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ABSTRACT
Although there has been regular improvement in speech recogni-

tion technology over the past decade, speech recognition isfar from
being a solved problem. Most recognition systems are tuned to a
particular task and porting the system to a new task (or language)
still requires substantial investment of time and money, aswell as
expertise. Todays state-of-the-art systems rely on the availability
of large amounts of manually transcribed data for acoustic model
training and large normalized text corpora for language model
training. Obtaining such data is both time-consuming and expen-
sive, requiring trained human annotators with substantialamounts
of supervision.

In this paper we address issues in speech recognizer portabil-
ity and activities aimed at developing generic core speech recogni-
tion technology, in order to reduce the manual effort required for
system development. Three main axes are pursued: assessingthe
genericity of wide domain models by evaluating performanceunder
several tasks; investigating techniques for lightly supervised acous-
tic model training; and exploring transparent methods for adapting
generic models to a specific task so as to achieve a higher degree of
genericity.

1. INTRODUCTION
The last decade has seen impressive advances in the ca-

pability and performance of speech recognizers. Todays
state-of-the-art systems are able to transcribe unrestricted
continuous speech from broadcast data with acceptable per-
formance. The advances arise from the increased accuracy
and complexity of the models, which are closely related to
the availability of large spoken and text corpora for training,
and the wide availability of faster and cheaper computational
means which have enabled the development and implemen-
tation of better training and decoding algorithms. Despite
the extent of progress over the recent years, recognition ac-
curacy is still extremely sensitive to the environmental con-
ditions and speaking style: channel quality, speaker charac-
teristics, and background noise have an important impact on
the acoustic component of the speech recognizer, whereas
the speaking style and the discourse domain have a large im-
pact on the linguistic component.

In the context of the EC IST-1999 11876 project CORE-
TEX we are investigating methods for fast system develop-
ment, as well as development of systems with high generic-
ity and adaptability. By fast system development we refer to:

language support, i.e., the capability of porting technology
to different languages at a reasonable cost; and task porta-
bility, i.e. the capability to easily adapt a technology to a
new task by exploiting limited amounts of domain-specific
knowledge. Genericity and adaptability refer to the capacity
of the technology to work properly on a wide range of tasks
and to dynamically keep models up to date using contempo-
rary data. The more robust the initial generic system is, the
less there is a need for adaptation. Concerning the acoustic
modeling component, genericity implies that it is robust to
the type and bandwidth of the channel, the acoustic environ-
ment, the speaker type and the speaking style. Unsupervised
normalisation and adaptation techniques evidently shouldbe
used to enhance performance further when the system is ex-
posed to data of a particular type.

With today’s technology, the adaptation of a recognition
system to a new task or new language requires the availabil-
ity of sufficient amount of transcribed training data. When
changing to new domains, usually no exact transcriptions of
acoustic data are available, and the generation of such tran-
scribed data is an expensive process in terms of manpower
and time. On the other hand, there often exist incomplete in-
formation such as approximate transcriptions, summaries or
at least key words, which can be used to provide supervision
in what can be referred to as “informed speech recognition”.
Depending on the level of completeness, this information
can be used to develop confidence measures with adapted
or trigger language models or by approximate alignments
to automatic transcriptions. Another approach is to use ex-
isting recognizer components (developed for other tasks or
languages) to automatically transcribe task-specific training
data. Although in the beginning the error rate on new data
is likely to be rather high, this speech data can be used to
re-train a recognition system. If carried out in an iterative
manner, the speech data base for the new domain can be cu-
mulatively extended over timewithout direct manual tran-
scription.

The overall objective of the work presented here is to re-
duce the speech recognition development cost. One aspect
is to develop “generic” core speech recognition technology,
where by “generic” we mean a transcription engine that will
work reasonably well on a wide range of speech transcrip-
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tion tasks, ranging from digit recognition to large vocabu-
lary conversational telephony speech, without the need for
costly task-specific training data. To start with we assess
the genericity of wide domain models under cross-task con-
ditions, i.e., by recognizing task-specific data with a recog-
nizer developed for a different task. We chose to evaluate
the performance of broadcast news acoustic and language
models, on three commonly used tasks: small vocabulary
recognition (TI-digits), read and spontaneous text dictation
(WSJ), and goal-oriented spoken dialog (ATIS). The broad-
cast news task is quite general, covering a wide variety of
linguistic and acoustic events in the language, ensuring rea-
sonable coverage of the target task. In addition, there are suf-
ficient acoustic and linguistic training data available forthis
task that accurate models covering a wide range of speaker
and language characteristics can be estimated.

