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ABSTRACT

This paper describes ongoing work on a new approach for lan-

guage modeling for large vocabulary continuous speectgréeo
tion. Almost all state-of-the-art systems use statisticgtam lan-
guage models estimated on text corpora. One principle grobl
with such language models is the fact that many ofrthgrams
are never observed even in very large training corpora, ekt
fore itis common to back-off to a lower-order model. In thaper
we propose to address this problem by carrying out the estima
tion task in acontinuousspace, enabling amoothinterpolation

of the probabilities. A neural network is used to learn the-pr
jection of the words onto a continuous space and to estirhate t
n-gram probabilities. The connectionist language modekisidp
evaluated on the DARPA bB5 conversational telephone speech
recognition task and preliminary results show consisteprove-
ments in both perplexity and word error rate.

1. INTRODUCTION

Language modeling is known to be a very important aspect of
speech recognition. Almost all state-of-the-art largeamdary
continuous speech recognition (LVCSR) systems use &tafiktn-
guage models based engrams, i.e. the model predicts the fol-
lowing word based on the previous-1 words, ignoring all other
context. Due to data sparseness and computational coryplexi
during decodingg is usually limited to two or three words. Al-
though these statistical language models (LM) performequit||

in practice, there are several drawbacks from a theoregiodt

of view due to the high dimensionality in the discrete spage r
resentation of the words. The vocabulary size in most ctirren

backing-off and smoothing. These approaches rely on thizauti
tion of probabilities available for shorter contexts. Anet ap-
proach is to use word classes in order to improve generalizat
but these do not seem to scale well to very large trainingararp

Recently, a new approach has been developed that proposes to
carry out the estimation task inantinuous spacf]. The basic
idea is to project the word indices onto a continuous spade an
to use a probability estimator operating on this space. esihe
resulting probability functions are smooth functions oé tvord
representation, better generalization to unknewgrams can be
expected. In this paper a neural network is used as protyabili
estimator since it can learn both the projection and theredés
of then-gram probabilities.

The connectionist LM has been previously evaluated on two
text corpora (“Brown”: 800K training words, English texitics;
and “Hansard”: 32M words, Canadian Parliament proceedlings
and achieved perplexity improvements of up to 30% with respe
to a standar@-gram [1]. In this paper we extend the approach to
large vocabulary continuous speech recognition for the [PAR
HuBb5 task. Several improvements to increase efficiency during
decoding are discussed.

2. ARCHITECTURE OF THE APPROACH

The architecture of the connectionist LM is shown in Figure 1
A standard fully-connected multi-layer perceptron is usddhe
inputs to the neural network are the indices of thel previous
words in the vocabulan; 41, ..., w;_2, w;—1 and the outputs

are the posterior probabilities afl words of the vocabulary:
Vi € [1, N]

P(’LUJ = i|w]_n+1, ey Wy—2, ’LU]_l)

This can be contrasted to standard language modeling wingre o

LVCSR systems is at least 64k words, which means that many of one probability is calculated. The input uses the so-célked-n

the (64k)* bigrams and64k)® trigrams are never observed dur-
ing training. Inevitably a number of the word sequencesatést
data are likely to be different from the word sequences seen d
ing training. This is particularly true in LVCSR where thecdeler

is likely to request probabilities fai-grams that are syntactically
or semantically incorrect, i.e., sequences that would negeb-
served in any training corpus of any size. We will provide som
statistics that seem to support this observation.

“True generalization” is difficult to obtain in a discrete wo
indice space, since there is no obvious relation betweewtrd
indices. The probability distributions are not smooth fiimies
since any change of the word indices can result in an arpitrar
change of the LM probability. Various techniques for gehera
ization to new word sequences have been proposed, in darticu

coding, i.e., tha-th word of the vocabulary is coded by setting
thei-th element of the vector to 1 and all the other elements to O.
This coding substantially simplifies the calculation of tirejec-
tion layer since we only need to copy thth line of the N x P
dimensional projection matrix, wherg is the size of the vocabu-
lary andP the size of the projection. The hidden layer activitigs
are calculated by applying thtanhfunction to the weighted sum
of the projection layer activities;, :

tanh (Z U]hlidden cn + b?idden)

k

h, Vj=1..H

whereb**™ s the bias of thg-th hidden layer neuron. The out-
puts are calculated in a similar way, using a softmax nozagtn
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Fig. 1. Architecture of the connectionist language model.
h; denotes the contexit; 41, ..., w;j_1.

to obtain posterior probabilities:
0; — Z U;)Jutputhj + b;)utput
J

=

_°
Zi\;l ek

The value of the-th output neuron corresponds directly to the
probability P(w; =t|wj_ny1, ..., wj—2, wj—1) = Plw;=i|hy).

