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ABSTRACT
In this paper we report on the LIMSI 1999 Hub-4E system for

broadcast news transcription. The main difference from ourpre-
vious broadcast news transcription system is that a new decoder
was implemented to meet the 10xRT requirement. This single pass
4-gram dynamic network decoder is based on a time-synchronous
Viterbi search with dynamic expansion of LM-state conditioned
lexical trees, and with acoustic and language model lookaheads.
The decoder can handle position-dependent, cross-word triphones
and lexicons with contextual pronunciations. Faster than real-time
decoding can be obtained using this decoder with a word errorun-
der 30%, running in less than 100 Mb of memory on widely avail-
able platforms such Pentium III or Alpha machines.

The same basic models (lexicon, acoustic models, language
models) and partitioning procedure used in past systems have been
used for this evaluation. The acoustic models were trained on
about 150 hours of transcribed speech material. 65K word language
models were obtained by interpolation of backoff n-gram language
models trained on different text data sets. Prior to word decoding a
maximum likelihood partitioning algorithm segments the data into
homogenous regions and assigns gender, bandwidth and cluster la-
bels to the speech segments. Word decoding is carried out in three
steps, integrating cluster-based MLLR acoustic model adaptation.
The final decoding step uses a 4-gram language model interpolated
with a category trigram model. The overall word transcription er-
ror on the 1999 evaluation test data was 17.1% for the baseline 10X
system.

1. INTRODUCTION
This paper describes the LIMSI 1999 broadcast news tran-

scription system and reports on our development work prior
to the fall 1999 Hub4 evaluation test. The baseline condition
in this test imposed a computational time limit of 10 times
real-time. In order to meet this requirement a new decoder
was implemented which transcribes broadcast data in less
than 10 times real-time with only a slight increase in word
error rate when compared to our best system [10].

A major recent advance in speech recognition technol-
ogy is the ability of todays systems to deal with non-
homogeneous data as is exemplified by broadcast news:
changing speakers, languages, backgrounds, topics. How-
ever transcribing such data requires significantly higher pro-

cessing power than what is needed to transcribe read speech
data in a controlled environment, such as for speaker adapted
dictation. With the rapid expansion of different media
sources for information dissemination, processing time is
an important factor in making a speech transcription sys-
tem viable for automatic indexation of radio and television
broadcasts. A variety of near-term applications are possible
such as audio data mining, selective dissemination of infor-
mation, media monitoring services, disclosure of the infor-
mation content and content-based indexation for digital li-
braries, etc. Current state-of-the-art laboratory systems can
transcribe unrestricted broadcast news data with word error
rates under 20%. When only concerned by the word error
rate, it is common to design systems that run in 100 times
real-time or more.

In designing a broadcast news transcription system with
computational resources in the range of 10xRT, we com-
pared performance using single pass or multiple pass decod-
ing strategies. For each configuration the acoustic and lan-
guage models were selected to optimize performance given
the computational constraints. The influence of transcription
accuracy on indexation performance was investigated using
the TREC-8 SDR data [7, 10].

In the remainder of this paper we provide an overview of
the LIMSI Nov99 Hub-4E system, with an emphasis on the
new single pass decoder developed for this evaluation. Re-
sults are reported on a a representative portion of the Nov98
evaluation test set used for system development, as well as
the 1999 evaluation test set. All the reported runs were done
on a Compaq XP1000 500MHz machine with Digital Unix.

2. SYSTEM OVERVIEW
The LIMSI broadcast news automatic transcription sys-

tem [3] consists of an audio partitioner [9], and a speech
recognizer [4, 11].

The goal of audio partitioning is to divide the acoustic sig-
nal into homogeneous segments, labeling and structuring the
acoustic content of the data. Partitioning consists of identi-
fying and removing non-speech segments, and then cluster-
ing the speech segments and assigning bandwidth and gen-
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der labels to each segment. The result of the partitioning
process is a set of speech segments with cluster, gender and
telephone/wideband labels, which can be used to generate
metadata annotations. While it is possible to transcribe the
continuous stream of audio data without any prior segmen-
tation, some of the advantages partitioning offers over such
a straight-forward solution are given in [9].

The partitioningapproach used in the LIMSI BN transcrip-
tion system relies on an audio stream mixture model [9].
Each component audio source, representing a speaker in a
particular background and channel condition, is in turn mod-
eled by a GMM. The segment boundaries and labels are
jointly identified by an iterative maximum likelihood seg-
mentation/clustering procedure using GMMs and agglom-
erative clustering. The partitioning procedure (segmenta-
tion and labeling) is identical to the one used in the Nov’98
LIMSI HUB4E system [11], except for the number of itera-
tions which is reduced to 8 for a slight speedup.

