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ABSTRACT

This paper describes ongoing work on a new approach for lan-
guage modeling for large vocabulary continuous speech recogni-
tion. Almost all state-of-the-art systems use statisticaln-gram lan-
guage models estimated on text corpora. One principle problem
with such language models is the fact that many of then-grams
are never observed even in very large training corpora, and there-
fore it is common to back-off to a lower-order model. In this paper
we propose to address this problem by carrying out the estima-
tion task in acontinuousspace, enabling asmoothinterpolation
of the probabilities. A neural network is used to learn the pro-
jection of the words onto a continuous space and to estimate then-gram probabilities. The connectionist language model is being
evaluated on the DARPA HUB5 conversational telephone speech
recognition task and preliminary results show consistent improve-
ments in both perplexity and word error rate.

1. INTRODUCTION

Language modeling is known to be a very important aspect of
speech recognition. Almost all state-of-the-art large vocabulary
continuous speech recognition (LVCSR) systems use statistical lan-
guage models based onn-grams, i.e. the model predicts the fol-
lowing word based on the previousn�1 words, ignoring all other
context. Due to data sparseness and computational complexity
during decoding,n is usually limited to two or three words. Al-
though these statistical language models (LM) perform quite well
in practice, there are several drawbacks from a theoreticalpoint
of view due to the high dimensionality in the discrete space rep-
resentation of the words. The vocabulary size in most current
LVCSR systems is at least 64k words, which means that many of
the (64k)2 bigrams and(64k)3 trigrams are never observed dur-
ing training. Inevitably a number of the word sequences in the test
data are likely to be different from the word sequences seen dur-
ing training. This is particularly true in LVCSR where the decoder
is likely to request probabilities forn-grams that are syntactically
or semantically incorrect, i.e., sequences that would never be ob-
served in any training corpus of any size. We will provide some
statistics that seem to support this observation.

“True generalization” is difficult to obtain in a discrete word
indice space, since there is no obvious relation between theword
indices. The probability distributions are not smooth functions
since any change of the word indices can result in an arbitrary
change of the LM probability. Various techniques for general-
ization to new word sequences have been proposed, in particular

backing-off and smoothing. These approaches rely on the utiliza-
tion of probabilities available for shorter contexts. Another ap-
proach is to use word classes in order to improve generalization,
but these do not seem to scale well to very large training corpora.

Recently, a new approach has been developed that proposes to
carry out the estimation task in acontinuous space[1]. The basic
idea is to project the word indices onto a continuous space and
to use a probability estimator operating on this space. Since the
resulting probability functions are smooth functions of the word
representation, better generalization to unknownn-grams can be
expected. In this paper a neural network is used as probability
estimator since it can learn both the projection and the estimates
of then-gram probabilities.

The connectionist LM has been previously evaluated on two
text corpora (“Brown”: 800K training words, English textbooks;
and “Hansard”: 32M words, Canadian Parliament proceedings)
and achieved perplexity improvements of up to 30% with respect
to a standard3-gram [1]. In this paper we extend the approach to
large vocabulary continuous speech recognition for the DARPA
HUB5 task. Several improvements to increase efficiency during
decoding are discussed.

2. ARCHITECTURE OF THE APPROACH

The architecture of the connectionist LM is shown in Figure 1.
A standard fully-connected multi-layer perceptron is used. The
inputs to the neural network are the indices of then�1 previous
words in the vocabularywj�n+1; :::;wj�2; wj�1 and the outputs
are the posterior probabilities ofall words of the vocabulary:P (wj = ijwj�n+1; :::;wj�2; wj�1) 8i 2 [1;N ]
This can be contrasted to standard language modeling where only
one probability is calculated. The input uses the so-called1-of-n
coding, i.e., thei-th word of the vocabulary is coded by setting
the i-th element of the vector to 1 and all the other elements to 0.
This coding substantially simplifies the calculation of theprojec-
tion layer since we only need to copy thei-th line of theN � P
dimensional projection matrix, whereN is the size of the vocabu-
lary andP the size of the projection. The hidden layer activitieshj
are calculated by applying thetanh function to the weighted sum
of the projection layer activitiesck:hj = tanh Xk vhiddenjk ck + bhiddenj ! 8j = 1:::H
wherebhiddenj is the bias of thej-th hidden layer neuron. The out-
puts are calculated in a similar way, using a softmax normalization
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Fig. 1. Architecture of the connectionist language model.hj denotes the contextwj�n+1; :::;wj�1.

to obtain posterior probabilities:oi = Xj voutputij hj + boutputipi = eoiPNk=1 eok 8i = 1:::N
The value of thei-th output neuron corresponds directly to the
probabilityP (wj= ijwj�n+1; :::;wj�2; wj�1) = P (wj= ijhj).