Another research area is the investigation of lightly super-
vised techniques for acoustic model training. The strategy
taken is to use a speech recognizer to transcribe unannotated
data, which are then used to estimate more accurate acous-
tic models. The light supervision is applied to the broadcast
news task, where unlimited amounts of acoustic training data
are potentially available. Finally we apply the lightly super-
vised training idea as a transparent method for adapting the
generic models to a specific task, thus achieving a higher de-
gree of genericity. In this work we focus on reducing train-
ing costs and task portability, and do not address language
transfer.

We selected the LIMSI broadcast news (BN) transcription
system as the generic reference system. The BN task cov-
ers a large number of different acoustic and linguistic situa-
tions: planned to spontaneous speech; native and non-native
speakers with different accents; close-talking microphones
and telephone channels; quiet studio, on-site reports in noisy
places to musical background; and a variety of topics. In
addition, a lot of training resources are available including
a large corpus of annotated audio data and a huge amount
of raw audio data for the acoustic modeling; and large col-
lections of closed-captions, commercial transcripts, newspa-
pers and newswires texts for linguistic modeling. The next
section provides an overview of the LIMSI broadcast news
transcription system used as our generic system.

2. SYSTEM DESCRIPTION

The LIMSI broadcast news transcription system has two
main components, the audio partitioner and the word rec-
ognizer. Data partitioning [6] serves to divide the contin-
uous audio stream into homegenous segments, associating
appropriate labels for cluster, gender and bandwidth with the
segments. The speech recognizer uses continuous density
HMMs with Gaussian mixture for acoustic modeling andn-
gram statistics estimated on large text corpora for language
modeling. Each context-dependent phone model is a tied-

state left-to-right CD-HMM with Gaussian mixture observa-
tion densities where the tied states are obtained by means
of a decision tree. Word recognition is performed in three
steps: 1) initial hypothesis generation, 2) word graph gener-
ation, 3) final hypothesis generation. The initial hypotheses
are used for cluster-based acoustic model adaptation using
the MLLR technique [13] prior to word graph generation. A
3-gram LM is used in the first two decoding steps. The fi-
nal hypotheses are generated with a 4-gram LM and acoustic
models adapted with the hypotheses of step 2.

In the baseline system used in DARPA evaluation tests,
the acoustic models were trained on about 150 hours of au-
dio data from the DARPA Hub4 Broadcast News corpus
(the LDC 1996 and 1997 Broadcast News Speech collec-
tions) [9]. Gender-dependent acoustic models were built us-
ing MAP adaptation of SI seed models for wideband and
telephone band speech [7]. The models contain 28000
position-dependent, cross-word triphone models with 11700
tied states and approximately 360k Gaussians [8].

The baseline language models are obtained by interpola-
tion of models trained on 3 different data sets (excluding the
test epochs): about 790M words of newspaper and newswire
texts; 240M word of commercial broadcast news transcripts;
and the transcriptions of the Hub4 acoustic data. The recog-
nition vocabulary contains 65120 words and has a lexical
coverage of over 99% on all evaluation test sets from the
years 1996-1999. A pronunciation graph is associated with
each word so as to allow for alternate pronunciations. The
pronunciations make use of a set of 48 phones set, where 3
phone units represent silence, filler words, and breath noises.
The lexicon contains compound words for about 300 fre-
quent word sequences, as well as word entries for common
acronyms, providing an easy way to allow for reduced pro-
nunciations [6].

The LIMSI 10x system obtained a word error of 17.1% on
the 1999 DARPA/NIST evaluation set and can transcribe un-
restricted broadcast data with a word error of about 20% [8].

3. TASK INDEPENDENCE

Our first step in developing a “generic” speech tran-
scription engine is to assess the most generic system we
have under cross-task conditions, i.e., by recognizing task-
specific data with a recognizer developed for a different
task. Three representative tasks have been retained as tar-
get tasks: small vocabulary recognition (TI-digits), goal-
oriented human-machine spoken dialog (ATIS), and dicta-
tion of texts (WSJ). The broadcast news transcription task
(Hub4E) serves as the baseline. The main criteria for the
task selection were that they are realistic enough and task-
specific data should be available. The characteristics of these
four tasks and the available corpora are summarized in Ta-
ble 1.

