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ABSTRACT language support, i.e., the capability of porting techgglo
Although there has been regular improvement in speechrécog to different languages at a reasonable cost; and task porta-
tion technology over the past decade, speech recognitfanfiem bility, i.e. the capability to easily adapt a technology to a

being a solved problem. Most recognition systems are tuned t  new task by exploiting limited amounts of domain-specific
particular task and porting the system to a new task (or laggl  knowledge. Genericity and adaptability refer to the cayaci
still requires substantial investment of time and mone_w,vel_i;_as of the technology to work properly on a wide range of tasks
expertise. Todays state-of-the-art systems rely on thisatikity and to dynamically keep models up to date using contempo-
of large amounts of manually transcribed data for acoustideh rary data. The more robust the initial generic system is, the
training and large normalized text corpora for language ehod less there is a need for adaptation. Concerning the acc;ustic

training. Obtaining such data is both time-consuming arpgkax deli icity impli hat it i b
sive, requiring trained human annotators with substaatiaunts modeling component, genericity implies that it Is robust to

of supervision. the type and bandwidth of the channel, the acoustic environ-
In this paper we address issues in speech recognizer fertabi ment, the speaker type and the speaking style. Unsupervised

ity and activities aimed at developing generic core speecbgni- normalisation and adaptation techniques evidently shioaild

tion technology, in order to reduce the manual effort reeglifor used to enhance performance further when the system is ex-

system development. Three main axes are pursued: ass#sing posed to data of a particular type.

genericity of wide domain models by evaluating performamoger . , . .
several tasks; investigating techniques for lightly sujsed acous- With today’s technology, the adaptation of a recognition

tic model training; and exploring transparent methods ftagging system to a new task or new language requires the availapil-

generic models to a specific task so as to achieve a highezelegr 1ty Of sufficient amount of transcribed training data. When
genericity. changing to new domains, usually no exact transcriptions of