Training is performed with the standard back-propagatien a
gorithm using cross-entropy as the error function (seerfstance
[2] for a general description of neural network training):

pi = Vi=1..N

N
E = Zdi log p;
=1

whered; denotes the desired output, i.e., the probability should
be 1.0 for the next word in the training sentence and 0.0 for al

prohibitive for use in LVCSR. Note that due to the softmax-nor
malization, all of the output activities need to be calcedetven if
only one probability is needed.

However, a LVCSR decoder usually requests many different
LM probabilities for the same context when expanding thecdea
trees and during LM look-ahead. Using caching techniquues, t
proposed LM can calculate these additional predictionsttier
same input context at no cost since they are already avaikbl
the output! As a result, if the LM scores for all 64k possiblerds
are needed then the complexity is only 200 Flops for eachgsrob
bility. In practice a decoder probably won't requesgram prob-
abilities for all 64k possible words (see Section 3 for stats on
HuB5 decoding), and it is not very reasonable to spend a lot of
computation power on words that appear very rarely. Theeefo
we chose to use the neural network only on “interesting words
which are refered to asshortlistin the following discussion. This
of course requires defining what words are interesting. Tases
are considered:

1. Static shortlists:
the neural network is used to predict the posterior probabil
ities of thel < N most frequent wordsndependentlypf
the input context.

2. Dynamic shortlists:
the neural network is used to predict the posterior probabil
ities ofl <« N words, where this set of wordiependon
the current context.

Letus denoté; = w;_», w;_1 the word history of a 3-gram.
The LM probabilities of words in the shortlist are calcuthtey the

network (Px) and the LM probabilities of the remaining words by
a standar@-gram backoff LM P5):

Py (w;|hy) - Ps(h;
Pt ={prff) )

with  Ps(h;)= > Pg(wl|hy)

weshortlist(hj)

if w; € shortlist
else

In other words, one can say that the neural network redis-

the other ones. It can be shown that the outputs of a neural net iy, tes the probability mass of all the words in the shsttiThese

work trained in this manner converge to the posterior pralieis.

Therefore, the neural network minimizes directly the pexfy on
the training data. Note also that the gradient is back-pyeped
through the projection-layer, which means that the neweddark
learns by itself the projection of the words onto the corntinsi
space that is best for the probability estimation task.

2.1. Complexity analysis

Let us analyse the complexity of calculating the probabditone
n-gramP(w;|w;_n41 - - wj;—1). The activities of the projection
layer are obtained by a simple table look-up and can be nieglec
in the complexity analysis. The calculation of the hiddend a
output-layer activities correspond to a matrix/vector tiplication
followed by the application of a non-linear function. Thiges the
following number of floating point operations (Flops):

(n—1)PxH)+H+(HxN)+N

whereH the size of the hidden layer. Sinééis much larger than
H, the complexity is dominated by the calculation at the otutpu
layer. For usual values af=3, N=64k, P=50 andH =200, about
13 MFlops are needed to calculate one LM probability, whih i

probability masses can be precalculated and easily storéuki
data structures of the standagejram LM. A standard back-off
technique is used if the probability mass for a requestegtiopn-
text is not directly available.

Since the set of words in the dynamic shortlist needs to be de-
termined at each calculation of LM probability, an efficiego-
rithm is needed. The following procedure, which takes athg®
of information already available by the standardram LM, was
used. The wordy; is part of the dynamic shortlist for the context
wiwy If @ 3-gramwwaws Or a2-gramwows has been encoun-
tered in the training data. In addition a (small) number ofyve
frequent words are included in the dynamic shortlist. Statid
dynamic shortlists of different sizes are compared in $ac3i.

Finally, all the required computations involve matrix oper
tions that can be highly optimized on standard computingiarc
tectures. Optimized BLAS libraries [3, 4] were used to talle a
vantage of machine characteristics such as the cache s&ra; m
ory architecture and instructions set (e.g. SSE on Intetgse
sors). Using these libraries up to 800 MFlops per second ean b

INote that the sum of the probabilities of the words in the #isbfor

a given contextis normalized ,, « .y o114t Py (w|hy) = 1.



achieved on DEC Alpha workstations or Intel CPUs. These opti
mization techniques make it possible to use the connestioM
for LVCSR.