For the small vocabulary recognition task, experiments
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Corpus Test Year Task Train (#spkr) Test (#spkr) Textual Resources Best WER
BN 98 TV & Radio News 200h 3h Closed-captions, commercial transcripts,

manual transcripts of audio data
13.5

TI-digits 93 Small Vocabulary 3.5h (112) 4h (113) - 0.2
ATIS 93 H-M Dialog 40h (137) 5h (24) Transcriptions 2.5
WSJ 95 News Dictation 100h (355) 45mn (20) Newspaper, newswire 6.6

S9 WSJ 93 Spontaneous Dictation 43mn (10) Newspaper, newswire 19.1

Table 1: Brief descriptions and best reported error rates for the corpora used in this work.

are carried out on the adult speaker portion of the TI-digits
corpus [14], containing over 17k utterances from a total of
225 speakers. The vocabulary contains 11 words, the dig-
its ‘1’ to ‘9’, plus ‘zero’ and ‘oh’. Each speaker uttered
two versions of each digit in isolation and 55 digit strings.
The database is divided into training and test sets (roughly
3.5 hours each, corresponding to 9k strings). The speech
is of high quality, having been collected in a quiet environ-
ment. The best reported WERs on this task are around 0.2-
0.3%. The digit phonemic coverage being very low, only
108 context-dependent models are used in our recognition
system. The task-specific LM for the TI-digits is a simple
grammar allowing any sequence of up to 7 digits. Our task-
dependent system performance is 0.4% WER.

The DARPA Air Travel Information System(ATIS) task
is chosen as being representative of a goal-oriented human-
machine dialog task, and the ARPA 1994 Spontaneous
Speech Recognition (SPREC) ATIS-3 data (ATIS94) [4] is
used for testing purposes. The test data amounts for nearly
5 hours of speech from 24 speakers recorded with a close-
talking microphone. Around 40h of speech data are avail-
able for training. The word error rates for this task in the
1994 evaluation were mainly in the range of 2.5% to 5%,
which we take as state-of-the-art for this task. The acous-
tic models used in our task-specific system include 1641
context-dependent phones with 4k independent HMM states.
A back-off trigram language model has been estimated on
the transcriptions of the training utterances. The lexiconcon-
tains 1300 words, with compounds words for multiword en-
tities in the air-travel database (city and airport names, ser-
vices etc.). The WER obtained with our task-dependent sys-
tem is 4.4%.

For the dictation task, theWall Street Journalcontinu-
ous speech recognition corpus [17] is used, abiding by the
ARPA 1995 Hub3 test (WSJ95) conditions. The acoustic
training data consist of 100 hours of speech from a total of
355 speakers taken from the WSJ0 and WSJ1 corpora. The
Hub3 baseline test data consist of studio quality read speech
from 20 speakers with a total duration of 45 minutes. The
best result reported at the time of the evaluation was 6.6%. A
contrastive experiment is carried out with the WSJ93 Spoke
9 data comprised of 200 spontaneous sentences spoken by
journalists [11]. The best performance reported in the 1993
evaluation on the spontaneous data was 19.1% [18], however

Test Set BN models Task LMs Task models
BN98 13.6 13.6 13.6
TI-digits 17.5 1.7 0.4
ATIS94 22.7 4.7 4.4
WSJ95 11.6 9.0 7.6
S9WSJ93 12.1 13.6 15.3

Table 2: Word error rates (%) for BN98, TI-digits, ATIS94, WSJ95
and S9WSJ93 test sets after recognition with three different con-
figurations: (left) BN acoustic and language models; (center) BN
acoustic models combined with task-specific lexica and LMs and
(right) task-dependent acoustic and language models.

lower word error rates have since been reported on compara-
ble test sets (14.1% on the WSJ94 Spoke 9 test data). 21000
context and position-dependent models have been trained for
the WSJ system, with 9k independent HMM states. A 65k-
word vocabulary was selected and a back-off trigram model
obtained by interpolating models trained on different data
sets (training utterance transcriptions and newspapers data).
The task-dependent WSJ system has a WER of 7.6% on the
read speech test data and 15.3% on the spontaneous data.

For the BN transcription task, we follow the conditions
of the 1998 ARPA Hub4E evaluation (BN98) [15]. The
acoustic training data is comprised of 150 hours of North-
American TV and radio shows. The best overall result on
the 1998 baseline test was 13.5%.

Three sets of experiments are reported. The first are cross-
task recognition experiments carried out using the BN acous-
tic and language models to decode the test data for the other
tasks. The second set of experiments made use of mixed
models, that is the BN acoustic models and task-specific
LMs. Due to the different evaluation paradigms, some mi-
nor modifications were made in the transcription procedure.
First of all, in contrast with the BN data, the data for the 3
tasks is already segmented into individual utterances so the
partitioning step was eliminated. With this exception, the
decoding process for the WSJ task is exactly the same as de-
scribed in the previous section. For the TI-digits and ATIS
tasks, word decoding is carried out in a single trigram pass,
and no speaker adaptation was performed.