Training is performed with the standard back-propagation al-
gorithm using cross-entropy as the error function (see for instance
[2] for a general description of neural network training):E = NXi=1 di log pi
wheredi denotes the desired output, i.e., the probability should
be 1.0 for the next word in the training sentence and 0.0 for all
the other ones. It can be shown that the outputs of a neural net-
work trained in this manner converge to the posterior probabilities.
Therefore, the neural network minimizes directly the perplexity on
the training data. Note also that the gradient is back-propagated
through the projection-layer, which means that the neural network
learns by itself the projection of the words onto the continuous
space that is best for the probability estimation task.

2.1. Complexity analysis

Let us analyse the complexity of calculating the probability of onen-gramP (wjjwj�n+1 � � �wj�1). The activities of the projection
layer are obtained by a simple table look-up and can be neglected
in the complexity analysis. The calculation of the hidden- and
output-layer activities correspond to a matrix/vector multiplication
followed by the application of a non-linear function. This gives the
following number of floating point operations (Flops):((n� 1)P �H) +H + (H �N) +N
whereH the size of the hidden layer. SinceN is much larger thanH, the complexity is dominated by the calculation at the output
layer. For usual values ofn=3,N=64k,P=50 andH=200, about
13 MFlops are needed to calculate one LM probability, which is

prohibitive for use in LVCSR. Note that due to the softmax nor-
malization, all of the output activities need to be calculated even if
only one probability is needed.

However, a LVCSR decoder usually requests many different
LM probabilities for the same context when expanding the search
trees and during LM look-ahead. Using caching techniques, the
proposed LM can calculate these additional predictions forthe
same input context at no cost since they are already available at
the output! As a result, if the LM scores for all 64k possible words
are needed then the complexity is only 200 Flops for each proba-
bility. In practice a decoder probably won’t requestn-gram prob-
abilities for all 64k possible words (see Section 3 for statistics on
HUB5 decoding), and it is not very reasonable to spend a lot of
computation power on words that appear very rarely. Therefore,
we chose to use the neural network only on “interesting words”,
which are refered to as ashortlistin the following discussion. This
of course requires defining what words are interesting. Two cases
are considered:

1. Static shortlists :
the neural network is used to predict the posterior probabil-
ities of thel � N most frequent words,independentlyof
the input context.

2. Dynamic shortlists :
the neural network is used to predict the posterior probabil-
ities of l � N words, where this set of wordsdependson
the current context.

Let us denotehj = wj�2; wj�1 the word history of a 3-gram.
The LM probabilities of words in the shortlist are calculated by the
network (P̂N ) and the LM probabilities of the remaining words by
a standard3-gram backoff LM (PB):P (wjjhj) =�P̂N(wjjhj) � PS(hj) if wj 2 shortlistPB(wjjhj) else

with PS(hj) = Xw2shortlist(hj)PB(wjhj)
In other words, one can say that the neural network redis-

tributes the probability mass of all the words in the shortlist.1 These
probability masses can be precalculated and easily stored in the
data structures of the standard3-gram LM. A standard back-off
technique is used if the probability mass for a requested input con-
text is not directly available.

Since the set of words in the dynamic shortlist needs to be de-
termined at each calculation of LM probability, an efficientalgo-
rithm is needed. The following procedure, which takes advantage
of information already available by the standard3-gram LM, was
used. The wordw3 is part of the dynamic shortlist for the contextw1w2 if a 3-gramw1w2w3 or a 2-gramw2w3 has been encoun-
tered in the training data. In addition a (small) number of very
frequent words are included in the dynamic shortlist. Static and
dynamic shortlists of different sizes are compared in Section 3.

Finally, all the required computations involve matrix opera-
tions that can be highly optimized on standard computing archi-
tectures. Optimized BLAS libraries [3, 4] were used to take ad-
vantage of machine characteristics such as the cache size, mem-
ory architecture and instructions set (e.g. SSE on Intel proces-
sors). Using these libraries up to 800 MFlops per second can be

1Note that the sum of the probabilities of the words in the shortlist for
a given context is normalized

Pw2shortlist P̂N (wjhj) = 1.



achieved on DEC Alpha workstations or Intel CPUs. These opti-
mization techniques make it possible to use the connectionist LM
for LVCSR.

3. RESULTS ON HUB5

In this section we present results for the DARPA HUB5 conversa-
tional telephone speech recognition task [5]. This task waschosen
since it is known to be very difficult, in particular with respect to
language modeling for spontaneous speech.