The partitioning procedure is as follows: First, the non-
speech segments are detected (and rejected) using GMMs.
Four GMMs each with 64 Gaussians serve to detect speech,
pure-music and other (background). All test segments la-
beled as music or silence are removed prior to further
processing. An iterative maximum likelihood segmenta-
tion/clustering procedure is then applied to the speech seg-
ments using GMMs and an agglomerative clustering algo-
rithm. Given the sequence of cepstral vectors the algorithm
tries to maximize an objective function defined as a penal-
ized log-likelihood. Alternate Viterbi reestimation and ag-
glomerative clustering gives a sequence of estimates with
non-decreasing values of the objective function. The algo-
rithm stops when no merge is possible. A constraint on the
cluster size is used to ensure that each cluster corresponds
to at least 10s of speech. This procedure is controlled by 3
parameters: the minimum cluster size (10s), the maximum
log-likelihood loss for a merge, and the segment boundary
penalty. When no more merges are possible, the segment
boundaries are refined (within a 1s interval) using the last
set of GMMs and an additional relative energy-based bound-
ary penalty. This is done to locate the segment boundaries
at silence portions, so as to avoid cutting words. Speaker-
independent GMMs corresponding to wideband speech and
telephone speech (each with 64 Gaussians) are then used
to label telephone segments. This is followed by segment-
based gender identification, using 2 sets of GMMs with 64
Gaussians (one for each bandwidth). The result of the par-
titioning process is a set of speech segments with cluster,
gender and telephone/wideband labels.

For each speech segment, the word recognizer determines
the sequence of words in the segment, associating start and
end times and an optional confidence measure with each
word. 1 The speaker-independent large vocabulary, contin-1Prior to decoding, segments longer than 30s are chopped intosmaller

uous speech recognizer makes use of n-gram statistics for
language modeling and of continuous density HMMs with
Gaussian mixtures for acoustic modeling. Word recognition
is usually performed in three steps: 1) initial hypothesis gen-
eration, 2) word graph generation, 3) final hypothesis gen-
eration. The hypotheses are used in cluster-based acoustic
model adaptation using the MLLR technique [16] prior to
word graph generation, and all subsequent decoding passes.
The final hypothesis is generated using a 4-gram language
model.

For all the experimental results given in this paper, the fol-
lowing training conditions were used. The acoustic models
were trained on about 150 hours of American English broad-
cast news data. This data was used to train the Gaussian mix-
ture models needed for segmentation and the acoustic mod-
els for use in word recognition. We used the August 1997
and February 1998 releases of the LDC transcriptions. Over-
lapping speech portions were detected in the transcriptions
and removed from the training data. The phone models are
position-dependent triphones, with about 11500 tied-states
for the largest model set. Using word-position dependent
triphone models, enables more accurate acoustic modeling
at word boundaries as the contexts are limited to those tri-
phones actually occurring in cross-word position. The state-
tying is obtained via a divisive, decision tree based clustering
algorithm with et of 184 questions concerning the distinc-
tive features of the phone and the neighboring phones and
the state positions. The number of triphone contexts and the
amount of parameter sharing (state tying) influence the total
model size (number of Gaussians) and consequently the de-
coding speed. Wideband and telephone band sets of gender-
dependent acoustic models were built using MAP adaptation
of SI seed models.

The acoustic analysis derives cepstral parameters from a
Mel frequency spectrum estimated on the 0-8kHz band (0-
3.5kHz for telephone speech models) every 10ms[6]. For
each 30ms frame the Mel scale power spectrum is computed,
and the cubic root taken followed by an inverse Fourier trans-
form. Then LPC-based cepstrum coefficients are computed.
The cepstral coefficients are normalized on a segment cluster
basis using cepstral mean removal and variance normaliza-
tion. Each resulting cepstral coefficient for each cluster has
a zero mean and unity variance. The 39-component acoustic
feature vector consists of 12 cepstrum coefficents and the log
energy, along with the first and second order derivatives.

