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ABSTRACT

This paper presents some experiments with feature and score
normalization for text-independent speaker verification of cellular
data. The speaker verification system is based on cepstral features
and Gaussian mixture models with 1024 components. The follow-
ing methods, which have been proposed for feature and score nor-
malization, are reviewed and evaluated on cellular data: cepstral
mean subtraction (CMS), variance normalization, feature warping,
T-norm, Z-norm and the cohort method. We found that the com-
bination of feature warping and T-norm gives the best results on
the NIST 2002 test data (for the one-speaker detection task). Com-
pared to a baseline system using both CMS and variance normaliza-
tion and achieving a 0.410 minimal decision cost function (DCF),
feature warping and T-norm respectively bring 8% and 12% rela-
tive reductions, whereas the combination of both techniques yields
a 22% relative reduction, reaching a DCF of 0.320. This result ap-
proaches the state-of-the-art performance level obtained for speaker
verification with land-line telephone speech.

1. INTRODUCTION

Over the last ten years, Gaussian mixture models (GMM) for the
modeling of speaker spectral characteristics has become the dom-
inant approach for speaker verification systems which use untran-
scribed training data [1].

Efficient normalization of the acoustic features and of the detec-
tion score have been recently proposed for improving a standard
GMM-based system. For example, it has been reported in [4] that
feature warping, which consists of mapping the observed short-time
distribution of the acoustic features to a normal distribution, outper-
forms standard cepstral mean subtraction. Another example is the
T-norm method [5] which uses the statistics of the scores of a cohort
of impostor speakers to normalize the target speaker score.

In this paper the following normalization methods are reviewed
and evaluated on cellular data: cepstral mean subtraction (CMS),
variance normalization, feature warping, T-norm, Z-norm and the
cohort method. Results are reported on the NIST 2002 test data for
the one-speaker detection task [6].

In the next section we describe the experimental conditions and
the baseline system. In Section 3 we review the various normaliza-
tion methods. The experimental results are discussed in Section 4.

∗This work was partially financed by the French Ministry of Defense

2. EXPERIMENTAL SETUP
In this section, we describe the NIST one-speaker detection task,

the corpora used to carried out the experiments, and the baseline
speaker verification system.

Corpus and task
The speaker recognition experiments were conducted on cellu-

lar telephone conversational speech from the Switchboard corpus.
This data was used by NIST for the 2002 one-speaker detection
task [7]. Given a speech segment of about 30 seconds, the goal
is to to decide whether this segment was spoken by a specific tar-
get speaker or not. For each of 330 target speakers (139 males and
191 females), two minutes of untranscribed, concatenated speech is
available for training the target model. Overall 3570 test segments
(1442 males and 2128 females), mainly lasting between 15 and
45 seconds, have to be scored against roughly 10 gender-matching
impostors and against the true speaker. The gender of the target
speaker is known.

We made use of the cellular data from the NIST 2001 evalua-
tion in order to train background models and to gather the needed
statistics for some of the detection score normalization methods.
This data includes files from 60 development speakers (2 minutes
of speech for each of 38 males and 22 females) which are used to
train the background models, and files from 174 target speakers (2
minutes of speech for each of 74 males and 100 females) used as
impostor data, plus some of the 2038 evaluation test segments also
used as impostor data.

Baseline system
PLP-like features are extracted from the speech signal every

10ms using a 30ms window. The feature vector estimated on the
0-3.8kHz bandwidth is comprised of 15 MEL-PLP cepstrum coef-
ficients, 15 delta coefficients plus the delta energy, for a total of 31
features. Cepstral mean subtraction and variance normalization are
applied to each speech file during training and testing. This front-
end departs slightly from the one used in LIMSI speech recognition
systems [11]. For speaker recognition we use 15 cepstral coeffi-
cients rather than 12, since higher order cepstral coefficients are
known to carry some speaker information, and 15 was found to be
the optimal on our development data. However the gain over 12
coefficients is quite small. Another difference concerns the second-
order difference cepstral coefficients which were not found to be
effective for speaker recognition [6].

For each target speaker, a speaker-specific GMM with diagonal
covariance matrices was trained via maximum a posteriori (MAP)
adaptation [8] of the Gaussian means of the matching gender back-
ground model using 5 iterations of the EM algorithm. Each of
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the two gender-dependent background models includes 1024 Gaus-
sians. These two models were trained on a total of about 2 hours of
data from the 60 development speakers.