acoustic data are available, and the generation of such tran
1. INTRODUCTION scribed data is an expensive process in terms of manpower
The last decade has seen impressive advances in the cnd time. On the other hand, there often exist incomplete in-
pability and performance of speech recognizers. Todaysformatlon such as app_roxmate transcrlptlons_, summaries o
state-of-the-art systems are able to transcribe unremtric &t least key words, which can be used to provide supervision
continuous speech from broadcast data with acceptable perl? What can be referred to as “informed speech recognition”.
formance. The advances arise from the increased accuracy?€P€nding on the level of completeness, this information
and complexity of the models, which are closely related to c@n be used to develop confidence measures with adapted
the availability of large spoken and text corpora for trapyi O trigger language models or by approximate alignments
and the wide availability of faster and cheaper computafion [0 @utomatic transcriptions. Another approach is to use ex-
means which have enabled the development and implemeniSting recognizer components (developed for other tasks or
tation of better training and decoding algorithms. Despite languages) to automatically transcribe task-specificimai
the extent of progress over the recent years, recognition ac data. Although in the beginning the error rate on new data
curacy is still extremely sensitive to the environmentaico IS likely to be rather high, this speech data can be used to
ditions and speaking style: channel quality, speaker chara re-train a recognition system. If carried out in an iterativ
teristics, and background noise have an important impact onManner, the speech data base for the new domain can be cu-
the acoustic component of the speech recognizer, Whereaénu_lat]vely extended over timeithout direct manual tran-
the speaking style and the discourse domain have a large imSCcription.
pact on the linguistic component. The overall objective of the work presented here is to re-
In the context of the EC IST-1999 11876 projecbRE- duce the speech recognition development cost. One aspect
TEX we are investigating methods for fast system develop- is to develop “generic” core speech recognition technology
ment, as well as development of systems with high generic-where by “generic” we mean a transcription engine that will
ity and adaptability. By fast system development we referto work reasonably well on a wide range of speech transcrip-
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tion tasks, ranging from digit recognition to large vocabu- state left-to-right CD-HMM with Gaussian mixture observa-
lary conversational telephony speech, without the need fortion densities where the tied states are obtained by means
costly task-specific training data. To start with we assessof a decision tree. Word recognition is performed in three
the genericity of wide domain models under cross-task con- steps: 1) initial hypothesis generation, 2) word graph gene
ditions, i.e., by recognizing task-specific data with a geco  ation, 3) final hypothesis generation. The initial hypotses
nizer developed for a different task. We chose to evaluateare used for cluster-based acoustic model adaptation using
the performance of broadcast news acoustic and languagéhe MLLR technique [13] prior to word graph generation. A
models, on three commonly used tasks: small vocabulary3-gram LM is used in the first two decoding steps. The fi-
recognition (TI-digits), read and spontaneous text dictat  nal hypotheses are generated with a 4-gram LM and acoustic
(WSJ), and goal-oriented spoken dialog (ATIS). The broad- models adapted with the hypotheses of step 2.
cast news task is quite general, covering a wide variety of In the baseline system used in DARPA evaluation tests,
linguistic and acoustic events in the language, ensuriag re the acoustic models were trained on about 150 hours of au-
sonable coverage of the target task. In addition, thereudve s dio data from the DARPA Hub4 Broadcast News corpus
ficient acoustic and linguistic training data availabletfus (the LDC 1996 and 1997 Broadcast News Speech collec-
task that accurate models covering a wide range of speaketions) [9]. Gender-dependent acoustic models were built us
and language characteristics can be estimated. ing MAP adaptation of S| seed models for wideband and
Another research area is the investigation of lightly super telephone band speech [7]. The models contain 28000
vised techniques for acoustic model training. The strategy position-dependent, cross-word triphone models with 0170
taken is to use a speech recognizer to transcribe unandotatetied states and approximately 360k Gaussians [8].
data, which are then used to estimate more accurate acous- The baseline language models are obtained by interpola-
tic models. The light supervision is applied to the broaticas tion of models trained on 3 different data sets (excludirgy th
news task, where unlimited amounts of acoustic training dat test epochs): about 790M words of newspaper and newswire
are potentially available. Finally we apply the lightly sup texts; 240M word of commercial broadcast news transcripts;
vised training idea as a transparent method for adapting theand the transcriptions of the Hub4 acoustic data. The recog-
generic models to a specific task, thus achieving a higher de-ition vocabulary contains 65120 words and has a lexical
gree of genericity. In this work we focus on reducing train- coverage of over 99% on all evaluation test sets from the
ing costs and task portability, and do not address languageyears 1996-1999. A pronunciation graph is associated with
transfer. each word so as to allow for alternate pronunciations. The
We selected the LIMSI broadcast news (BN) transcription pronunciations make use of a set of 48 phones set, where 3
system as the generic reference system. The BN task covphone units represent silence, filler words, and breattesois
ers a large number of different acoustic and linguisticasitu  The lexicon contains compound words for about 300 fre-
tions: planned to spontaneous speech; native and norenativquent word sequences, as well as word entries for common
speakers with different accents; close-talking microgson acronyms, providing an easy way to allow for reduced pro-
and telephone channels; quiet studio, on-site reportsisyno nunciations [6].
places to musical background; and a variety of topics. In  The LIMSI 10x system obtained a word error of 17.1% on
addition, a lot of training resources are available inahgdi  the 1999 DARPA/NIST evaluation set and can transcribe un-
a large corpus of annotated audio data and a huge amountestricted broadcast data with a word error of about 20% [8].
of raw audio data for the acoustic modeling; and large col-
lections of closed-captions, commercial transcripts,spaw 3. TASK INDEPENDENCE
pers and newswires texts for linguistic modeling. The next
section provides an overview of the LIMSI broadcast news
transcription system used as our generic system.

Our first step in developing a “generic” speech tran-
scription engine is to assess the most generic system we
have under cross-task conditions, i.e., by recognizink-tas
specific data with a recognizer developed for a different