The speech recognizer used in these experiments was derived
from the LIMSI broadcast news transcription system[6]. Context-
dependent phones are modeled using tied-state left-to-right CD-
HMMs with Gaussian mixture, where the state tying is obtained
by means of a phonemic decision tree. The BN3-gram language
model used in these experiments was trained on BN transcriptions
and on newspaper and newswire texts. Word recognition is done
using a single pass dynamic network decoder [7].

In order to adapt the LIMSI BN system to the HUB5 task,
acoustic models were trained on about 280h of conversational
speech data distributed by the LDC:� Switchboard1 corpus (swb1): 248h of speech,2.9M words.� Call Home English (che): 17h of speech, 218k words.

In addition to the BN language model,3-gram LMs were also
trained on the manual transcriptions of the HUB5 acoustic training
data. Table 1 summarizes the perplexities obtained with standard
backoff language models on the 1998 evaluation data set (eval98,
35k words). The first two columns give the perplexities usingLMs
trained on the individual HUB5 corpora. Interpolating these two
LMs (swb1+che) achieves a perplexity of 138.8, which is lower
than building an LM on the combined transcripts from the 2 cor-
pora (swb1che, perplexity=143.8). We did not try to optimize the
vocabulary, since the OOV rate with LIMSI’s standard 64k broad-
cast news lexicon is only 0.5%. The wordlist contains 263 com-
pounds likeI AM or A LOT OF. Therefore we report also the de-
compounded complexity, i.e counting the actual number of words
in the test sentence.

train. corpus che swb1 swb1che swb1+che

eval98 perplexity 215.3 152.1 143.8 138.8
decompounded 131.5 95.9 91.2 88.3

Table 1. Perplexities of standard3-gram backoff LMs.swb1che:
trained on the combined corpora,swb1+che: interpolated LM
from swb1 andche.

3.1. Importance of the shortlist

The type and the length of the shortlist directly influence the com-
plexity of the calculations and the expected reduction in perplexity
since fewer cases are handled by the network as the size of the
shortlist decreases. While this results in a lower overall complex-
ity for smaller shortlists (this effect is less important when many
probabilities for the same context must be calculated during de-
coding), there is also less room for improvement. We expected
the dynamic shortlist to be more powerful since the context depen-
dency should allow a higher probability mass to be covered bythe
network. Table 2 summarizes the results obtained for 4 different
shortlists (training was done usingswb1che). The first line shows
the perplexity on the eval98 corpus and the second line givesthe

percentage of probabilities that are actually calculated by the neu-
ral network, i.e. the word to be predicted is in the shortlist. Note
that the network is not used to calculate the bigram probabilities
at the begining of each sentence (this accounts to a 10% coverage
loss).

shortlist dynamic static
type & length 600 1000 2000 2000

eval98 perplexity 141.6 138.5 134.7 134.5
eval98 coverage 77.1% 80.1% 82.3% 83.2%

Table 2. Comparison of different shortlists (see text for details).

It is clear that as the length of the shortlist is increased, more
LM probabilities are calculated by the neural network, which leads
to a decrease in the perplexity. Surprisingly, for the same length
better results were obtained with a static shortlist than with a dy-
namic one. We believe that this can be explained by the fact that
the underlying backoff3-gram LM was trained on a small corpus,
which means that there are very fewn-grams that can be used to
determine the shortlist for a given context, and these shortlists may
not be representative.

On the other hand, the results of the static shortlist are rather
encouraging since this version is much easier to train and toopti-
mize. Based on these results, we decided to only use static short-
lists of length 2000 for the following experiments. This means the
neural network predicts the LM probabilities for the 2000 most
frequent words independently of the context.

train. corpus che swb1 swb1che swb1+che

eval98 perplexity 196.2 141.7 134.5 132.4
rel. improvement -8.9% -6.8% -6.5% -4.9%

decompounded 120.9 89.9 85.8 84.5

Table 3. Perplexities of connectionist3-gram LMs on eval98. The
relative improvements are calculated with respect to the standard
backoff3-gram LMs (see Table 1).

Table 3 gives the perplexities for connectionist LMs trained on
the HUB5 corpora. A small but consistent reduction in perplexity
with respect to the backoff3-gram LM is observed in all cases. Al-
though the interpolated connectionist LM (swb1+che) gives the
lowest perplexity, we decided to use theswb1che LM since the
use of only one network results in faster processing. The network
parameters are as follows:n=2, c=30, h=50 for che andn=2,c=50, h=200 for all the other ones. All weights were initialized
randomly and standard stochastic gradient descent was performed
for 20 iterations over the training material. More sophisticated ini-
tialization methods were tried for the projection matrix, but they
did not lead to any significant improvements.

