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Abstract
This paper describes the design of an acoustic language

identification (LID) system based on LSTMs that directly maps
a sequence of acoustic features to a vector in a vector space
where the angular proximity corresponds to a measure of lan-
guage/dialect similarity. A specific architecture for the LSTM-
based language vector extractor is introduced along with the an-
gular proximity loss function to train it. This new LSTM-based
LID system is quicker to train than a standard RNN topology
using stacked layers trained with the cross-entropy loss func-
tion and obtains significantly lower language error rates. Ex-
periments compare this approach to our previous developments
on the subject, as well as to two widely used LID techniques: a
phonotactic system using DNN acoustic models and an i-vector
system. Results are reported on two different data sets: the 14
languages of NIST LRE07 and the 20 closely related languages
and dialects of NIST LRE15. In addition to reporting the NIST
Cavg metric which served as the primary metric for the LRE07
and LRE15 evaluations, the average LER is provided.

Index Terms: language identification, LSTM, angular loss

1. Introduction
Spoken language identification (LID) is the task of automat-
ically recognizing the language present in a given speech seg-
ment. The LID task can be carried out using either models based
on different levels of explicit language description (phones,
prosody and words), or models based only on acoustic features
without any explicit language description [1].

Phonotatic LID systems have been developed since the
early 1990s, when the use of phone-based acoustic likeli-
hoods was proposed for language identification [2, 3]. The
basic approach was extended to use parallel phone recogniz-
ers with phonotactic characteristics [4], lexical information
[5, 6] and phone lattices [7, 8]. Variant approaches based on
phone decoding with phonotactic models have been explored
for many years and have been shown to provide state-of-the-art
results [9, 10, 11].

Many acoustic approaches are based on Gaussian Mix-
ture Models (GMM) among which the i-vector framework [12],
originally proposed for speaker recognition [13, 14], has been
shown to be one of the most effective methods for LID pur-
poses [15].

The number of spoken languages around the world is es-
timated to be slightly less than 7000, the LID task can then
be quite challenging when it comes to discriminating between
closely related languages or dialects of the same language.
This was one of the challenges of the last language recogni-
tion evaluation organized by the National Institute of Science
and Technology (NIST) in 2015 (LRE15 [16]). In preparation
for this evaluation, we tested acoustic methods that when com-
bined with the phonotactic system improved language recogni-
tion performance [17].

With its innate ability to exploit long range dependen-
cies, Long Short Term Memory (LSTM) neural networks were
natural candidates as purely acoustic classifiers. This choice
was also motivated by our previous experience with LSTM on
Speech Activity Detection [18] and some earlier work on this
topic [19] which showed good results on short segments for a
limited number of languages. This paper describes our work
in designing an acoustic LID system based on LSTM recurrent
neural networks. Both phonotatic and i-vector systems serve as
baselines for reporting results.

Our first attempt to train multi-class Recurrent Neural Net-
work (RNN) based on LSTM cells gave results that were not
competitive for language recognition. To overcome this, we de-
signed a four-step training process called Divide-and-Conquer
(D&C) training. In [20], we compared the D&C training to
a straightforward RNN training and showed that it improved
the system performance. In this paper, we introduce an LSTM-
based system that directly maps a sequence of acoustic features
to a vector in a vector space where angular proximity corre-
sponds to a measure of language/dialect similarity. This new
architecture, along with an angular proximity loss function, sig-
nificantly reduces training time and yields better performance.
The performance of this new LSTM-based LID system is com-
pared to the D&C approach and to the phonotatic and i-vector
baselines.

The next section describes the language recognizer using
the LSTM-based language vector (LV) along with the proposed
angular proximity loss function. Section 3 presents and dis-
cusses the results obtained on two NIST evaluation data sets.
Conclusions are given in Section 4.

2. LSTM-based language classifier
Over the last few years, RNNs and in particular RNNs based
on LSTM have been successfully applied to a wide range of
classification tasks for which the discriminative information is
embedded in a sequence. For the LID task it has been shown
in [19] that LSTM-RNN can outperform other LID methods on
short utterances for a set of 8 languages. More recently LSTM-
RNN have been successfully applied to discriminate related lan-
guages and dialects [20]. The LTSM-based classifier proposed
here is an extension of this work.

