features) as input. In order to
have a fair comparison between the 3 types of neural networks,
all were configured to have the same number of weights (6000).
It was found that increasing the number of weights did not im-
prove the performance.

2.1. Multi-Layer Perceptron (MLP)

To each input vector p (e.g. cepstral coefficients) the classic
fully connected feed-forward network with one hidden layer as-
sociates an output vector z computed as follows:

z=0,(W. -0nhb(Wyr-p+br)+b.) (1)

where W, and W ,, are the interconnection matrices (or weight
matrices) of the network, by, and b, are the bias vectors of the
network, o5, and o, are the transfer functions of the network.
The latter are typically chosen among bounded non-linear func-
tions such as the hyperbolic tangent applied element-wise.

2.2. Bidirectional Long Short-Term Memory (BLSTM)

To make the most of the context around each audio frame, we
used recurrent neural networks (RNN) based on Long Short-
Term Memory cells as shown in Figure 1. LSTM cells were
introduced to overcome some of the shortcomings of classic
RNNs [12] and were popularized by A. Graves for their good
performance on optical character recognition and speech se-
quence labelling tasks [13, 14].
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Figure 1: LSTM cell. The dashed lines correspond to the added
links between the gates for the augmented LSTM cell.

Given an input sequence p = (p", ..., p” ), a standard RNN
computes the output vector sequence z = (z', ..., z7) by iter-
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ating the following equations fromt¢ =1 — 1"

h' =01 (W1-p' +b1) with p' ¥)

3

The use of LSTM cells instead of the classic summation
units modifies the computation of k' as follows:

z'=0. (W. -h'+b.)

i'=0; (Wi p' + Wi "' +b) 4)

fl=or (W '+ W5 " +by) 5)

c' =diag (f') - "' + diag (i") - oo (W - 5"+ be) (6)
o' =0, (Wo-p' + W5 c' +b,) )

h' = diag (o') - o1 (") (8)

where i*, ff, c' and o' are respectively the input gate, the forget
gate, the cell and the output gate activation vectors. They are
all the same size as the hidden vector h'. W§, W5, Wg are
diagonal matrices so that each heart of a cell is only visible to
the gates of the same cell.

One shortcoming of conventional RNNs is that they are
only able to make use of past context. For VAD purposes there
is no reason not to exploit future context as well. Bidirec-
tional LSTM neural networks (BLSTM) were developed to do
just that: 2 distinct LSTM networks process the sequence both
forward and backward, and then the output of both networks are
combined and fed into the output layer. This way, we can fully
exploit the long range capabilities of LSTM cells. In the liter-
ature (e.g. [13, 14]) BLSTM networks always perform better
than unidirectional ones, therefore we explored only BLSTM
networks in this study.

2.3. Augmented BLSTM

We propose a modified version of the BLSTM neural network in
which direct links are added between the three gates of a LSTM
cell as shown by the dashed lines in Figure 1. This modfication
aims to prevent that some of the LSTM cells get stuck in a satu-
rated state when trained on long sequences. The equations (4),
(5) and (7) are thus modified into (10), (12) and (14):

AR AR 2 IO Lt 7 Bt N ()
=0 (Wi B+ Wi i 4b)  (10)
f=wi i swi 7 awiot an
Freop (Wi s+ W5 e F b)) a2
o' =W i+ Wl L w. ot (13)

o' =0,(W,-p'+Wi-c'+8" +b,)  (14)

where the nine matrices W&;Z{ are diagonal so that a gate

can only have access to the gates of the same cell.

With these new links the three gates of a cell can interact
more efficiently and improve the behavior of the cell. We name
this new network BLSTM+.
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3. VAD Smoothing

In this work, the output of all VAD methods are post-processed
with the same smoothing technique, the parameters of which
are optimized during the VAD training for each method. The
smoothing parameters are:

» an onset and offset thresholds for the detection of the begin-
ning and end of a speech segment;

* padding durations before and after each speech segment;
« a threshold for short speech segment deletion;
* and a threshold for small silence deletion.

