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ABSTRACT

We investigate the use of sub-word lexical units for the de-
tection of out-of-vocabulary (OOV) keywords in the keyword
spotting task. Sub-word units based on morphological de-
composition and character ngrams are compared. In particu-
lar, we examine the benefit of sub-word units that cross word
boundaries. Experiments are performed on the ITARPA Babel
Turkish dataset. Our results demonstrate that cross-word sub-
word units achieve similar performance on OOV keywords as
other types of sub-word units, but can be combined to pro-
duce further gains. We also show that sub-word units can be
used to improve detection of in-vocabulary keywords. Sys-
tem combination provides a 18% relative gain in ATWV with
the best two systems, and 25% with the best three systems.

Index Terms— keyword search, spoken term detection,
OO0V, sub-word lexical units, low resource LVCSR

1. INTRODUCTION

Recently there has been an increased interest in the task of
keyword spotting (KWS)—this task is also referred to as Spo-
ken Term Detection (STD) in the literature. The task differs
significantly from the more traditional speech transcription
task; performance measures for one task are not necessarily
predictive for the other. Instead of accurately transcribing the
entire utterance, a system only needs to determine whether a
specified set of keywords are present.

Several approaches to KWS have been proposed over
the years. Some of the earliest systems were template-based
approaches using dynamic time warping (DTW) [1]. These
were followed by HMM-based systems that used a model for
the keyword and one or more models for all non-keywords
[2]. More recent work utilizes a two-stage approach that
leverages traditional ASR systems [3, 4]. The speech is ini-
tially decoded with an ASR system, producing either a 1-best
transcript, n-best list, or lattice. Keyword search is then per-
formed on the output of the ASR system. As with other recent
work [5, 6], we adopt this two-stage approach and search the
resulting lattices.

One particular difficulty for KWS is handling out-of-
vocabulary (OOV) keywords, especially in the low-resource
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setting. While OOV words are typically a low-frequency
occurrence—with a significant, but limited effect on word
error rate (WER)—they can comprise a significant portion
of the keywords in any KWS task [7]. Many approaches
have previously been proposed to address the OOV issue. In
[8], word lattices are converted to phone lattices; keywords
are converted to phone strings and searched in the phone
lattice. This can be extended to converting the word lattice
to a sub-word lattice [9], or decoding with sub-word units
[10]. An alternative is to expand the keywords by searching
for in-vocabulary (IV) words that are easily confusable with
OOV words [11]

In this work, we also focus on the use of sub-word units.
In addition to the previously seen morphological decompo-
sitions [12] and character ngrams [13], we explore the use
of cross-word sub-word units—sub-word units that can span
word boundaries. We note that Bulyko et al. [14] also in-
cluded a system that incorporated cross-word units, but it is
unclear how those units affected performance—particularly
since all keywords were single words. Our hypothesis is that
this will allow OOV words to be discovered without relying
on single character units. While the majority of the prior work
focuses on OOV words, we also demonstrate the potential for
improving performance on (IV) keywords.

We detail the methods used to generate sub-word units
in Section 2. The dataset and keyword spotting system are
described in Section 3. Section 4 contains general results and
Section 5 provides a more detailed analysis. Conclusions are
presented in Section 6.

2. SUB-WORD LEXICAL UNITS

We propose to use sub-word models to handle the detection of
OOV keywords. While our focus is evaluating the efficacy of
cross-word sub-word models, we will also describe a standard
morphological decomposition approach. We use Morfessor
[15] for performing morphological decomposition. Morfes-
sor computes a generative probabilistic model given a list of
words and the count of their occurrences. The model learns a
set of morphological units that can be combined to represent
any word in the corpus. These units represent a trade-off be-
tween maximizing the likelihood of the data and minimizing
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‘ Lexical Units ‘ Total ‘ Average Length
Baseline 10110 | 4.7
Morfessor 6187 | 4.0
3gram-wi 4071 24
Sgram-wi 6624 | 3.4
7gram-wi 6093 | 3.6
3gram-cw 6855 | 2.6
Sgram-cw 7561 34
7gram-cw 7302 | 3.6

Table 1. Number of unique units in the lexicon and average
length of those units. Note the average length is computed on
the training transcript.

the total number of units.