The WERs obtained for the three recognition experiments
are reported in Table 2. A comparison with Table 1 shows
that the performances of the task-dependent models are close
to the best reported results even though we did not devote
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too much effort in optimizing these models. We can also
observe by comparing the task-dependent (Table 2, right)
and mixed (Table 2, middle) conditions, that the BN acous-
tic models are relatively generic. These models seem to be
a good start towards truly task-independent acoustic mod-
els. By using task-specific language models For the TI-digits
and ATIS we can see that the gap in performance is mainly
due a linguistic mismatch. For WSJ the language models are
more closely matched to BN and only a small 1.6% WER re-
duction is obtained. On the spontaneous journalist dictation
(WSJ S9 spoke) test data there is even an increase in WER
using the WSJ LMs, which can be attributed to a better mod-
elization of spontaneous speech effects (such as breath and
filler words) in the BN models.

Prior to introducing our approach for lightly supervised
acoustic model training, we describe our standard training
procedure in the next section.

4. ACOUSTIC MODEL TRAINING

HMM training requires an alignment between the audio
signal and the phone models, which usually relies on a per-
fect orthographic transcription of the speech data and a good
phonetic lexicon. In general it is easier to deal with rel-
atively short speech segments so that transcription errors
will not propagate and jeopardize the alignment. The ortho-
graphic transcription is usually considered as ground truth
and training is done in a closely supervised manner. For
each speech segment the training algorithm is provided with
the exact orthographic transcription of what was spoken, i.e.,
the word sequence that the speech recognizer should hypoth-
esize when confronted with the same speech segment.

Training acoustic models for a new corpus (which could
also reflect a change of task and/or language), usually entails
the following sequence of operations once the audio data and
transcription files have been loaded:

1. Normalize the transcriptions to a common format (some
adjustment is always needed as different text sources
make use of different conventions).

2. Produce a word list from the transcriptions and correct
blatant errors (these include typographical errors and in-
consistencies).

3. Produce a phonemic transcription for all words not in
our master lexicon (these are manually verified).

4. Align the orthographic transcriptions with the signal us-
ing existing models and the pronunciation lexicon (or
bootstrap models from another task or language). This
procedure often rejects a substantial portion of the data,
particularly for long segments.

5. Eventually correct transcription errors and realign (or
just ignore these if enough audio data is available)

6. Run the standard EM training procedure.

This sequence of operations is usually iterated several
times to refine the acoustic models. In general each itera-
tion recovers a portion of the rejected data.

5. LIGHTLY SUPERVISED AM TRAINING

One can imagine training acoustic models in a less su-
pervised manner, by using an iterative procedure where in-
stead of using manual transcriptions for alignment, at each
iteration the most likely word transcription given the cur-
rent models and all the information available about the audio
sample is used. This approach still fits within the EM train-
ing framework, which is well-suited for missing data training
problems. A completely unsupervised training procedure is
to use the current best models to produce an orthographic
transcription of the training data, keeping only words that
have a high confidence measure. Such an approach, while
very enticing, is limited since the only supervision is pro-
vided by the confidence measure estimator. This estimator
must in turn be trained on development data, which needs to
be small to keep the approach interesting.

Between using carefully annotated data such as the de-
tailed transcriptions provided by the LDC and no transcrip-
tion at all, there is a wide spectrum of possibilities. What
is really important is the cost of producing the associated
annotations. Detailed annotation requires on the order of 20-
40 times real-time of manual effort, and even after manual
verification the final transcriptions are not exempt from er-
rors [2]. Orthographic transcriptions such as closed-captions
can be done in a few times real-time, and therefore are quite
a bit less costly. These transcriptions have the advantage that
they are already available for some television channels, and
therefore do not have to be produced specifically for training
speech recognizers. However, closed-captions are a close,
but not exact transcription of what is being spoken, and are
only coarsely time-aligned with the audio signal. Hesita-
tions and repetitions are not marked and there may be word
insertions, delections and changes in the word order. They
also are missing some of the additional information provided
in the detailed speech transcriptions such as the indication
of acoustic conditions, speaker turns, speaker identitiesand
gender and the annotation of non-speech segments such as
music. NIST found the disagreement between the closed-
captions and manual transcripts on a 10 hour subset of the
TDT-2 data used for the SDR evaluation to be on the order
of 12% [5].

Another approach is to make use of other possible sources
of comtemporaneous texts from newpapers, newswires,
summaries and the internet. However, since these sources
have only an indirect correspondence with the audio data,
they provide less supervision.