3. RESULTSON HUB5

In this section we present results for the®rA HUB5 conversa-
tional telephone speech recognition task [5]. This taskahasen
since it is known to be very difficult, in particular with resgt to

language modeling for spontaneous speech.

The speechrecognizer used in these experiments was derived

from the LIMSI broadcast news transcription system[6]. @af
dependent phones are modeled using tied-state left-Gdp-
HMMs with Gaussian mixture, where the state tying is obtdine
by means of a phonemic decision tree. The Biram language
model used in these experiments was trained on BN trangoript

and on newspaper and newswire texts. Word recognition ig don

using a single pass dynamic network decoder [7].
In order to adapt the LIMSI BN system to theuH5 task,

acoustic models were trained on about 280h of conversdtiona

speech data distributed by the LDC:
e Switchboard1 corpus{bl): 248h of speech, 2.9M words.
e Call Home English¢he): 17h of speech, 218k words.

In addition to the BN language model;gram LMs were also
trained on the manual transcriptions of the#b acoustic training
data. Table 1 summarizes the perplexities obtained withdstial
backofflanguage models on the 1998 evaluation dateset (98,
35k words). The first two columns give the perplexities udivs
trained on the individual HB5 corpora. Interpolating these two
LMs (swb1+che) achieves a perplexity of 138.8, which is lower
than building an LM on the combined transcripts from the 2 cor
pora 6wblche, perplexity=143.8). We did not try to optimize the
vocabulary, since the OOV rate with LIMSI’s standard 64kdzto
cast news lexicon is only 0.5%. The wordlist contains 263-com
pounds likel _AMor A_LOT_CF. Therefore we report also the de-
compounded complexity, i.e counting the actual number afizo
in the test sentence.

| train. corpus]| che | swbl | swblche| swbl+che]

eval98 perplexity|| 215.3 | 152.1| 143.8 138.8
decompounded| 131.5| 95.9 91.2 88.3

Tablel. Perplexities of standafigram backoff LMsswb1che:
trained on the combined corporawbl+che: interpolated LM
from swb1 andche.

3.1. Importance of the shortlist

The type and the length of the shortlist directly influenead¢bm-
plexity of the calculations and the expected reduction ipleity

percentage of probabilities that are actually calculatethe neu-
ral network, i.e. the word to be predicted is in the shortlbte
that the network is not used to calculate the bigram protiisil
at the begining of each sentence (this accounts to a 10%agwer
loss).

shortlist dynamic static

type &length || 600 | 1000 | 2000 2000
eval98 perplexity|| 141.6 | 138.5 | 134.7 || 1345
eval98 coverage| 77.1% | 80.1% | 82.3% || 83.2%

Table 2. Comparison of different shortlists (see text for details)

It is clear that as the length of the shortlist is increaseakem
LM probabilities are calculated by the neural network, vihieads
to a decrease in the perplexity. Surprisingly, for the saemgth
better results were obtained with a static shortlist thath a&idy-
namic one. We believe that this can be explained by the fatt th
the underlying backof-gram LM was trained on a small corpus,
which means that there are very femgrams that can be used to
determine the shortlist for a given context, and these Bstsrimay
not be representative.

On the other hand, the results of the static shortlist ateerat
encouraging since this version is much easier to train arogtie
mize. Based on these results, we decided to only use statit sh
lists of length 2000 for the following experiments. This meshe
neural network predicts the LM probabilities for the 2000sho
frequent words independently of the context.

| train. corpus]] che | swbl | swhiche| swhil+che]

eval98 perplexity|| 196.2 | 141.7 1345 132.4
rel. improvement|| -8.9% | -6.8% | -6.5% -4.9%
decompounded, 120.9 | 89.9 85.8 84.5

Table3. Perplexities of connectionidtgram LMs on eval98. The
relative improvements are calculated with respect to thaddrd
backoff3-gram LMs (see Table 1).

Table 3 gives the perplexities for connectionist LMs traiioa
the HuB5 corpora. A small but consistent reduction in perplexity
with respectto the backostgram LM is observed in all cases. Al-
though the interpolated connectionist LisMb1+che) gives the
lowest perplexity, we decided to use theblche LM since the
use of only one network results in faster processing. Theort
parameters are as followsi=2, ¢=30, h=50 for che andn=2,
¢=50, h=200 for all the other ones. All weights were initialized
randomly and standard stochastic gradient descent wasrperd
for 20 iterations over the training material. More sopluated ini-
tialization methods were tried for the projection matrixit they
did not lead to any significantimprovements.