Fixed language models were obtained by interpolation ofn-gram backoff language models trained on 3 different data
sets: 203 M words of BN transcripts from LDC (years 92-

pieces so as to limit the memory required for the trigram and 4-gram de-
coding passes[6]. To do so a bimodal distribution is estimated by fitting
a mixture of 2 Gaussians to the log-RMS power for all frames ofthe seg-
ment. This distribution is used to determine locations which are likely to
correspond to pauses, thus being reasonable places to cut the segment. Cuts
are made at the most probable pause 15s to 30s from the previous cut.
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95) and from PSMedia (years 96, 97 and Jan/Feb’98); 343 M
words of NAB newspaper texts and AP Wordstream texts
(Jan’94 - Feb’98); 1.6 M words corresponding to the tran-
scriptions of the acoustic training data (including all the
dev and test sets predating Jan’98). The BN texts from
PSmedia were processed using a modified version of the
bn raw2sgml.pl perl script from BBN made available by
LDC. The broadcast news training texts were cleaned in or-
der to be homogeneous with the previous texts, and filler
words such as UH and UHM, were mapped to a unique form.
All of the training texts (95 Hub3 and Hub4, and BN) were
reprocessed to add a proportion of breath markers (4%), and
of filler words (0.5%)[6]. The interpolation coefficients of
these LMs were chosen so as to minimize the perplexity
on the 2nd set of the Hub4 Nov98 evaluation data. The
4-gram LM contains 7M bigrams, 14M trigrams and 11M
fourgrams.

The recognition word list contains 65122 words is iden-
tical to the one used in the Nov’98 LIMSI HUB-4E sys-
tem [11], and has a lexical coverage of 99.7% and 99.5%
on the Hub4-Nov98 set 2 and the eval99 test sets, respec-
tively. The pronunciations are based on a 48 phone set (3 of
them are used for silence, filler words, and breath noises). A
pronunciation graph is associated with each word so as to al-
low for alternate pronunciations, including optional phones.
Compound words are used for about 300 frequent word se-
quences and 1000 frequent acronyms [6].

3. SINGLE-PASS DECODER

A 4-gram single-pass dynamic network decoder has been
developed. It is a time-synchronous Viterbi decoder with dy-
namic expansion of LM state conditioned lexical trees [1, 18,
17] with acoustic and language model lookaheads. The de-
coder can handle position-dependent, cross-word triphones
and lexicons with contextual pronunciations. It makes use
of various pruning techniques to reduce the search space
and computation time, including three HMM-state pruning
beams and fast Gaussian likelihoodcomputations. It can also
generate word graphs and rescore them with different acous-
tic and language models. Faster than real-time decoding can
be obtained using this decoder with a word error under 30%,
running in less than 100 Mb of memory on widely available
platforms such Pentium III or Alpha machines.

The decoder by itself does not solve the problem of reduc-
ing the recognition time as proper models have to be used in
order to optimize the recognizer accuracy at a given decod-
ing speed. In general, better models have more parameters,
and therefore require more computation. However, since the
models are more accurate, it is often possible to use a tighter
pruning level (thus reducing the computational load) without
any loss in accuracy. Thus, limitations on the available com-
putational resources can significantly affect the design ofthe
acoustic and language models. For each operating point, the
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Figure 1: Word error rate vs. processing time for three acoustic
model sets with 350k, 92k and 16k Gaussians on a subset of the
Hub4-98 test data. (Single pass decoding with a trigram LM and
no acoustic model adaptation.)

right balance between model complexity and pruning level
must be found.

To illustrate this point, Figure 1 plots the word error
rate as a function of processing time for 3 sets of acous-
tic models, which taken together minimize the word error
rate over a wide range of processing times (from 0.3xRT
to 20xRT) for the LIMSI broadcast news transcription sys-
tem. It should be noted that transcribing such inhomoge-
neous data requires significantly higher processing power
than for speaker adapted dictation systems, due to the lack
of control of the recordings and linguistic content, which on
average results in lower SNR ratios, a poorer fit of the acous-
tic and language models to the data, and as a consequence,
the need for larger models. These results on a representative
portion of the Hub4-98 eval test data are obtained using a
3-gram language model, and without acoustic model adapta-
tion. The largest model set (350k Gaussians, 11k tied states,
30k phone contexts) provides the best performance/speed ra-
tio for processing times over 5xRT. The 92k model set (92k
Gaussians, 6k tied states, 5k phone contexts) performs bet-
ter in the range of 0.6xRT to 3xRT, whereas a much smaller
model set (16k Gaussians) is needed to go under real-time.
Therefore depending upon the desired operating point differ-
ent model set configurations will be most effective.