The basic idea is of light supervision is to use a speech
recognizer to automatically transcribe unannotated data,thus
generating “approximate” labeled training data. By itera-

**** DRAFT **** DRAFT **** Lamel-Lefevre-Gauvain-Adda *** * DRAFT **** DRAFT ****



tively increasing the amount of training data, more accurate
acoustic models are obtained, which can then be used to tran-
scribe another set of unannotated data. The modified training
procedure used in this work is:

1. Train a language model on all texts and closed captions
after normalization

2. Partition each show into homogeneous segments and
label the acoustic attributes (speaker, gender, band-
width) [6]

3. Train acoustic models on a very small amount of man-
ually annotated data (1h)

4. Automatically transcribe a large amount of training data
5. (Optional) Align the closed-captions and the automatic

transcriptions (using a standard dynamic programming
algorithm)

6. Run the standard acoustic model training procedure on
the speech segments (in the case of alignment with the
closed captions only keep segmentswhere the two tran-
scripts are in agreement)

7. Reiterate from step 4.

It is easy to see that the manual work is considerably
reduced, not only in generating the annotated corpus but
also during the training procedure, since we no longer need
to extend the pronunciation lexicon to cover all words and
word fragments occurring in the training data and we do
not need to correct transcription errors. This basic idea was
used to train acoustic models using the automatically gener-
ated word transcriptions of the 500 hours of audio broad-
casts used in the spoken document retreival task (part of
the DARPA TDT-2 corpus used in the SDR’99 and SDR’00
evaluations) [3].

First, the recognition performance as a function of the
available acoustic and language model training data was as-
sessed. Then we investigated the accuracy of the acoustic
models obtained after recognizing the audio data using dif-
ferent levels of supervision via the language model. With
the exception of the baseline Hub4 language models, none
of the language models include a component estimated on
the transcriptions of the Hub4 acoustic training data. The
language model training texts come from contemporaneous
sources such as newpapers and newswires, and commercial
summaries and transcripts, and closed-captions. The former
sources have only an indirect correspondence with the audio
data and provide less supervision than the closed captions.
For each set of LM training texts, a new word list was se-
lected based on the word frequencies in the training data. All
language models are formed by interpolating individual LMs
built on each text source. The interpolation coefficients were
chosen in order to minimize the perplexity on a development
set composed of the second set of the Nov98 evaluation data
(3h) and a 2h portion of the TDT2 data from Jun98 (not in-
cluded in the LM training data). The followingcombinations
were investigated:

� LMa (baseline Hub4 LM): newspaper+newswire(NEWS), com-
mercial transcripts (COM) predating Jun98, acoustic transcripts� LMn t c: NEWS, COM, closed-captions through May98� LMn t: NEWS, COM through May98� LMn c: NEWS, closed-captions through May98� LMn: NEWS through May98� LMn to: NEWS through May98, COM through Dec97� LMno: NEWS through Dec97

It should be noted that all of the conditions include news-
paper and newswire texts from the same epoch as the audio
data. These provide an important source of knowledge par-
ticularly with respect to the vocabulary items. Conditions
which include the closed captions in the LM training data
provide additional supervision in the decoding process when
transcribing audio data from the same epoch.

For testing purposes we use the 1999 Hub4 evaluation
data, which is comprised of two 90 minute data sets se-
lected by NIST. The first set was extracted from 10 hours
of data broadcast in June 1998, and the second set from a
set of broadcasts recorded in August-September 1998 [16].
All recognition runs were carried out in under 10xRT unless
stated otherwise. The LIMSI 10x system obtained a word
error of 17.1% on the evaluation set (the combined scores in
the penultimate row in Table 3 4S, LMa) [8]. The word error
can be reduced to 15.6% for a system running at 50xRT (last
entry in Table 3).

As can be seen in Table 3, the word error rates with our
original Hub4 language model (LMa) and the one without
the transcriptions of the acoustic data (LMnt c) give compa-
rable results using the 1999 acoustic models trained on 123
hours of manually annotated data (123h, 4S). The quality
of the different language models listed above are compared
in the first row of Table 3 using speaker-independent (1S)
acoustic models trained on the same Hub4 data (123h). As
can be observed, removing any text source leads to a degra-
dation in recognition performance. It appears it is more im-
portant to include commercial transcripts (LMnt), even if
they are old (LMnto) than the closed captions (LMnc).

Training Conditions bn991 bn992 Average
1h 1S, LMn t c 35.2 31.9 33.3

69h 1S, LMn t c 20.2 18.0 18.9
123h 1S, LMn t c 19.3 17.1 18.0
123h 4S, LMn t c 18.5 16.1 17.1
123h 4S, LMa 18.3 16.3 17.1
123h 4S, LMa, 50x 17.1 14.5 15.6

Table 3: Word error rate for various conditions using acoustic mod-
els trained on the HUB4 training data with detailed manual tran-
scriptions. All runs were done in less than 10xRT, except thelast
row. “1S” designates one set of gender-independant acoustic mod-
els, whereas “4S” designates four sets of gender and bandwidth
dependent acoustic models.