2.1. Coordinated-gate LSTM

Long Short-Term Memory cells were introduced to overcome
some of the shortcomings of classical RNNs [21] and were
popularized after Graves demonstrated their good performance
for optical character recognition and speech sequence label-
ing [22, 23]. In [18], an improved version of the LSTM cell
was proposed in which direct links are added between the three
gates of a cell. With these new links the three gates of a cell
can interact more efficiently and improve the cell behavior. We
call this new model CG-LSTM for Coordinated-Gate LSTM.

Copyright © 2017 ISCA

INTERSPEECH 2017

August 20–24, 2017, Stockholm, Sweden

http://dx.doi.org/10.21437/Interspeech.2017-13342566



As shown in Section 3 this added flexibility allows CG-LSTM
cells to outperform standard LSTM cells.

2.2. Standard architecture

In [20] we used a standard architecture (see left diagram in Fig-
ure 1) with 2 stacked CG-LSTM layers and a MLP composed of
one hidden layer and a softmax output layer. This architecture
takes a feature sequence as input and yields a sequence of pos-
terior probabilities estimates for each language as output. Then,
to obtain a single classification vector, the geometric mean of
all the output vectors in the output sequences is computed.

The D&C training proposed in [20] is used as it was demon-
strated to be superior to the classical training method for the
LID task.

2.3. Language vector extractor

In order to speed up the RNN training process without reducing
the network accuracy we have re-designed the network architec-
ture. Our intuition was that the number of stacked layers (RNN
layers + MLP) diluted the gradients during backpropagation and
thus slowed the convergence especially during the first training
steps. The D&C training process tackles this part of the problem
by separating the multi-class problem into n smaller problems
that we solved using smaller RNNs that are much easier to train.
From this smaller RNNs we obtained a smart initialization point
for the complete multi-class RNN training which led to a better
and faster training.

Here we introduce an RNN architecture that deals directly
with this problem: a language vector (LV) extractor which is
depicted on the right diagram in Figure 1. First, the MLP was
removed to reduce the overall number of layers in the network
and at the same time to obtain more homogeneous gradients
since the link between the errors and the LSTM cells is more
direct. In the same spirit and to ensure a faster convergence,
the outputs of both RNN layers are concatenated. Each layer
has a weighting coefficient (α1 and α2) as shown on the right
diagram in Figure 1). Finally, the vectors of the output sequence
are averaged over time, giving a unique output vector for the
whole sequence, which is then L2-normalized to lay on the unit
hypersphere. As a result, the information only resides in the
direction of the vector.

The magnitude coefficients applied to the output of the dif-
ferent layers before the L2-normalization allow the optimiza-
tion process to easily focus on the most discriminative layer(s)
for the classification task at hand, without directly constraining
the outputs of the recurrent layers.

The dimension of the final unit vector is equal to the sum of
all the layers’ dimensions (here 2× 124 = 248).

2.4. Angular proximity loss function (AP)

Inspired by the success of triplet-loss introduced in [24] for
clustering tasks and for speaker change detection [25], a loss
function was designed that can simultaneously train the lan-
guage vector extractor described above, and a unit vector that
serves as the reference direction cl in the same vector space for
each language l.

Then, when given an output vector z for a given input fea-
ture sequence, the angular offset θl between z and every one of
the reference directions cl is determined:

θl(z) = arccos(cl · z) (1)

The language hypothesis with the highest probability is

Figure 1: Left: a standard RNN topology with two stacked lay-
ers to estimate posterior probabilities from feature sequences.
Right: an RNN topology with two layers to extract, from a fea-
ture sequence, a fixed size unit vector based on the output of all
the recurrent layers in the network and whose direction is linked
to the spoken language.

then given by:
l∗(z) = argmin

l∈[1,N ]

θl(z) (2)

where N is the number of language to be identified.
And we define the angular proximity loss L for a vector z

belonging to language l as follows:

L(z, l) =
l′ �=l∑

l′∈[1,N ]

σ(θl(z)− θl′(z)) (3)

where σ(x) = 1/(1+e−x) is the logistic function which brings
faster and better convergence by focusing the training efforts on
the cases that are close to the boundaries between languages.

This loss function can be differentiated and we have:

∂L
∂z

=

l′ �=l∑
l′∈[1,N ]

Δll′(z)

(
cl′√

1− δl′(z)2
− cl√

1− δl(z)2

)

(4)
where δl′(z) = cl′ · z is the dot product between z and cl′ and
with

Δll′(z) = σ(θl(z)− θl′(z))(1− σ(θl(z)− θl′(z))) (5)

which corresponds to the contribution of the logistic function in
the partial derivatives.