For a decoder based on lexical tree copies, the potential
search space is proportional to the number of LM contexts,
i.e., the number ofn-1-grams in the backoff component of
then-gram LM. As observed for the acoustic models, there
is a tradeoff between model complexity and search space, i.e.
the best model without computational constraints may not be
the best when such constraints are imposed. Figure 2 gives
the word error rate as a function of the recognition time for
four language models (1-gram to 4-gram LM) on the same
representative subset of the Hub4-98 eval test data set. The
same acoustic model set (6k states, 92k Gaussians) is used
for all runs. It can be seen that the trigram LM is the best
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Figure 2: Word error rate vs. processing time for 4 language mod-
els (1-gram to 4-gram LM) on a subset of the Hub4-98 data. (Single
pass decoding with the 92k acoustic model set and no adaptation.)

comprise for computation times in the range of interest (0.5
to 10xRT). In this range the 4-gram LM gives the same re-
sults, but requires about 50% more parameters than the 3-
gram language model. The difference is even larger if the
required memory space is compared. To observe a signifi-
cant difference in favor of the 4-gram LM, the computation
time needs to be over 20xRT with this single pass decoding.
For computation times under 0.5xRT it does matter which
LM order is used, as long as it is greater than 1.

4. MULTIPLE PASS DECODER
Many systems use a multiple pass decoding strategy to

reduce the computational requirements. In multipass de-
coding, additional knowledge sources are progressively used
in the decoding process, which allows the complexity of
each individual decoding pass to be reduced and often re-
sults in a faster overall decoder. One of the main advan-
tages of multiple pass decoding is the possibility to carry
out acoustic model adaptation, such as unsupervised MLLR,
between passes by making use of the current best hypothe-
ses. Our targeted speed being lower than 10xRT, we need
to pay attention to the computing resources required to per-
form the adaptation. In these experiments we use a single
block diagonal regression matrix and run only one iteration
of MLLR reestimation. Table 1 gives the computation time
and word error rates for various decoding strategies. The
pruning thresholds have been set so as to match the comput-
ing time of the most interesting setups. All passes perform a
full decode, except the last decoding pass (labelled D) which
is a word graph rescoring using a graph generated in the sec-
ond 3-gram pass. The 3 acoustic model sets compared in
Figure 1 are used, with the 16k Gaussian set used in the first
pass, the 92k Gaussian set used in the second pass, and the
350k Gaussian set used in the last pass.

These results clearly demonstrate the advantage of using
a multiple pass decoding approach. Comparing the setups A
(1 pass, 6.8xRT, 16.8%) and D (2 passes, 6.9xRT, 15.4%),

Pass AM LM RT TotalxRT Werr
A 1 92k 3g 6.8 6.8 16.8%
B 1 350k 4g 10.5 10.5 16.1%

1 92k 3g 0.8 24.7%
C 2 175k+mllr 4g 9.9 10.7 14.6%

1 92k 3g 0.8 24.7%
D 2 175k+mllr 3g 6.1 6.9 15.4%
E 3 350k+mllr 4g 1.5 8.4 14.2%

Table 1: Comparison of decoding strategies on the NIST Hub4
eval98 set (partitioning and coding times are not included).

we see that the extra computing time needed for the first
decode and the MLLR adaptation is largely compensated
by the reduction in word error rate. Using adapted acous-
tic models allows us to use a tighter pruning threshold and
have the same overall computing time but with a signifi-
cantly lower word error rate. Also comparing setups C (2
passes, 10.7xRT, 14.6%) and E (3 passes, 8.4xRT, 14.2%)
demonstrate the advantage of using an extra decoding pass
to take advantage of the 4-gram LM and hypotheses for the
MLLR adaptation.

As a result of these experiments, the configuration se-
lected for the 1999 evaluation system has 3 decoding passes.
The first pass generates initial hypotheses which are then
used for cluster-based acoustic model adaptation. This is
done via a one pass (1xRT) cross-word trigram decoding
with gender-specific sets of position-dependent triphones
(5400 contexts and 6275 tied states) and a trigram language
model (17M trigrams and 8M bigrams). Band-limited acous-
tic models are used for the telephone speech segments. Prior
to the second pass, which generates a word graph, unsuper-
vised acoustic model adaptation is performed for each seg-
ment cluster using the MLLR technique [16] A word graph
is generated for each segment in a one pass (about 6xRT) tri-
gram decoding using position-dependent triphones covering
28k contexts with 11700 tied states (16 Gaussians per state)
and the trigram used in the first pass. The final hypothesis
is generated after a second MLLR adaptation using the word
graphs, a 4-gram model and a 32-Gaussian version of the
acoustic models used in pass 2. These third pass model sets
are quite comparable in size to that used in our 1998 sys-
tem (covering 28k phone contexts with 11500 tied states).
Band-limited versions of the acoustic models are used for
the telephone speech segments.