2. SYSTEM DESCRIPTION task. Three representative tasks have been retained as tar-

The LIMSI broadcast news transcription system has two get tasks: small vocabulary recognition (TI-digits), goal
main components, the audio partitioner and the word rec- oriented human-machine spoken dialog (ATIS), and dicta-
ognizer. Data partitioning [6] serves to divide the contin- tion of texts (WSJ). The broadcast news transcription task
uous audio stream into homegenous segments, associatingHub4E) serves as the baseline. The main criteria for the
appropriate labels for cluster, gender and bandwidth vaight  task selection were that they are realistic enough and task-
segments. The speech recognizer uses continuous densitgpecific data should be available. The characteristicsasith
HMMs with Gaussian mixture for acoustic modeling ard ~ four tasks and the available corpora are summarized in Ta-
gram statistics estimated on large text corpora for languag ble 1.
modeling. Each context-dependent phone model is a tied- For the small vocabulary recognition task, experiments
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Corpus Test Year Task Train (#spkr) Test (#spkr) Textuablress Best WER
BN 98 TV & Radio News 200h 3h Closed-captions, commercial transcripts,13.5
manual transcripts of audio data
TI-digits 93 Small Vocabulary 3.5h (112) 4h (113) - 0.2
ATIS 93 H-M Dialog 40h (137) 5h (24) Transcriptions 25
WSJ 95 News Dictation 100h (355)  45mn (20) Newspaper, neseswi 6.6
SOWSJ 93 Spontaneous Dictation 43mn (10) Newspaper, newswire 191

Table1: Brief descriptions and best reported error rates for th@a used in this work.

are carried out on the adult speaker portion of the TI-digits Test Set | BN models| Task LMs| Task models
corpus [14], containing over 17k utterances from a total of BNO98 13.6 13.6 13.6
225 speakers. The vocabulary contains 11 words, the dig- | TI-digits 17.5 1.7 0.4
its ‘1’ to ‘9’, plus ‘zero’ and ‘oh’. Each speaker uttered ATIS94 22.7 4.7 4.4
two versions of each digit in isolation and 55 digit strings. WSJ95 11.6 9.0 7.6
The database is divided into training and test sets (roughly | SQWSJ93 12.1 13.6 15.3

3.5 hours each, corresponding to 9k strings). The speech .

is of hiah litv. havi pb 9 llected i gs) et p Table2: Word error rates (%) for BN98, TI-digits, ATIS94, WSJ95
IS 0F igh quality, having been co ec_e IN-a quIet 8NVIroN- 5,4 SaWSJ93 test sets after recognition with three different con-
ment. The best reported WERs on this task are around 0.2igurations: (left) BN acoustic and language models; (cgrBél

0.3%. The digit phonemic coverage being very low, only acoustic models combined with task-specific lexica and Lkt a

108 context-dependent models are used in our recognition(fight) task-dependentacoustic and language models.

system. The task-specific LM for the TI-digits is a simple

grammar allowing any sequence of up to 7 digits. Our task- lower word error rates have since been reported on compara-

dependent system performance is 0.4% WER. ble test sets (14.1% on the WSJ94 Spoke 9 test data). 21000
The DARPA Air Travel Information Syste(ATIS) task context and position-dependentmodels have been traimed fo

is chosen as being representative of a goal-oriented humanth® WSJ system, with 9k independent HMM states. A 65k-

machine dialog task, and the ARPA 1994 Spontaneousord vocabulary was selected and a back-off trigram model

Speech Recognition (SPREC) ATIS-3 dafd(S99 [4] is obtained by interpolating models trained on different data

used for testing purposes. The test data amounts for nearhy®€tS (training utterance transcriptions and newspapéag.da
5 hours of speech from 24 speakers recorded with a close-1he task-dependent WSJ system has a WER of 7.6% on the