We also have for l′ ∈ [1, N ] and l′ �= l

∂L
∂cl′

=
Δll′(z)√
1− δl′(z)2

z (6)
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and finally

∂L
∂cl

= −
l′ �=l∑

l′∈[1,N ]

Δll′(z)√
1− δl(z)2

z (7)

Those last two partial derivatives allow us to use the same
gradient descent algorithm to optimize the reference directions
for all languages at the same time as we optimize the parameters
of the RNN producing the language vectors.

2.5. Training settings

For all the networks trained, the input to the system are 8 PLP
coefficients and their first and second derivatives resulting in a
24 dimensional feature vector, with a 10 ms frame rate. VTLN
is applied prior to cepstral mean and variance normalization.
During system development, it was found beneficial to chop the
feature sequence into overlapping segments of 320 frames (i.e.
3.2s) with a shift of 80 frames (i.e. 0.8s) and an overlap of 75%
rather than processing the sequence as a whole. This was true
independent of the sequence duration. The impact of these two
parameters on the LID error rate is shown in Section 3.1.

Training of the various neural network was performed us-
ing back-propagation through time ([26], [22]) and as proposed
in [27], the SMORMS3 mini-batch gradient descent algorithm
was used.

For each training iteration, a small number of training
speech segments (about 1000) are randomly selected with an
equal number of segments per language to mitigate the effect of
the distribution of training segments across languages.

During training, we also keep track of the 200 speech seg-
ments that lead to the biggest error rates (with an equal number
of worst cases per language) and add them to our mini-batch at
each training step.

3. Results
This section presents results on the closed-set tasks of NIST
LRE07 and LRE15. Two evaluation metrics are used: the NIST
Cavg metric which served as the primary metric for both eval-
uations ([16], [28]), as well as the average language error rate
(LER).

The goal of the NIST LRE07 closed-set task was to identify
the spoken language among 14 target languages: Arabic, Ben-
gali, Chinese, English, Farsi, German, Hindustani, Japanese,
Korean, Russian, Spanish, Thai, Tamil, and Vietnamese. The
evaluation data set is composed of 2158 audio files for each of
the 3 speech test durations: 3s, 10s and 30s.

For the LRE15 evaluation, data were grouped into six lan-
guage clusters (Arabic, Chinese, English, French, Iberian and
Slavic) which contain a total of 20 closely related languages or
variants of the same language. As detailed in [17], there was a
large mismatch between the official evaluation and training data
sets which led to poor results on some of the dialects and made
it difficult to analyze and compare the performance of the dif-
ferent LID systems. In order to reduce the mismatch, 10% of
the files of the evaluation data set were randomly selected and
added to the training data. All the LID systems were retrained
and tested on the remaining 90% of the evaluation data set.

3.1. Binary classification

A series of preliminary experiments were carried out to find
the best neural model and the best way to use it as a LID sys-
tem. To measure the discriminative power of several neural

Table 1: Comparison of several neural models on a binary clas-
sification task (Arabic or not). Error rates on the LRE07 eval-
uation datasets for the 3 speech test durations. The networks
were trained using the cross-entropy loss function (CE) or the
angular proximity loss function (AP).

NN model training 2-class LER

CE AP 3 s 10 s 30 s

MLP � 33.7 25.0 20.0
RNN � 33.9 21.4 12.6
LSTM � 27.5 14.4 8.4
CG-LSTM � 26.2 13.4 7.5
LSTM � 25.9 12.3 7.2
CG-LSTM � 24.1 11.2 5.0

models, models were trained to separate the Arabic from the
other languages in the LRE07 dataset. The models range from
a simple MLP to a CG-LSTM based language vector extrac-
tor as described in Section 2.3. To have a fair comparison, all
the tested models have 50k parameters. The models based on
the standard architecture were trained using the cross-entropy
loss function (CE) whereas the language vector extractors were
trained with the angular proximity loss function (AP) described
in Section 2.4.

Table 1 details the results obtained on the LRE07 evaluation
dataset. One can clearly see that the LSTM-based models are
much better than a simple MLP or even a standard RNN. One
can also see that independently of the loss function and the net-
work architecture, the CG-LSTM model always improves the
performance over the standard LSTM cell. In addition, the lan-
guage vector extractor architecture yields a very significant gain
since it yields up to a 33% relative gain on the error rate for the
30 s segments.

Table 2: Average error rates on the LRE07 evaluation datasets
for the binary classification task (Arabic or not) varying the size
and shift of overlapping speech segments.