Our current experiments focus on an evaluation of the con-
nectionist LM using only 3-grams, but the proposed model has
several properties that makes it very promising for much longer
contexts. In fact, longer contexts increase only slightly the num-
ber of parameters and the complexity of the model since only the
projection layer is affected.2 Note that the proposed LM always
uses the full context for the posterior probability estimation, i.e it
never backs-off to lower orders. Words that often appear in similar

2Eventually an increased hidden layer is also needed in orderto deal
with the more complicated learning problem.



contexts will probably get similar projection codes, independently
of their position in the context. This is expected to lead to good
generalization behavior due to the smooth probability estimation
function.

3.2. Decoding experiments

backoff LM connectionist LM
BN LM + swb1che swb1+che swb1che swb1+che

perplexity 119.1 118.5 113.8 113.3
decompounded 76.8 76.4 73.7 73.4

Table 4. Eval98 perplexities when interpolating the HUB5 LM
with a large Broadcast News3-gram LM.

The decoding experiments were performed by interpolating
the LMs trained on theswb1 andche corpora with LIMSI’s stan-
dard BN3-gram LM. The corresponding perplexities on eval98 are
given in Table 4. Decoding was performed with a slightly modified
version of the LIMSI Broadcast News system. This system (using
the standard backoff3-gram LM) achieves a word error rate of
46.3% without adaptation, and 42.8% after unsupervised MLLR
adaptation (1 iteration with 2 regression classes). Note that this
system is not yet tuned to the HUB5 task and many changes are in
progress that are expected to lead to further word error reductions.

backoff LM connectionist LM
no adapt adapt no adapt adapt

word error 46.3% 42.8% 45.8% 42.5%

Table 5. Word error rates on eval98 with standard3-gram and
connectionist LMs.

Although the connectionist LM gave only a small reduction in
perplexity, a reduction in word error from 46.3 to 45.8% without
adaptation is obtained with this LM (see Table 5). Note that a1%
absolute error reduction is not easy to obtain on the HUB5 task
eventhough the word error rate is quite high. The experiments
were done using a full decode with the connectionist LM.

Further insight can be gained with the help of statistics col-
lected during decoding. Averaging over the 4317 sentences of the
3h eval98 data set, 4.66M LM probabilities were requested bythe
decoder for each sentence, among which 2.17M were handled by
the neural network (46.6 %). This percentage is much lower than
the coverage on the eval98 transcriptions (see table 2) and the train-
ing data transcriptions (85.9 %). This means that the decoder is re-
questing manyn-grams that are very unlikely to be observed in the
training corpus, even of very large size, and a good generalization
of the LM to these unseenn-grams appears to be important during
decoding. It seems difficult to measure the quality of this gener-
alization behavior by calculating the perplexity on a necessarily
rather small development corpus.

One could expect further improvements when using the neural
network for more than 2000 words and it appears that the over-
all complexity will not increase too much. In fact, on average
only 12.1k of the 2.17M calls to the network resulted in a com-
plete forward pass, all other probabilities were cached anddirectly
available at the network output. Averaging over all sentences, the
mean and maximum of the number of sequentially requested prob-
abilities for the same context is 540 and 17.7k respectively. These
values depend of course on the pruning parameters of the decoder.

4. DISCUSSION AND FUTURE WORK

In this paper we have described ongoing work on a new approach
to language modeling for LVCSR. The word indices are projected
onto a continuous space, allowing by these means smooth interpo-
lations. The current experimental results are insufficientto make
strong conclusions, but they illustrate the potential of the approach.
Although the connectionist language model was only used for47%
of the requested LM probability calculations during decoding, a
word error reduction of 0.5% was obtained on the HUB5 task.

Several extensions are currently under investigation thatare
expected to lead to further improvements. First, longerstatic short-
lists will be considered. From what has been observed thus far,
increasing the length of the shortlist always reduces the perplex-
ity. Due to the efficient caching algorithm, this should not result
in a significant increase in decoding time. Another not yet well
exploited potential of the proposed algorithm is the possibility to
learn long-span LMs withn� 3.

The move to a continuous representation of the words should
open some promising research directions. In this work neural net-
works are used as probability estimators as well as to learn the
projection. In fact, once this projection is learned any probability
estimator can be used, in particular Gaussian mixtures. Although
Gaussian mixtures are not usually trained in a discriminative way
(like neural networks), they can be evaluated much faster.

Finally the continuous projection matrix opens the way to sev-
eral powerful LM adaptation techniques. It is for instance possible
to apply a transformation to this matrix in order to accommodate
for new LM data. Similar ideas have also been proposed for stan-
dardn-gram LM (see for instance [8] for an review of LM adap-
tation techniques), but the discrete representation makesit mathe-
matically less tractable.
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sity of Montréal. He has developed the initial algorithm [1] and
gave many fruitful comments during the visits of the first author at
the University of Montréal.
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