**** DRAFT **** DRAFT **** Lamel-Lefevre-Gauvain-Adda *** * DRAFT **** DRAFT ****



Amount of training data %werr
raw unfiltered LMn t c LMn t LMn c LMn LMn to LMno
150h 123h 18.0 18.6 19.1 20.6 18.7 20.9

1h 1h 33.3 33.7 34.4 35.9 33.9 36.1
14h 8h 26.4 27.6 27.4 29.0 27.6 30.6
28h 17h 25.2 25.7 25.6 28.1 25.7 28.9
58h 28h 24.3 25.2 25.7 27.4 25.1 27.9

Table 4: Word error rate for different language models and increasing quantities of automatically labeled training data on the 1999 evaluation
test sets using gender and bandwidth independent acoustic models. LMn t c: NEWS, COM, closed-captions through May98LMn t:
NEWS, COM through May98LMn c: NEWS, closed-captions through May98LMn: NEWS through May98LMn to: NEWS through
May98, COM through Dec97LMno: NEWS through Dec97.

Amount of training data %werr
raw unfiltered filtered unfiltered filtered
14h 8h 6h 26.4 25.7
28h 7h 13h 25.2 23.7
58h 28h 21h 24.3 22.5

140h 76h 57h 22.4 21.1
287h 140h 108h 21.0 19.9
503h 238h 188h 20.2 19.4

Table 5: Word error rates for increasing quantities of automati-
cally label training data on the 1999 evaluation test sets using gen-
der and bandwidth independent acoustic models with the language
model LMn t c (trained on NEWS, COM, closed-captions through
May98).

This suggests that the commercial transcripts more accu-
rately represent spoken language than closed-captioning.
Even if only newspaper and newswire texts are available
(LMn), the word error increases by only 14% over the best
configuration (LMnt c), and even using older newspaper
and newswire texts (LMno) does not substantially increase
the word error rate. The second row of Table 3 gives the
word error rates with acoustic models trained on only 1 hour
of manually transcribed data. These are the models used
to initialize the process of automatically transcribing large
quantities of data. These word error rates range from 33% to
36% across the language models.

We compared a straightforward approach of training on
all the automatically annotated data with one in which the
closed-captions are used to filter the hypothesized transcrip-
tions, removing words that are “incorrect”. To our sur-
prise, somewhat comparable recognition results were ob-
tained both with and without filtering, suggesting that inclu-
sion of the closed-captions in the language model training
material provided sufficient supervision (see Table 5).

To investigate this further we are assessing the effects of
reducing the amount of supervision provided by the lan-
guage model training texts on the acoustic model accuracy
(see Table 4). With 14 hours (raw) of approximately la-
beled training data, the word error is reduced by about 20%
for all LMs compared with training on 1h of data which
has carefully manual transcriptions. Using larger amounts
of data transcribed with the same initial acoustic models

gives smaller improvements, as seen by the entries for 28h
and 58h. The commercial transcripts (LMn+t and LMn+to),
even if predating the data epoch, are seen to be more impor-
tant than the closed-captions (LMn+c), supporting the earlier
observation that they are closer to spoken language. Even
if only news texts from the same period (LMn) are avail-
able, these provide adequate supervision for lightly super-
vised acoustic model training.

6. TASK ADAPTATION

The experiments reported in the section 3 show that while
direct recognition with the reference BN acoustic models
gives relatively competitive results, the WER on the targeted
tasks can still be improved. Since we want to minimize the
cost and effort involved in tuning to a target task, we are
investigating methods to transparently adapt the reference
acoustic models. By transparent we mean that the proce-
dure is automatic and can be carried out without any human
expertise. We therefore apply the approach presented in the
previous section, that is the reference BN system is used to
transcribe the training data of the destination task. This sup-
poses of course that audio data have been collected. How-
ever, this can be carried out with an operational system and
the cost of collecting task-specific training data is greatly re-
duced since no manual transcriptions are needed. The per-
formance of the BN models under cross task conditions is
well within the range for which the approximate transcrip-
tions can be used for acoustic model adaptation.

The reference acoustic models are then adapted by means
of a conventional adaptation technique such as MLLR and
MAP. Thus there is no need to design a new set of models
based on the training data characteristics. Adaptation is also
preferred to the training of new models as it is likely that
the new training data will have a lower phonemic contextual
coverage than the original reference models.