In Table 2 the word error rates and the total computation
time (including partitioning) are given for both the develop-
ment test set (Hub4 eval98) and the Hub4 eval99 test set.
For reference, the official result on the eval98 test set us-
ing our Nov98 system was 13.6%, with a decoding time
around 200xRT [11]. Using only the first decoding pass,
unrestricted BN data can be decoded in less than 1.4xRT (in-
cluding partitioning) with a word error rate around 30%.

A 10xRT contrast system was also developed, which used
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Dev data (eval98) Test data (eval99)
Step CPU time Werr CPU time Werr
Coding and Partitioning: 0.5xRT 0.5xRT
Word decoding:

pass#1 (generate 3-gram hyp): 0.8xRT 24.7% 0.9xRT 29.3%
pass#2 (MLLR, 3-gram): 6.1xRT 15.4% 6.5xRT 18.5%
pass#3 (MLLR, 4-gram): 1.5xRT 14.2% 1.5xRT 17.1%

Overall: 8.9xRT 14.2% 9.4xRT 17.1%

Table 2: 10xRT results in word error rate for the NIST BN 1998 and 1999 test sets.

the same decoding strategy but made use of additional acous-
tic and language model training data from the TDT-2 corpus.
The recognition word list for this contrast system contained
65343 words (with 77033 pronunciations), of which�3800
were not in the baseline system word list. The third decod-
ing pass made use of acoustic models from our 1998 sys-
tem which were adapted (via MAP adaptation) with about
500 hours of TDT-2 acoustic data from February-May 1998.
Since no detailed transcriptions were available for this data,
only segments for which the word hypotheses matched the
closed caption were used for training. Additional training
texts from the period of March through May 1998 (from PS-
Media, newswires) and the TDT-2 closed captions and com-
mercial transcripts (predating June98) were also used to esti-
mate the language models. The additional data gave a slight
performance improvement (3% relative) on the Nov’98 eval-
uation data, but only a 0.1% absolute reduction to 17.0% on
the 1999 test set.

An unconstrained computation system was also evaluated,
in which the 10x baseline result served as the initial hypothe-
ses for further decoding. The acoustic and language models
were the same as those used for the 10xRT baseline. Two ad-
ditional decoding passes were carried out: word graph gener-
ation with MLLR adapted acoustic models and a 4-gram lan-
guage model (32xRT) and word graph rescoring with MLLR
adapted acoustic models a 4-gram language model (5xRT).
The results for this system are given in Table 3. Unfortu-
nately the version of the decoder script used for the evalua-
tion run had a bug which both made it run slower and had a
higher word error rate. The reduction in word error is less
than 10% compared to the baseline 10x systems despite the
factor of 5 in computation time. Some recent experiments
with Rover [19] support previous observations that combin-
ing even a small number of fast decoders may be more effi-
cient in reducing the recognition word error rate than running
a slower system.

5. SUMMARY & DISCUSSION
In this paper we have presented our 1999 broadcast news

transcription system, and highlighted our development work
which was mainly oriented towards developing a new de-
coder and optimizing the acoustic and language models to
remain within the 10x computational restriction. With this

Submitted (bug) Corrected script
xRT 54xRT 47xRT
bn99en-1 17.4% 17.0%
bn99en-2 14.8% 14.5%
average 15.9% 15.6%

Table 3: 50xR contrast system.

competitive new decoder unrestricted broadcast news data
can be transcribed in under 1.4xRT with a word error un-
der 30%. Different decoding strategies were investigated so
as to optimize performance at for different real-time factors.
A three pass strategy was found to provide the best perfor-
mance at 10xRT, whereas fewer passes are better for faster
decoding speeds.

Our development work showed us how processing time
constraints significantly affect model design. For each op-
erating point, the right balance between model complexity
and search pruning level must be found. For moderate de-
coding times (in the range 0.6xRT to 3xRT) a model set con-
taining 92k Gaussians, 6k tied states, 5k phone contexts was
found to perform substantially better than smaller or larger
models. If decoding time is not an important factor, an even
larger model set (350k Gaussians, 11k tied states, 30k phone
contexts) provided the best performance/speed ratio for pro-
cessing times over 5xRT.

We have developed broadcast news transcription sys-
tems with comparable performance levels for three other
languages2 (French, German and Mandarin) and are cur-
rently also targeting Portuguese and Arabic.
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