talking microphone. Around 40h of speech data are avail- read speech test data and 15.3% on the spontaneous data.
able for training. The word error rates for this task in the ~ For the BN transcription task, we follow the conditions
1994 evaluation were mainly in the range of 2.5% to 5%, of the 1998 ARPA Hub4E evaluatioBK9§ [15]. The
which we take as state-of-the-art for this task. The acous-acoustic training data is comprised of 150 hours of North-
tic models used in our task-speciﬁc system include 1641 American TV and radio shows. The best overall result on
context-dependent phones with 4k independent HMM states the 1998 baseline test was 13.5%.
A back-off trigram language model has been estimated on Three sets of experiments are reported. The first are cross-
the transcriptions of the training utterances. The lexicom task recognition experiments carried out using the BN acous
tains 1300 words, with compounds words for multiword en- tic and language models to decode the test data for the other
tities in the air-travel database (city and airport names, s tasks. The second set of experiments made use of mixed
vices etc.). The WER obtained with our task-dependent sys-models, that is the BN acoustic models and task-specific
tem is 4.4%. LMs. Due to the different evaluation paradigms, some mi-
For the dictation task, th&vall Street Journakontinu- nor modifications were made in the transcription procedure.
ous Speech recognition corpus [17] is used' ab|d|ng by theFirSt of a”, in contrast with the BN data, the data for the 3
ARPA 1995 Hub3 testWSJ9% conditions. The acoustic  tasks is already segmented into individual utterances o th
training data consist of 100 hours of speech from a total of Partitioning step was eliminated. With this exception, the
355 speakers taken from the WSJO and WSJ1 corpora. The&lecoding process for the WSJ task is exactly the same as de-
Hub3 baseline test data consist of studio quality read $peec Scribed in the previous section. For the Tl-digits and ATIS
from 20 speakers with a total duration of 45 minutes. The tasks, word decoding is carried out in a single trigram pass,
best result reported at the time of the evaluation was 6.6%. Aand no speaker adaptation was performed.
contrastive experiment is carried out with the WSJ93 Spoke The WERSs obtained for the three recognition experiments
9 data comprised of 200 spontaneous sentences spoken bgre reported in Table 2. A comparison with Table 1 shows
journalists [11]. The best performance reported in the 1993 that the performances of the task-dependent models are clos
evaluation on the spontaneous data was 19.1% [18], howeveto the best reported results even though we did not devote
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too much effort in optimizing these models. We can also  This sequence of operations is usually iterated several
observe by comparing the task-dependent (Table 2, right)times to refine the acoustic models. In general each itera-
and mixed (Table 2, middle) conditions, that the BN acous- tion recovers a portion of the rejected data.

tic models are relatively generic. These models seem to be

a good start towards truly task-independent acoustic mod- 5 | |GHTLY SUPERVISED AM TRAINING

els. By using task-specific language models For the TI-gligit ) ) . . .

and ATIS we can see that the gap in performance is mainly ©ON€ can imagine training acoustic models in a less su-
due a linguistic mismatch. For WSJ the language models arePervised manner, by using an Iterative pro_cedure where in-
more closely matched to BN and only a small 1.6% WER re- §teao! of using man_ual transcriptions for_ allgnment, at each
duction is obtained. On the spontaneous journalist dimtati iteration the most likely word transcription given the cur-
(WSJ S9 spoke) test data there is even an increase in WEHR€eNt models and all the information available about the audi
using the WSJ LMs, which can be attributed to a better mod- §amp|e is used. This approach still fits within the EM train-

elization of spontaneous speech effects (such as breath antf'd framework, which is well-suited for missing data traigi
filler words) in the BN models. problems. A completely unsupervised training procedure is

Prior to introducing our approach for lightly supervised to use the current best models to produce an orthographic

acoustic model training, we describe our standard trainingthranscr'‘;’]t_'or:l of tpg training data, kgeplhng only Words th?]t_l
orocedure in the next section, ave a high confidence measure. Such an approach, while

very enticing, is limited since the only supervision is pro-
vided by the confidence measure estimator. This estimator
4. ACOUSTIC MODEL TRAINING must in turn be trained on development data, which needs to
HMM training requires an alignment between the audio be small to keep the approach interesting.
signal and the phone models, which usually relies on a per-  Between using carefully annotated data such as the de-
fect orthographic transcription of the speech data and @900 tajled transcriptions provided by the LDC and no transcrip-
phonetic lexicon. In general it is easier to deal with rel- tjon at all, there is a wide spectrum of possibilities. What
atively short speech segments so that transcription errorsig really important is the cost of producing the associated
will not propagate and jeopardize the alignment. The ortho- gnnotations. Detailed annotation requires on the ordedof 2
graphic transcription is usually considered as grounchtrut 40 times real-time of manual effort, and even after manual
and training is done in a closely supervised manner. Foryerification the final transcriptions are not exempt from er-
each speech segment the training algorithm is provided with,gg [2]. Orthographic transcriptions such as closedioagt
the exact orthographic transcription of what was spoken, i.  can be done in a few times real-time, and therefore are quite
the word sequence that the speech recognizer should hypothy pit |ess costly. These transcriptions have the advankage t
esize when confronted with the same speech segment. they are already available for some television channels, an
Training acoustic models for a new corpus (which could therefore do not have to be produced specifically for trajnin
also reflect a change of task and/or language), usuallylentai speech recognizers. However, closed-captions are a close,
the following sequence of operations once the audio data anchyt not exact transcription of what is being spoken, and are
transcription files have been loaded: only coarsely time-aligned with the audio signal. Hesita-