4. Minimum Word Error Training

Since our goal is to develop a better VAD method for speech
recognition, we designed the following Minimum Word Error
(MWE) training that would allow us to optimize the behavior of
the VAD to minimize the WER. This method was applied using
the NIST OpenKWS13 conditions, that we should only make
use of the language-specific provided data and no previously
existing models.

4.1. Loss functions

Optimizing a VAD algorithm to minimize the WER of an ASR
system would be best achieved by computing the actual WER
for all the VAD settings tested by the optimization algorithm.
Unfortunately, the computational load is too high for it to be
a realistic solution. Instead three loss functions related to the
WER are use to optimize the VAD model parameters with the
aim to minimize the WER. The only assumption here is that we
have available a complete training data set, i.e. the audio files
and their orthographic transcriptions.

4.1.1. Frame error rate wrt the human reference (L1)

The first loss function is the frame error rate (FER) with respect
to manual annotations and is defined as follows:

Li=a) d(z)+(1—a)) dul(2)

seS neN

15)

where S is the set of speech frames, N is the set of non-speech
frames, z is the binary output of the VAD, §(z) equals 0 except
if z equals 0, 0, (2) equals O except if z equals 1 and « sets the
relative importance between errors on the speech frames and
errors on the noise frames. To minimize the FER, one has to
set « to 0.5. But to minimize the WER it is more important
to minimize the number of missed speech frames than the FER
per say. Therefore different values for a were tried and the best
value was found to be 0.6 on our data.

An advantage of this loss function is that it does not require
a prior ASR system. This is particularly useful when starting
from scratch as required by the NIST OpenKWS rules.

4.1.2. Frame error rate wrt the ASR output (L2)

When the ASR system is available, its output (words, time-
codes, confidence scores) can be used as a reference for VAD
training. More precisely, the correct words and the substitu-
tions are considered as speech, whereas the silences, the dele-
tions and the insertions are considered as non-speech. It was
decided to treat the deletions as non-speech because we had no
way of accurately knowing where the boundaries of the deleted
words were and we wanted a precise speech tagging. In this
framework, the form of the loss function stays the same, only



the set of speech frames S and the set of non-speech frames N
are modified. This loss functions is called L.

Using this metric the best value for o was found to be 0.85
on our data. The difference with L resides in the confidence
that we have in the tagging of speech frames. Human annota-
tors often tag small in-between silences as speech whereas the
frames corresponding to correct words and substitutions in the
ASR output can reliably be considered as speech. It is then no
surprise that a higher « is best suited in this case. Note that we
still need to allow for some false alarms to take into account the
deletions of the ASR system.

4.1.3. WER-like metric (Ls)

The Lo loss function makes use of the ASR output but does
not take into account the main specificity of the WER metric,
i.e. every word long or short, substitution, insertion or deletion
weighs the same in the final performance. We thus designed a
loss function L3 that reflects this.

Let We, Ws, Wp and Wi respectively be the sets of cor-
rect words, substitutions, deletions and insertions in the ASR
output when compared to the human reference. For each word
w € We UWs UW;p, we denote F,, the set of audio frames
corresponding to w in the ASR output. Then we define pWs,
pWp and pW; as follows:

e aword w € pWyg if and only if w € Wg and all frames in
F,, are classified as speech by the VAD.

e aword w € pWp if and only if either w € Wp or w €
We U W and at least one frame in F), is classified as non-
speech by the VAD.

e aword w € pWry if and only if w € W and at least one
frame in F, is classified as speech by the VAD.

The following two ratios are also introduced:

e 74 is the ratio between the duration of the word w not de-
tected as speech and the whole duration of the word.

e 7,7 is the ratio between the duration of the word w detected
as speech and the whole duration of the word.

Finally the loss function is defined as

_pS+pD+pl+7i+7a

L3
Nwo'r'ds

(16)

with 7; = Z 7 and T4=

wepWr

an

w
> i

weWcocUWg

where pS, pD and pI are respectively the numbers of words in
pWs, pWp and pW7;. The two terms 7; and 74 were introduced
to smooth the discontinuities of the WER metric. As a direct
result, the optimization algorithm is less prone to being trapped
on a plateau of the loss function.