The cross-task unsupervised adaptation is evaluated for
the tasks: TI-digits, ATIS and WSJ. The 100 hours of the
WSJ data were transcribed using the BN acoustic and lan-
guage models. For ATIS, only 26 of the 40 hours of training
data from 276 speakers were transcribed, due to time con-
straints. For TI-digits, the training data was transcribedus-
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Test Set BN models Unsupervised Adaptation Supervised Adaptation Task-dep. models
BN models BN models

TI-digits 1.7 0.8 0.5 0.4
ATIS94 4.7 4.7 3.2 4.4
WSJ95 9.0 6.9 6.7 7.6
S9WSJ93 13.6 12.6 11.4 15.3

Table 6: Word error rates (%) for TI-digits, ATIS94, WSJ95 and S9WSJ93 test sets after recognition with three different configurations, all
including task-specific lexica and LMs: (left) BN acoustic models, (middle left) unsupervised adaptation of the BN acoustic models, (middle
right) supervised adaptation of the BN acoustic models and (right) task-dependent acoustic models.

ing a mixed configuration, combining the BN acoustic mod-
els with the simple digit loop grammar.1 For completeness
we also used the task-specific audio data and the associated
transcriptions to carry out supervised adaptation of the BN
models.

Gender-dependent acoustic models were estimated using
the corresponding gender-dependent BN models as seeds
and the gender-specific training utterances as adaptation
data. For WSJ and ATIS, the speaker ids were directly used
for gender identification since in previous experiments with
this test set there were no gender classification errors. Only
the acoustic models used in the second and third word de-
coding passes have been adapted. For the TI-digits, the gen-
der of each training utterance was automatically classifiedby
decoding each utterance twice, once with each set of gender-
dependent models. Then, the utterance gender was deter-
mined based on the best global score between the male and
female models (99.0% correct classification).

Both the MLLR and MAP adaptation techniques were ap-
plied. The recognition tests were carried out under mixed
conditions (i.e., with the adapted acoustic models and the
task-dependent LM). The BN models are first adapted us-
ing MLLR with a global transformation, followed by MAP
adaptation.

The word error rates obtained with the task-adapted BN
models are given in Table 6 for the four test sets. Using unsu-
pervised adapation the performance is improved for Tidigits
(53% relative), WSJ (19% relative) and S9 (7% relative).

The manual transcriptions for the targeted tasks were used
to carry out supervised model adaptation. The results (see
the 4th column of Table 6) show a clear improvement over
unsupervised adaptation for both the TI-digits (60% relative)
and ATIS (47% relative) tasks. A smaller gain of about 10%
relative is obtained for the spontaneous dictation task, and
only 3% relative for read WSJ data. The gain appears to
be correlated with the WER of the transcribed data: the dif-
ference between BN and task specific models is smaller for
WSJ than ATIS and TI-digits. The TI-digit task is the only
task for which the best performance is obtained using task-
dependent models rather than BN models adapted with su-1 In order to assess the quality of the automatic transcription, we com-
pared the system hypotheses to the manually provided training transcrip-
tions. For resulting word error rates on the training data are 11.8% for WSJ,
29.1% for ATIS and 1.2% for TI-digits.

pervised. For the other tasks, the lowest WER is obtained
when the supervised adapted BN acoustic models are used:
3.2% for ATIS, 6.7% for WSJ and 11.4% for S9. This re-
sult confirms our hypothesis that better performance can be
achieved by adapting generic models with task-specific data
than by directly training task-specific models.

7. CONCLUSIONS

This paper has explored methods to reduce the cost of
developing models for speech recognizers. Two main axes
have been explored: developing generic acoustic models and
the use of low cost data for acoustic model training.

We have explored the genericity of state-of-the-art speech
recognition systems, by testing a relatively wide-domain
system on data from three tasks ranging in complexity. The
generic models were taken from the broadcast news task
which covers a wide range of acoustic and linguistic condi-
tions. These acoustic models are relatively task-independent
as there is only a small increase in word error relative to
the word error obtained with task-dependent acoustic mod-
els, when a task-dependent language model is used. There
remains a large difference in performance on the digit recog-
nition task which can be attributed to the limited phonetic
coverage of this task. On a spontaneous WSJ dictation task,
the broadcast news acoustic and language are more robust to
deviations in speaking style than the read-speech WSJ mod-
els. We also have shown that unsupervised acoustic model
adaptation can reduce the performance gap between task-
independent and task-dependent acoustic models, and that
supervised adaptation of generic models can lead to better
performance than that achieved with task-specific models.
Both supervised and unsupervised adaptation are less effec-
tive for the digits task indicating that these may be a special
case.

We have investigated the use of low cost data to train
acoustic models for broadcast news transcription, with su-
pervision provided the language models. Recognition re-
sults obtained with acoustic models trained on large quan-
tities of automatically annotated data are comparable (under
a 10% relative increase in word error) to results obtained
with acoustic models trained on large quantities of manu-
ally annoted data. Given the significantly higher cost of
detailed manual transcription (substantially more time con-
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suming than producing commercial transcripts, and more
expensive since closed captions and commercial transcripts
are produced for other purposes), such approaches are very
promising as they require substantial computation time, but
little manual effort. Another advantage offered by this ap-
proach is that there is no need to extend the pronunciation
lexicon to cover all words and word fragments occurring in
the training data. By eliminating the need for manual tran-
scription, automated training can be applied to essentially
unlimited quantities of task-specific training data. Whilethe
focus of our work has been on reducing training costs and
task portability, we have been exploring these in a multilin-
gual context.