1. Normalize the transcriptions to a common format (some _t|ons and repetitions are not marked and there may be word

adjustment is always needed as different text Sourcesmsertions, delections and changes in the word order. They
make use of different conventions) also are missing some of the additional information progide

_ o in the detailed speech transcriptions such as the inditatio
2. Produce a word list from the transcriptions and correct of gcoustic conditions, speaker turns, speaker identities
blatant errors (these include typographical errors and in- gender and the annotation of non-speech segments such as

consistencies). music. NIST found the disagreement between the closed-
3. Produce a phonemic transcription for all words not in captions and manual transcripts on a 10 hour subset of the
our master lexicon (these are manua”y Verified)_ TDT-2 data used for the SDR evaluation to be on the order

of 12% [5].

Another approach is to make use of other possible sources
of comtemporaneous texts from newpapers, newswires,
summaries and the internet. However, since these sources
have only an indirect correspondence with the audio data,
they provide less supervision.

5. _Eventually corregt transcriptior_l errors and _realign (Or ' The basic idea is of light supervision is to use a speech
justignore these if enough audio data is available) recognizer to automatically transcribe unannotated daizs,
6. Run the standard EM training procedure. generating “approximate” labeled training data. By itera-

4. Alignthe orthographictranscriptions with the signal us
ing existing models and the pronunciation lexicon (or
bootstrap models from another task or language). This
procedure often rejects a substantial portion of the data,
particularly for long segments.
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tively increasing the amount of training data, more acairat e LMa (baseline Hub4 LM): newspaper+newswire (NEWS), com-
acoustic models are obtained, which can then be used to tran- mercial transcripts (COM) predating Jun98, acoustic wapts
scribe another set of unannotated data. The modified t@inin ¢ LMn_t_c: NEWS, COM, closed-captions through May98
procedu_re used in this work is: o LMn.t: NEWS, COM through May98
1. Traina Iangl_Jag_e model on all texts and closed captions, | vij.c: NEWS, closed-captions through May98
after normalization L Mn: NEWS throuah Maves
2. Partition each show into homogeneous segments and ' _ g y
label the acoustic attributes (speaker, gender, band-* -Mn-to: NEWS through May98, COM through Dec97
width) [6] e LMno: NEWS through Dec97
3. Train acoustic models on a very small amount of man-
ually annotated data (1h)
4. Automatically transcribe a large amount of training data
5. (Optional) Align the closed-captions and the automatic

It should be noted that all of the conditions include news-
paper and newswire texts from the same epoch as the audio
data. These provide an important source of knowledge par-
o . ) "~ ticularly with respect to the vocabulary items. Conditions
transcriptions (using a standard dynamic programming which include the closed captions in the LM training data

algorithm) ) . provide additional supervision in the decoding processrwhe
6. Run the standard acoustic model training procedure ONtranscribing audio data from the same epoch.