Our approach for building the remaining sub-word units
relies on character ngrams, similar to [13]. The frequency of
every possible character-level ngram (for a specific n) is com-
puted over the training corpus. In order to limit the eventual
size of the lexicon, we only keep the most frequent ngrams—
in this work we keep the 15k most frequent, but preliminary
experiments showed the number of initial units had little ef-
fect on the final lexicon. Given the initial set of sub-word
units, the training corpus is segmented to minimize the total
number of words in the segmented transcript. This heuristic
for segmentation is slightly different than the greedy “longest
match” approach [16], but is equivalent to segmenting with a
uniform language model.

The segmentation is further improved through an itera-
tive process. A trigram language model is built from the seg-
mented corpus. Using the language model, the original corpus
is resegmented. This process is repeated until convergence—
approximately 3 to 5 iterations for our experiments.

Since we are considering both word-internal and cross-
word sub-word units, the space between words must be han-
dled. We do not treat white space as a separate character, but
instead attach it to the final character of a word. Therefore
the white space does not count as a character when we com-
pute the character ngrams. For the word-internal units, the
character representing white space can only be present in the
final character of the unit, while it can appear anywhere in a
cross-word unit. Maintaining a representation of white space
in the lexical units provides the additional benefit of allowing
for a unique conversion of the recognizer output in terms of
sub-word units to words.

For both types of sub-word units, we build three sets of
units. In each case we consider character ngrams of order 3,
5, and 7. The word-internal sub-word units are referred to as
3gram-wi, 5gram-wi, and 7gram-wi throughout the remainder
of the paper. Cross-word sub-word units are referred to as
3gram-cw, Sgram-cw, and 7gram-cw. Details regarding the
size of the lexicon and the average length of the lexical units
are in Table 1. The lexicons for the cross-word units are larger
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than their counterparts, but the average lengths are similar.

3. EXPERIMENTAL SETUP

3.1. TARPA Babel Data

Our experiments are performed on the IARPA Babel Turk-
ish data, specifically the “IARPA-babel105b-v0.4-sub-train”
dataset. The particular release contains only 10 hours of tran-
scribed conversational telephone speech for training. While
a pronunciation lexicon is provided with the data, we do not
use it. In keeping with the low-resource approach, we do not
assume any a priori knowledge of the acoustic units or pro-
nunciation lexicon. Results are reported on the 10 hour de-
velopment set. A two hour subset of the development set was
used for tuning parameters in the final KWS system. This
setup is similar to the Tagalog system used in [11].

The keyword list contains both single and multi-word key-
words. The full list contains 3291 keywords, though, only
1778 keywords are present in the development data. Many of
the keywords not in the development set are found in the eval-
uation data. Since the scoring procedure does not consider
keywords with zero occurrences, our keyword list effectively
contains just those 1778 keywords. Of those keywords ap-
pearing in the development set, 421 contain at least one word
not seen during training—an OOV rate of 24%. In general,
the keywords are rare events. Over the 10 hour development
set, each keyword appears an average of 5 times; 30% of the
keywords only appear once.

3.2. ATWYV Metric

The performance metric defined for this task is the actual
term weighted value” (ATWYV), and follows the definition
used in the NIST 2006 Spoken Term Detection evaluation
[17]. The total ATWYV is the mean of the ATWYV scores for
each individual keyword. The keyword specific ATWV for
keyword £ can be computed by

ATWV (k) = 1 — Prr(k) — BPra(k) )]
where Prr and Ppy4 refer to the probability of a false re-
ject (miss) and false accept, respectively. A trade off between
false rejects and false accepts is maintained by the constant
B. According to the NIST protocol, we set the value of 3 to
999.9.

It is important to recognize that the ATWV metric is not
dependent on the frequency of any specific keyword. A key-
word that appears once and a keyword that appears hundreds
of times will contribute equally to the final score. This also
highlights why detection of OOV keywords is such an impor-
tant factor for KWS performance.
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3.3. KWS System

We use the Kaldi speech recognition toolkit [18] for all of
our experiments. As mentioned previously, we do not assume
a pronunciation lexicon, so we use a grapheme-based lexi-
con instead—our preliminary experiments did not find a sig-
nificant performance difference between a phone-based and
a grapheme-based lexicon in terms of WER. The use of a
grapheme-based lexicon also simplifies the process of gen-
erating pronunciations for sub-word units.