4.2. Minimization algorithms

The interest of optimization techniques such as Genetic Algo-
rithms for minimizing complex loss functions with an important
number of parameters (> 10) was shown in [15]. Since then,
similar but more efficient methods such as Quantum-behaved
Particle Swarm Optimization (QPSO) were developed ([16],
[17] and [18]). QPSO is a variant of the PSO algorithm which
was motivated by the social behavior of bird flocks and was
first introduced by Kennedy and Eberhart as a population-based
optimization technique ([19] and its well known variant from
Clerc [20]).
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Although the PSO algorithm is comparable in performance
with the Genetic Algorithms approach, QPSO proved to be a
more powerful tool than both of them when performing diffi-
cult optimization tasks. All the results presented here were ob-
tained using QPSO for training the different VAD algorithms.
For the NN-based VADs, QPSO is used to simultaneously op-
timize the MFCC parameters, the neural network weights and
the final smoothing parameters.

In addition, we found that using a second optimization tech-
nique specific to neural networks (the RPROP backpropagation
algorithm [21]) is beneficial when used to locally improve the
best solution found by QPSO (see section 5.1). For the BLSTM
neural networks, back-propagation through time was used as
described in [22] and its LSTM version [13].

Since the back-propagation algorithms need differentiable
loss functions, we use a weighted version of the maximum like-
lihood loss function of a binary classifier when using L1 or Lo
for QPSO. When using L3, we designed a differentiable equiv-
alent to eq. 16:

1
b=- Y (e
weWcocUWg few
(18)
1
Bl Syt
weWr few

where z;y € [0;1] is the output of the neural network for the
frame f and ¢,, is the number of frames in the word w.

5. Experimental Results

Experiments were carried out using two conversational tele-
phone speech corpora: the Vietnamese corpus used in the NIST
OpenKWS13 evaluation and a large corpus in French. These
corpora were chosen since they provide varied conditions in size
and recognition performance.

For both languages state-of-the-art ASR systems were used.
Similar to the systems described in [23], these two systems used
MLP acoustic models and 4-gram language models with vocab-
ularies of 7K words for Vietamese and 72K words for French.

A multilingual VAD developed at the end of the 90’s [24]
based on MFCC features and Gaussian Mixture Models
(GMMs) was used as a baseline.

5.1. Vietnamese results

The IARPA Babel Program Vietnamese language collection
release babel107b-v0.7 is approximately gender-balanced and
contains a diversity of styles, speakers and environments. The
training set includes 160 hours of audio for 87 hours of speech.
The development set consists of 20 hours of audio for 11 hours
of speech, and the evaluation set 30 hours of audio for 17 hours
of speech.

The 5 VAD models were optimized on the training set us-
ing the the loss functions described in section 4.1. The ASR
performance was measured on the development and evaluation
sets. The results with the optimized VADs are given in Table 1.

While the “classic” VADs (CrossCorr and LTSV) give good
performance and are easy to optimize, they were outperformed
by the NN-based VADs. Among these both BLSTM VADs per-
form better the MLP VAD with BLSTM+ giving the best re-
sults.



With the BLSTM+ VAD, the WER of the ASR system is
reduced by 2.5 points (4.4% relative) compared to the multi-
lingual baseline. As shown in Table 2, this gain comes mainly
from reducing the number of insertions (6.4% down to 3.6%).
Indeed, the BLSTM+ uses its intrinsic flexibility to efficiently
learn to discard signal (even speech) that lead the ASR to insert
unnecessary words.

[ [ Developmentset || Evaluation set |

l [ Lo [ Lo [ Ls [[ Li [ L2 [ Ls |
Baseline 53.4 57.2

CrossCorr 53.0 | 52.8 52.8 56.9 | 56.4 56.1
LTSV 53.0 | 52.7 | 52.1 56.2 | 56.0 | 55.6
MLP 52.7 | 52.5 | 52.1 56.2 | 55.7 | 55.4
BLSTM 52.5 | 52.1 | 51.7 55.8 | 55.4 | 54.8
BLSTM+ 52.4 | 52.0 | 51.4 55.7 | 55.3 | 54.6

Table 1: WER on the development and evaluation sets of the
IARPA Babel Vietnamese corpus.