the speech _segments (in the case of alignment with the For testing purposes we use the 1999 Hub4 evaluation
closed captions only keep segmentswhere the two tran-ya5 \which is comprised of two 90 minute data sets se-
scrl_pts are in agreement) lected by NIST. The first set was extracted from 10 hours
7. Reiterate from step 4. of data broadcast in June 1998, and the second set from a
It is easy to see that the manual work is considerably S€t Of broadcasts recorded in August-September 1998 [16].
reduced, not only in generating the annotated corpus butAl! recognltlon_runs were carried out in under 1QXRT unless
also during the training procedure, since we no longer needStated otherwise. The LIMSI 10x system obtained a word
to extend the pronunciation lexicon to cover all words and error of 17_.1% on th_e evaluation set (the combined scores in
word fragments occurring in the training data and we do the penultimate row in Table 3 4S, LMa) [8]._ The word error
not need to correct transcription errors. This basic idea wa ¢&n be reduced to 15.6% for a system running at S0xRT (last
used to train acoustic models using the automatically gener €Ntry in Table 3). _
ated word transcriptions of the 500 hours of audio broad- S €an be seen in Table 3, the word error rates with our
casts used in the spoken document retreival task (part oforiginal Hub4 language model (LMa) and the one without
the DARPA TDT-2 corpus used in the SDR’99 and SDR’00 the transcriptions of the acoustic data (L) give compa-
evaluations) [3]. rable results using the 1999 acoustic models trained on 1_23
First, the recognition performance as a function of the hours of manually annotated data (123h, 4S). The quality
available acoustic and language model training data was as®f the different language models listed above are compared
sessed. Then we investigated the accuracy of the acoustié? the first row of Table 3 using speaker-independent (1S)
models obtained after recognizing the audio data using dif- 2Coustic models trained on the same Hub4 data (123h). As
ferent levels of supervision via the language model. With can be observed, removing any text source leads to a degra-
the exception of the baseline Hub4 language models, nonglation in recognition performance. It appears it is more im-
of the language models include a component estimated orPortant to include commercial transcripts (LM)) even if
the transcriptions of the Hub4 acoustic training data. The they are old (LMnto) than the closed captions (LMr).
language model training texts come from contemporaneous,
sources such as newpapers and newswires, and commerci
summaries and transcripts, and closed-captions. The forme
sources have only an indirect correspondence with the audig 69h | 1S, LMntc 20.2 18.0 18.9
data and provide less supervision than the closed captions|__ 123N | 1S, LMntc 19.3 17.1 18.0
For each set of LM training texts, a new word list was se- 123h | 4S,LMntc 18.5 16.1 17.1
lected based on the word frequencies in the training data. Al 123h | 4S,LMa 18.3 16.3 171
language models are formed by interpolatingindividual LMs | _123h | 4S,LMa, 50x| 17.1 | 145 | 156
builton _each text source. The mterpolat_lon coefficienteave Table 3: Word error rate for various conditions using acoustic mod-
chosen in order to minimize the perplexity on a development g|s trained on the HUB4 training data with detailed manua+r
set composed of the second set of the Nov98 evaluation datacriptions. All runs were done in less than 10xRT, exceptdise
(3h) and a 2h portion of the TDT2 data from Jun98 (not in- "ow. “1S” designates one set of gender-independant acousl-

; - : o els, whereas “4S” designates four sets of gender and battdwid
\(,:Jz?eeiclnl/net;:%létl\gctlr.alnlng data). The following combinations dependent acoustic models.

(Training | Conditions | bn991 | bn992 | Average
1h | 1S, LMntc 35.2 31.9 33.3
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Amount of training datg| %werr

raw unfiltered LMn_t_c LMn_t LMn_c LMn LMn_to LMno

150h 123h 18.0 18.6 19.1 20.6 18.7 20.9
1h 1lh 33.3 33.7 34.4 35.9 33.9 36.1
14h 8h 26.4 27.6 27.4 29.0 27.6 30.6
28h 17h 25.2 25.7 25.6 28.1 25.7 28.9
58h 28h 24.3 25.2 25.7 27.4 25.1 27.9

Table4: Word error rate for different language models and incregqimantities of automatically labeled training data on tB@9evaluation
test sets using gender and bandwidth independent acoustielsn LMn_t_c: NEWS, COM, closed-captions through Mayf8/n_t:

NEWS, COM through May9& Mn_c: NEWS, closed-captions through May@81n: NEWS through May98 Mn_to: NEWS through
May98, COM through Dec9ZMno: NEWS through Dec97.

Amount of training data Yowerr gives smaller improvements, as seen by the entries for 28h
raw unfiltered filtered| unfiltered filtered and 58h. The commercial transcripts (LMn+t and LMn+to),
14h 8h 6h 26.4 25.7 even if predating the data epoch, are seen to be more impor-
28h 7h 13h 25.2 23.7 tant than the closed-captions (LMn+c), supporting thaesarl
58h 28h 21h 24.3 225 observation that they are closer to spoken language. Even
140h 76h 57h 22.4 21.1 if only news texts from the same period (LMn) are avail-
287h 140h 108h 21.0 19.9 able, these provide adequate supervision for lightly super
503h 238h 188h 20.2 194 vised acoustic model training.