Standard PLP features with a pitch estimation feature
were used to build an initial model. These features were then
transformed by LDA using a context window of 9 frames as
input; the features were projected down to 40 dimensions.
The LDA transformation is also combined with MLLT and
speaker-dependent fMLLR during training. The final model
uses subspace Gaussian mixture models (SGMM) for the
states [19], discriminatively trained using boosted maximum
mutual information (BMMI) [20]. A trigram language model
is estimated from the training transcripts using Kneser-Ney
smoothing [21].

Word-level lattices are generated through multiple decod-
ing passes. The first two passes use the standard GMM sys-
tem. The lattices are finally rescored using the SGMM+BMMI
models. The word-level lattices are converted to indices as
proposed in [22]. Keywords are compiled into acceptors. For
sub-word models, the keyword acceptors accept any sequence
of sub-word units that can be combined to make the keyword,
not just a single decomposition. Detection hypotheses are ob-
tained by composing the acceptors with the indices. Before
evaluating the results, a detection threshold must be set. We
use the method proposed in [23] that uses a keyword-specific
threshold based on expected keyword counts. Scoring is
performed by the NIST F4DE tool.

4. RESULTS

4.1. Single System

ATWYV results for each individual system are shown in Table
2. If we consider only the performance on all keywords, only
the Morfessor-derived units appear to offer any benefit over
the baseline system. Once we examine the performance on IV
and OOV keywords separately, the picture changes. Each sys-
tem detects a significant portion of the OOV keywords. The
only reason the Morfessor result improves over the baseline
on all keywords is that it detects some OOV keywords with-
out reducing IV performance. The other sub-word systems all
see a large decrease in IV performance, resulting in a lower
overall score, even though they all outperform the Morfessor
units on the OOV keywords.

If we focus solely on OOV performance, the two 3gram
sub-word systems perform best. The incorporation of cross-
word units does not appear to affect the performance much—
though they do have worse IV performance. It is unclear why
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| Lexical Units [ Al [TV [ OOV |
Baseline 0.2186 | 0.2864 | 0.0000
Morfessor 0.2387 | 0.2870 | 0.0830
3gram-wi 0.2212 | 0.2538 | 0.1160
Sgram-wi 0.2120 | 0.2481 | 0.0958
7gram-wi 0.2073 | 0.2376 | 0.1094
3gram-cw 0.2087 | 0.2372 | 0.1168
Sgram-cw 0.2055 | 0.2403 | 0.0932
7gram-cw 0.1966 | 0.2281 | 0.0952

Table 2. ATWYV results for the baseline word-based system
and the sub-word systems described in Section 2. The All col-
umn shows results over all keywords while IV and OOV show
results only for in-vocabulary and out-of-vocabulary words,
respectively.

| Lexical Units [ Al [TV [ OOV |
Baseline 0.2186 | 0.2864 | 0.0000
+Morfessor 0.2589 | 0.3135 | 0.0830
+3gram-wi 0.2586 | 0.3029 | 0.1160
+5gram-wi 0.2508 | 0.2988 | 0.0958
+7gram-wi 0.2517 | 0.2959 | 0.1094
+3gram-cw 0.2529 | 0.2951 | 0.1168
+5gram-cw 0.2466 | 0.2941 | 0.0932
+7gram-cw | 0.2444 | 0.2906 | 0.0952

Table 3. ATWYV results for the baseline word-based system
combined with each sub-word based system individually.

the 7gram systems outperform the 5gram systems in terms
of OOV, but it might be related to the relative size of their
lexicons (see Table 1). Assuming we are only using the sub-
word models for OOV keywords, the best performing system
would simply combine the baseline IV results and either of
the 3gram OOV results. We will now examine the combina-
tion of the systems in more detail.