Overlap
ratio (%)

Segment size

1 s 3.2 s 5 s 10 s inf

0 16.7 15.4 18.3 19.2 19.8
25 16.7 15.1 17.4 18.8 -
50 17.1 14.6 16.2 17.9 -
75 17.2 14.4 15.0 17.9 -
90 17.0 14.2 14.6 17.5 -

The same task was used to measure the impact of the size
of the segments fed to the LID system and the overlap ratio.
Table 2 shows the results in terms of overall error rate on the
LRE07 evaluation dataset. The advantage of using overlapping
chunked segments is easily seen as all setups give better results
than using the original full sequence (inf). The chunk duration
of 3.2s yields the best results for all overlaps tested. An overlap
ratio of 75% was retained for further experiments.

3.2. LID results

This section reports results on the full LID tasks. The perfor-
mances of the different CG-LSTM based LID systems are com-
pared to two baseline systems: an i-vector system (IV) as im-
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plemented in the Kaldi toolkit [29] and a phonotactic system
(PH). Detailed descriptions of these two classifiers can be found
in [17].

Table 3 reports the results obtained on the LRE07 evalua-
tion data set and on the LRE15 post-evaluation data set. The
three RNNs are all based on CG-LSTM cells and are identical
in size (about 400k weights1).

Table 3: Results on LRE07 and LRE15 evaluation data
with three different CG-LSTM trainings/architectures (stan-
dard, D&C, LV) and the baseline systems (phonotactic and i-
vector). The best system combinations are also shown.

System LRE07 LRE15

LER CAVG LER CAVG

PH 16.2 8.7 23.5 15.1
IV 23.6 12.7 26.6 17.4
CG-LSTM Std 25.6 13.8 30.9 20.8
CG-LSTM D&C 21.9 11.8 22.8 14.6
CG-LSTM LV 20.2 10.9 20.7 13.3

PH + IV 14.1 7.6 18.6 11.6
PH + LV 12.3 6.6 15.9 9.9

One can see that the language vector extractor based on CG-
LSTM and trained with the angular proximity loss function im-
proves the LID results and leads to a RNN that performs better
than both the i-vector system and the RNN system trained with
the D&C method proposed in [20]. One can also see that both
acoustic LID systems perform less well than the phonotactic
system on LRE07 but the language vector approach leads to a
better performance than the phonotactic system on LRE15.

For both evaluation data sets, combining the outputs of the
language vector extractor system with the output of the phono-
tactic system always significantly improves the results. This is
also better than the combination of the i-vector and phonotactic
systems. System combination is done by taking the geometric
mean of the posterior probabilities of the combined systems.

3.3. Training convergence

Figure 2 shows the evolution of the LER of the different CG-
LSTM based LID systems during the training phase on the
LRE07 train set. As one can see the language error rate drops
much faster when using a language vector extractor architec-
ture trained with the angular proximity loss function than with
a standard architecture trained with the cross-entropy loss func-
tion independently of the use of the D&C strategy.

Finally, with the language vector extractor architecture
trained and the angular proximity loss function we were able to
train a better CG-LSTM based LID system than with the D&C
training strategy in only half the training time. When compared
to the standard training, the reduction in training time with the
new architecture and training scheme is 66%.

4. Conclusions
This paper introduced a language vector extractor based on a
modified LSTM cell along with an angular proximity loss func-
tion. This new RNN architecture and training method was eval-
uated on both the NIST LRE07 and NIST LRE15 data sets. In

1In comparison, the number of parameters used for the i-vector and
the phonotactic systems is more than 107.

number of mini-batches
0 500 1000 1500

LE
R

101

102
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Figure 2: Evolution of the LER on the LRE07 training dataset
for the three different training methods/architectures.

both cases the proposed scheme significantly outperformed the
classical training method for multi-class RNNs as well as the
Divide & Conquer training method we proposed in [20].

This error reduction comes with an important reduction in
the training duration, the language vector extractor training time
is half that needed for the Divide & Conquer method, and a third
of the time required for standard training.

The resulting RNN LID system was also compared to a
phonotactic system and to an i-vector system. It outperforms the
i-vector system on both data sets and outperforms the phono-
tatic system on the more challenging LRE15 data set, while re-
quiring an order of magnitude fewer parameters. In addition the
RNN-based language vector extractor combines well with the
phonotatic system, leading to the best results by a significant
margin compared to any of the individual systems for both data
sets.
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