Table 5: Word error rates for increasing quantities of automati-
cally label training data on the 1999 evaluation test satsyugen-
der and bandwidth independent acoustic models with theukane
model LMnt_c (trained on NEWS, COM, closed-captions through
May98).

6. TASK ADAPTATION

The experiments reported in the section 3 show that while
direct recognition with the reference BN acoustic models
gives relatively competitive results, the WER on the taeget
This suggests that the commercial transcripts more accu-tasks can still be improved. Since we want to minimize the
rately represent spoken language than closed-captioningcost and effort involved in tuning to a target task, we are
Even if only newspaper and newswire texts are available investigating methods to transparently adapt the referenc
(LMn), the word error increases by only 14% over the best acoustic models. By transparent we mean that the proce-
configuration (LMnt_c), and even using older newspaper dure is automatic and can be carried out without any human
and newswire texts (LMno) does not substantially increase expertise. We therefore apply the approach presented in the
the word error rate. The second row of Table 3 gives the previous section, that is the reference BN system is used to
word error rates with acoustic models trained on only 1 hour transcribe the training data of the destination task. Tajs s
of manually transcribed data. These are the models usedposes of course that audio data have been collected. How-
to initialize the process of automatically transcribinggen ~ ever, this can be carried out with an operational system and
quantities of data. These word error rates range from 33% tothe cost of collecting task-specific training data is great
36% across the language models. duced since no manual transcriptions are needed. The per-

We Compared a Straightforward approach of training on formance of the BN models under cross task conditions is
all the automatically annotated data with one in which the Well within the range for which the approximate transcrip-
closed-captions are used to filter the hypothesized trgmscr  tions can be used for acoustic model adaptation.
tions, removing words that are “incorrect”. To our sur-  The reference acoustic models are then adapted by means
prise, somewhat comparable recognition results were ob-of a conventional adaptation technique such as MLLR and
tained both with and without filtering, suggesting thatincl ~ MAP. Thus there is no need to design a new set of models
sion of the closed-captions in the language model trainingbased on the training data characteristics. Adaptatiolses a
material provided sufficient supervision (see Table 5). preferred to the training of new models as it is likely that

To investigate this further we are assessing the effects ofthe new training data will have a lower phonemic contextual
reducing the amount of supervision provided by the lan- coverage than the original reference models.
guage model training texts on the acoustic model accuracy The cross-task unsupervised adaptation is evaluated for
(see Table 4). With 14 hours (raw) of approximately la- the tasks: TI-digits, ATIS and WSJ. The 100 hours of the
beled training data, the word error is reduced by about 20% WSJ data were transcribed using the BN acoustic and lan-
for all LMs compared with training on 1h of data which guage models. For ATIS, only 26 of the 40 hours of training
has carefully manual transcriptions. Using larger amounts data from 276 speakers were transcribed, due to time con-
of data transcribed with the same initial acoustic models straints. For TI-digits, the training data was transcriloed
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Test Set | BN models| Unsupervised Adaptatioh Supervised Adaptation Task-dep. models
BN models BN models
TI-digits 1.7 0.8 0.5 0.4
ATIS94 4.7 4.7 3.2 4.4
WSJ95 9.0 6.9 6.7 7.6
SQWSJ93 13.6 12.6 114 15.3

Table 6: Word error rates (%) for TI-digits, ATIS94, WSJ95 and 88593 test sets after recognition with three different guurfitions, all
including task-specific lexica and LMs: (left) BN acoustiodels, (middle left) unsupervised adaptation of the BN atiounodels, (middle
right) supervised adaptation of the BN acoustic models gght] task-dependent acoustic models.

ing a mixed configuration, combining the BN acoustic mod- pervised. For the other tasks, the lowest WER is obtained

els with the simple digit loop grammarFor completeness  when the supervised adapted BN acoustic models are used:

we also used the task-specific audio data and the associated.2% for ATIS, 6.7% for WSJ and 11.4% for S9. This re-

transcriptions to carry out supervised adaptation of the BN sult confirms our hypothesis that better performance can be

models. achieved by adapting generic models with task-specific data
Gender-dependent acoustic models were estimated usinghan by directly training task-specific models.