Note that the behavior of the different VADs is the same on
both the development and the evaluation sets, showing the ro-
bustness of the proposed approach and of the VADs themselves.
Moreover, of the loss functions, L3 proves especially relevant
since it yields the best results for all VAD algorithms.

| [ WER [ Corr [ Subs [ Del [ Ins ‘

Baseline 57.2 | 49.2 | 34.7 | 16.1 | 6.4
CrossCorr | 56.1 48.8 34.4 16.8 | 5.0
LTSV 55.6 | 48.9 | 33.5 | 17.6 | 4.5
MLP 55.4 | 49.0 | 34.2 | 16.8 | 4.4
BLSTM 54.8 | 49.1 | 34.0 | 169 | 3.9
BLSTM+ 54.6 | 49.0 | 34.1 | 16.9 | 3.6

Table 2: Detailed results of the best settings for each algorithm
on the Vietnamese evaluation set.

To evaluate the relative importance of the QPSO and the
back-propagation algorithms different combinations of these
two minimization algorithms have been tested for the BLSTM+
model using L3. Table 3 reports the resulting WER on the eval-
uation set. These results show that both algorithms are needed
to achieve the best performance when used in alternating fash-
ion.

| Optimization process using L3 [ WER ‘
Baseline 57.2
BackProp 58.0
BackProp+QPSO(smoothing) 57.5
QPSO 56.9
Hybrid QPSO-BackProp 55.5
QPSO+BackProp 55.0
QPSO+BackProp+QPSO(smoothing) | 54.6

Table 3: Impact of the optimization process on the performance
(IARPA Babel Vietnamese evaluation data set).
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5.2. French results

The French corpus is made of telephone conversations from na-
tive and non native speakers. The VAD training set includes
290 hours of audio for 154 hours of speech, and the VAD eval-
uation set includes 8 hours of audio for 4 hours of speech. The
CrossCorr, LTSV and the BLSTM+ VADs were optimized on
the training set using the L3 loss function. The performance of
the ASR system (trained on about 1000h of data) for the evalu-
ation data with the optimized VADs is given in Table 4.

At the time, the multilingual baseline VAD system was
partly trained on this French training data set and the ASR was
trained using its output. As a result, the multilingual VAD per-
forms better than CrossCor and LTSV on the French evaluation
data set. But as for the Vietnamese, the BLSTM+ model gives
the best results with a slightly better WER.

| [ WER [ Corr [ Subs [ Del [ Ins ‘

Baseline 23.7 | 786 | 136 | 7.8 | 2.3
CrossCorr | 24.1 78.4 13.8 | 7.7 | 2.5
LTSV 23.8 787 | 13.8 | 7.6 | 2.4
BLSTM+ 23.6 | 78.9 | 13.7 | 7.5 | 2.4

Table 4: Detailed performance on the French evaluation set for
the various VADs when optimized with the L3 loss function.

6. Conclusion

We have proposed a new method to optimize voice activity
detection systems with the goal of minimizing the WER of a
downstream ASR system. This method, which relies on the
QPSO algorithm to minimize a WER-like loss function (Ls3),
was shown to be very effective to estimate the parameters of var-
ious VAD models, including models based on auto-correlation
coefficients, a long-term signal variability measure, as well as
MLP and RNN neural networks. Experimental results have
been reported using two conversational speech corpora, i.e. the
Vietnamese corpus of the NIST OpenKWS13 evaluation and a
French corpus. The best results, measured in term of WER, are
obtained using a modified bidirectional long short-term mem-
ory RNN (BLSTM+). This VAD model outperforms the other
models trained on the same language specific data, as well as
a multilingual GMM VAD system which served as a baseline.
The BLSTM network also comes with a high decoding speed
(0.001xRT) measured on a standard desktop CPU.

In the future, it would be interesting to see if further im-
provements could be obtained by retraining the ASR system us-
ing the BLSTM+ VAD as input.
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