Our current experiments focus on an evaluation of the con-

since fewer cases are handled by the network as the size of theyectionist LM using only 3-grams, but the proposed model has

shortlist decreases. While this results in a lower overathplex-

ity for smaller shortlists (this effect is less important@vhmany
probabilities for the same context must be calculated dude-
coding), there is also less room for improvement. We expkcte
the dynamic shortlist to be more powerful since the contexieh-
dency should allow a higher probability mass to be coverethby
network. Table 2 summarizes the results obtained for 4 reiffe
shortlists (training was done usisgb1che). The first line shows
the perplexity on the eval98 corpus and the second line dhes

several properties that makes it very promising for muctgé&mn
contexts. In fact, longer contexts increase only slightly hum-
ber of parameters and the complexity of the model since drdy t
projection layer is affectetl. Note that the proposed LM always
uses the full context for the posterior probability estiimat i.e it
never backs-off to lower orders. Words that often appeainiilar

2Eventually an increased hidden layer is also needed in dodéeal
with the more complicated learning problem.



contexts will probably get similar projection codes, indagently
of their position in the context. This is expected to lead tod)
generalization behavior due to the smooth probabilitynestion
function.

3.2. Decoding experiments

backoff LM connectionist LM

BN LM + swhlche| swbl+che| swbhlche| swbl+che
perplexity 119.1 118.5 113.8 113.3
decompounded 76.8 76.4 73.7 73.4

Table 4. Eval98 perplexities when interpolating theuBl5 LM
with a large Broadcast Nevissgram LM.

The decoding experiments were performed by interpolating
the LMs trained on thewb1 andche corpora with LIMSI’s stan-
dard BN3-gram LM. The corresponding perplexities on eval98 are
given in Table 4. Decoding was performed with a slightly nfiedi
version of the LIMSI Broadcast News system. This systenn@si
the standard backoff-gram LM) achieves a word error rate of
46.3% without adaptation, and 42.8% after unsupervised RILL
adaptation (1 iteration with 2 regression classes). Noa tthis
system is not yet tuned to theu#t5 task and many changes are in
progress that are expected to lead to further word erroratats.

backoff LM connectionist LM
no adapt| adapt | no adapt| adapt

[ worderror| 46.3% | 42.8% | 45.8% | 42.5% |

Table 5. Word error rates on eval98 with standadyram and
connectionist LMs.

Although the connectionist LM gave only a small reduction in
perplexity, a reduction in word error from 46.3 to 45.8% waith
adaptation is obtained with this LM (see Table 5). Note thk¥a
absolute error reduction is not easy to obtain on thesbl task
eventhough the word error rate is quite high. The experisent
were done using a full decode with the connectionist LM.

Further insight can be gained with the help of statistics col
lected during decoding. Averaging over the 4317 sentenicéeo
3h eval98 data set, 4.66M LM probabilities were requestethby

4. DISCUSSION AND FUTURE WORK

In this paper we have described ongoing work on a new approach
to language modeling for LVCSR. The word indices are prgéct
onto a continuous space, allowing by these means smootpante
lations. The current experimental results are insufficterthake
strong conclusions, but they illustrate the potential efdpproach.
Although the connectionistlanguage model was only usedo6

of the requested LM probability calculations during decagia
word error reduction of 0.5% was obtained on thegs task.

Several extensions are currently under investigation dat
expectedto lead to furtherimprovements. First, longeicssdort-
lists will be considered. From what has been observed thus fa
increasing the length of the shortlist always reduces thpl@e
ity. Due to the efficient caching algorithm, this should nesult
in a significant increase in decoding time. Another not yell we
exploited potential of the proposed algorithm is the pabsitio
learn long-span LMs witle > 3.

The move to a continuous representation of the words should
open some promising research directions. In this work neata
works are used as probability estimators as well as to |ezen t
projection. In fact, once this projection is learned anybatoility
estimator can be used, in particular Gaussian mixturesoAitjh
Gaussian mixtures are not usually trained in a discrimieatiay
(like neural networks), they can be evaluated much faster.

Finally the continuous projection matrix opens the way to-se
eral powerful LM adaptation techniques. It is for instanosgible
to apply a transformation to this matrix in order to accomiated
for new LM data. Similar ideas have also been proposed forsta
dardn-gram LM (see for instance [8] for an review of LM adap-
tation techniques), but the discrete representation makesthe-
matically less tractable.
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