the corresponding gender-dependent BN models as seeds

and the gender-specific training utterances as adaptation 7. CONCLUSIONS

data. For WSJ and ATIS, the speaker ids were directly used .

for gender identification since in previous experimentshwit 1S paper has explored methods to reduce the cost of

this test set there were no gender classification errorsy Onl developing models for speech recognizers. Two main axes

the acoustic models used in the second and third word CIe_have been explored: developing generic acoustic models and

coding passes have been adapted. For the TI-digits, the gent-he use of low cost data for acoustic model training.

der of each training utterance was automatically classified Ve have explored the genericity of state-of-the-art speech
decoding each utterance twice, once with each set of genderf€cognition systems, by testing a relatively wide-domain
dependent models. Then, the utterance gender was deteSyStém on data from three tasks ranging in complexity. The
mined based on the best global score between the male ang€neric models were taken from the broadcast news task
female models (99.0% correct classification). which covers a wide range of acoustic and linguistic condi-
Both the MLLR and MAP adaptation techniques were ap- tions. These acoustic models are relatively task-indegend
plied. The recognition tests were carried out under mixed &S there is only a small increase in word error relative to
conditions (i.e., with the adapted acoustic models and thethe word error obtained with task-dependent acoustic mod-
task-dependent LM). The BN models are first adapted us-€!S, when a task-dependent language model is used. There
ing MLLR with a global transformation, followed by MAP ~ rémains a large difference in performance on the digit recog
adaptation. nition task which can be attributed to the limited phonetic
The word error rates obtained with the task-adapted BN coverage of this task. On a spontaneous WSJ dictation task,
models are given in Table 6 for the four test sets. Using unsu-the broadcast news acoustic and language are more robust to
pervised adapation the performance is improved for Tidigit deviations in speaking style than the read-speech WSJ mod-
(53% relative), WSJ (19% relative) and S9 (7% relative). els. We_ also have shown that unsupervised acoustic model
The manual transcriptions for the targeted tasks were useddaptation can reduce the performance gap between task-
to carry out supervised model adaptation. The results (seeéndependent and task-dependent acoustic models, and that
the 4th column of Table 6) show a clear improvement over Supervised adaptation of generic models can lead to better
unsupervised adaptation for both the TI-digits (60% resti performance_ than that achlevgd with task-_specmc models.
and ATIS (47% relative) tasks. A smaller gain of about 10% Both supervised and unsupervised adaptation are less effec
relative is obtained for the spontaneous dictation task, an tive for the digits task indicating that these may be a specia
only 3% relative for read WSJ data. The gain appears to Case.
be correlated with the WER of the transcribed data: the dif- We have investigated the use of low cost data to train
ference between BN and task specific models is smaller foracoustic models for broadcast news transcription, with su-
WSJ than ATIS and TI-digits. The TI-digit task is the only pervision provided the language models. Recognition re-
task for which the best performance is obtained using task-Sults obtained with acoustic models trained on large quan-
dependent models rather than BN models adapted with sudities of automatically annotated data are comparablegund
m _ _ o a 10% relative increase in word error) to results obtained
n order to assess the quality of the automatic transcriptiee com- ity acoustic models trained on large quantities of manu-
pared the system hypotheses to the manually provided nigitnanscrip-

tions. For resulting word error rates on the training da&ar.8% for WSJ, ally '_annOted data. GiV_en_ the significgntly higher_ cost of
29.1% for ATIS and 1.2% for Tl-digits. detailed manual transcription (substantially more time-co
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suming than producing commercial transcripts, and more [15]
expensive since closed captions and commercial transcript
are produced for other purposes), such approaches are very
promising as they require substantial computation time, bu [16]
little manual effort. Another advantage offered by this ap-
proach is that there is no need to extend the pronunciation[17]
lexicon to cover all words and word fragments occurring in

the training data. By eliminating the need for manual tran- [18]
scription, automated training can be applied to essentiall
unlimited quantities of task-specific training data. Whiie

focus of our work has been on reducing training costs and
task portability, we have been exploring these in a mukilin

gual context. [19]
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