4.2. Combined Results

We use a simple approach for system combination. The score
for any keyword hypothesis is averaged over all systems that
also make the same hypothesis. If only one system contains
that hypothesis, then its score is used unaltered. In Table
3 we show the performance of every system combined with
the baseline individually. Unexpectedly, even though it had
the lowest OOV score, the Morfessor-based system provides
the best combined performance. The improvement in ATWV
over all keywords comes largely from the 9% relative im-
provement in IV keywords. In fact, all systems show an im-
provement in IV score when combined with the baseline sys-
tem. This is surprising because the individual IV performance
for some of the systems was significantly worse (up to 20%
lower ATWYV). Depending on the system the improvement in
ATWY over all keywords is between 12% and 18% relative.
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‘ Lexical Units ‘ All ‘ v ‘ (0]0)% ‘
Baseline+Morfessor | 0.2589 | 0.3135 | 0.0830
+3gram-wi 0.2734 | 0.3156 | 0.1377
+5gram-wi 0.2711 | 0.3156 | 0.1276
+7gram-wi 0.2745 | 0.3172 | 0.1368
+3gram-cw 0.2718 | 0.3126 | 0.1401
+5gram-cw 0.2699 | 0.3149 | 0.1249
+7gram-cw 0.2652 | 0.3099 | 0.1211

Table 4. ATWYV results for the baseline word-based and Mor-
fessor system combined with each sub-word based system in-
dividually.

For the final set of system combination results, Table 4
shows the effect of adding a third system to the two best
performing systems—the baseline and the Morfessor-based
sub-word system. Adding any of the ngram-based sub-word
models produces a further improvement. Results are similar
across all systems (20% to 25% relative ATWV improvement
compared to the baseline).

5. ANALYSIS
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Fig. 1. ATWYV performance change by iteratively adding each
of the systems.

The combination of multiple systems significantly im-
proves over baseline performance. Since each proposed
sub-word unit requires a separate recognition system, the
computational effort is linear in the number of systems. In
Figure 1, we examine the benefit of continuing to combine
more systems. The systems are ranked in terms of ATWV
and at each step we add the next highest ranked system. We
continue to obtain increasingly smaller improvements until
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we reach the sixth system. Going beyond six systems begins
to slightly degrade performance.
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Fig. 2. Comparing the OOV ATWYV performance of the word-
internal units, cross-word units, and their combination.

The cross-word sub-word units provide similar perfor-
mance to their word-internal counterparts. Figure 2 shows
the ATWV on OOV keywords when combining the various
ngram sub-word systems. Clearly the combinations are ben-
eficial, so the cross-word models must add information not
found in the systems without cross-word models. Though not
in the figure, it is also interesting to note that by combining
two or more sub-word systems, it is possible to outperform
the baseline system on its own; the combination of 3gram-wi
and 3gram-cw gives an 11% relative improvement over the
baseline. Based on the results, we cannot say that cross-word
sub-word units outperform other units, but they certainly
provide additional information.

Wegmann et al. [24] performed a similar analysis of com-
bining KWS systems, though the lexical units were identical
for each system. They found that the increase in performance
came mainly from the addition of a single true hypothesis
for several keywords; we find a similar pattern in our results.
All systems have a similar number of total correct detections.
Comparing the best performing system and the baseline sys-
tem, there is approximately a 6% absolute difference. The
best performing system correctly detects 76 keywords with
only a single entry in the development set that were missed
by the baseline. The additional detection of these rare, missed
keywords accounts for more than two-thirds of the difference
in performance.

6. CONCLUSION

We have investigated various sub-word units for detecting
OOV keywords. Our results show a relative gain in ATWV
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of 18% when combining the best two systems, and a gain of
25% when combining the best three systems. The gains are
not due solely to the detection of OOV keywords, but also
due to the increased detection of IV keywords. While most
work in sub-word models focuses on OOV keywords, it is
clear they can be useful for IV keywords too. Cross-word
sub-word units were contrasted with word-internal sub-word
units. While performance of the various sub-word units was
similar, the cross-word sub-word units do combine well with
the other units to produce additional gains.

We see two potential extensions to this work. The first is
the development of more sophisticated, potentially keyword-
specific, methods of combining the keyword hypotheses.
In this work, we simply averaged over the various systems.
Each of the systems likely perform better on certain keywords
based on the structure of the lexical units; the system com-
bination could consider this. The second extension would be
to reduce the necessity of multiple systems. Instead, all of
the possible sub-word units could be combined into a single,
larger system.
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