REFERENCES
[1] G. Adda, M. Jardino, J.L. Gauvain, “Language Modeling for

Broadcast News Transcription,”ESCA Eurospeech’99, Bu-
dapest,4, pp. 1759-1760, Sept. 1999.

[2] C. Barras, E. Geoffrois et al.,“Transcriber: development and
use of a tool for assisting speech corpora production,”Speech
Communication, 33(1-2), pp. 5-22, Jan. 2001.

[3] C. Cieri, D. Graff, M. Liberman, “The TDT-2 Text and
Speech Corpus,”DARPA Broadcast News Workshop, Hern-
don. (see also http://morph.ldc.upenn.edu/TDT).

[4] D. Dahl, M. Bateset al., “Expanding the Scope of the ATIS
Task : The ATIS-3 Corpus,”Proc. ARPA Spoken Language
Systems Technology Workshop, Plainsboro, NJ, pp. 3-8, 1994.

[5] J. Garofolo, C. Auzanne, E. Voorhees, W. Fisher, ”1999
TREC-8 Spoken Document Retrieval Track Overview and
Results,”8th Text Retrieval Conference TREC-8, Nov. 1999.

[6] J.L. Gauvain, G. Adda,et al., “Transcribing Broadcast News:
The LIMSI Nov96 Hub4 System,”Proc. ARPA Speech Recog-
nition Workshop, pp. 56-63, Chantilly, Feb. 1997.

[7] J.L. Gauvain, C.H. Lee, “Maximuma PosterioriEstimation
for Multivariate Gaussian Mixture Observation of Markov
Chains,”IEEE Trans. on SAP, 2(2), pp. 291-298, April 1994.

[8] J.L. Gauvain, L. Lamel, “Fast Decoding for Indexation of
Broadcast Data,”ICSLP’2000, 3, pp. 794-798, Beijing, Oct.
2000.

[9] D. Graff, “The 1996 Broadcast News Speech and Language-
Model Corpus,”Proc. DARPA Speech Recognition Workshop,
Chantilly, VA, pp. 11-14, Feb. 1999.

[10] T. Kemp, A. Waibel, “Unsupervised Training of a Speech
Recognizer: Recent Experiments,”Eurospeech’99, 6, Bu-
dapest, pp. 2725-2728, Sept. 1999.

[11] F. Kubala, J. Cohenet al., “The Hub and Spoke Paradigm
for CSR Evaluation,”Proc. ARPA Spoken Language Systems
Technology Workshop, Plainsboro, NJ, pp. 9-14, 1994.

[12] L. Lamel, J.L. Gauvain, G. Adda, “Lightly Supervised Acous-
tic Model Training,” Proc. ISCA ITRW ASR2000, pp. 150-
154, Paris, Sept. 2000.

[13] C.J. Leggetter, P.C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hid-
den Markov models,”Computer Speech & Language, 9(2),
pp. 171-185, 1995.

[14] R.G. Leonard, “A Database for speaker-independent digit
recognition,”Proc. ICASSP, 1984.

[15] D.S. Pallett, J.G. Fiscus,et al. “1998 Broadcast News Bench-
mark Test Results,”Proc. DARPA Broadcast News Workshop,
pp. 5-12, Herndon, VA, Feb. 1999.

[16] D. Pallett, J. Fiscus, M. Przybocki, “Broadcast News 1999
Test Results,”NIST/NSA Speech Transcription Workshop,
College Park, May 2000.

[17] D.B. Paul, J.M. Baker, “The Design for the Wall Street
Journal-based CSR Corpus,”Proc. ICSLP, Kobe, Nov. 1992.

[18] G. Zavaliagkos, T. Anastsakoset al., “Improved Search,
Acoustic, and Language Modeling in the BBN BYBLOS
Large Vocabulary CSR Systems,”Proc. ARPA Spoken Lan-
guage Systems Technology Workshop, Plainsboro, NJ, pp. 81-
88, 1994.

[19] G. Zavaliagkos, T. Colthurst, “Utilizing Untranscribed Train-
ing Data to Improve Performance,”DARPA Broadcast News
Transcription and Understanding Workshop, Landsdowne,
pp. 301-305, Feb. 1998.

**** DRAFT **** DRAFT **** Lamel-Lefevre-Gauvain-Adda *** * DRAFT **** DRAFT ****