For each verification test, i.e.m a pair of a test segment and a tar-
get speaker, the test segment is scored against both the target model
and the background model matching the target gender, ignoring low
energy frames (about 10%). For a given test segmentX and a target
modelλ, the decision scoreS(X, λ) is a log-likelihood ratio,

S(X, λ) = log f ′(X|λ)− log f ′(X|R)

where f ′(X|λ) is the normalized likelihood of the speech seg-
ment (of lengthL(X)) for a given model, i.e.,f ′(X|λ) =

f(X|λ)1/L(X), andf ′(X|R) is the normalized likelihood of the
gender-matching background model.

Performance measure
A speaker detection system is subject to two kinds of errors,

i.e. missed detections and false alarms. The primary performance
measure for the NIST speaker detection task is the detection cost
function (DCF) defined as a weighted sum of both error proba-
bilities, the normalized cost taking the following form (see [7])
CNorm = PMiss + 9.9 × PFalseAlarm. For all results, we re-
port the minimal DCF value obtained a posteriori for the best pos-
sible detection threshold. However this operating point favors false
alarms, so the equal error-rate (EER) is used as an alternative per-
formance measure. We are also using the Detection Error Tradeoff
(DET) curves. The DET curve is comparable to the Receiver Op-
erating Characteristics curve but the use of non-linear axis which
results in a linear curve for a normal distribution improves its read-
ability [9].

3. NORMALIZATION METHODS
This section reviews the various normalization methods tested

in this work, i.e., cepstral mean normalization, variance normaliza-
tion, and feature warping for feature normalization, and the cohort
model, Z-norm and T-norm for score normalization.

Feature normalization
Speaker recognition systems generally make use of acoustic

front-ends very similar to those used in speech recognition: sig-
nal band-limiting, cepstral feature extraction, feature normaliza-
tion, cepstral and energy derivatives. Cepstral feature normaliza-
tion often consists of cepstral mean subtraction (CMS) performed
over the entire file. This reduces stationary convolution noises
due to the channel. CMS is sometimes supplemented, as in our
baseline, with variance normalization. Recently, other approaches
have been successfully applied to feature normalization for speaker
recognition, mainly feature warping [4] and short-time Gaussian-
ization [10]. Feature warping consists of mapping the observed
cepstral feature distribution to a normal distribution over a sliding
window, the various cepstral coefficients being processed in par-
allel streams. Letrt be the rank of a feature within aN sample
window centered around timet, its warped valuewt is estimated
by solving numerically the following equation:

rt − 1/2

N
=

∫ wt

−∞

1√
2π

exp

(
−x2

2

)
dx.

Feature warping has been shown to outperform standard normal-
ization techniques [4]. Short-time Gaussianization is similar but
applies a linear transformation to the features before mapping them
to a normal distribution; this linear transformation which can be

estimated by the EM algorithm, makes the resulting features bet-
ter suited to diagonal covariance GMMs. The linear transforma-
tion can also be optimized separately for male and female speakers.
Short-time Gaussianization was shown to perform better than fea-
ture warping for low false-alarm rates [10].

Score normalization
The baseline system score consists of the log-likelihood ratio

between the target speaker and the reference background model
matching the target gender. This approach is efficient but it is also
quite fast as only two likelihoods values need to be computed [1].
A classical alternative for the estimation of the reference likelihood
is to use a set of impostor models, or cohort. Following previous
work of LIMSI on speaker recognition [3] we combined the impos-
tor scores in the following way:

Scohort(X, λ) = log f ′(X|λ)γ − log
∑

R∈Cohort

f ′(X|R)γ

whereγ is a scaling parameter needed to compensate for indepen-
dency assumptions, which needs to be optimized on some develop-
ment data. In our experiments, the gender of the test segment was
automatically determined based on the best scoring male or female
background model, and only cohort speakers from the same gen-
der are considered. Further reduction of the cohort was optionally
performed by keeping only the top best scoring models.

The other category of score normalization methods consist of
normalizing the distribution of the scores. Here we consider the
Z-norm and T-norm methods which have proven to be quite effi-
cient [5]. The Z-norm method normalizes the score distribution
using target-specific statistics:

Sznorm(X, λ) =
S(X, λ)− µλ

σλ

whereµλ andσλ are respectively the mean and standard deviation
of the scoresS(Yi, λ) of the target speaker against a set of impos-
tor test segmentsYi. This normalization was originally proposed
for joint handset and speaker normalization [1], but it is used here
for speaker normalization only since handset compensation is not
relevant for cellular speech. The T-norm method extends the stan-
dard cohort approach to score distribution scaling [5]. Each test
segment is scored against a set of impostor cohort modelsRj , and
the likelihood of the test segment given the target speaker is nor-
malized according to the meanµX and standard deviationσX of
the likelihoodsf ′(X|Rj):

Stnorm(X, λ) =
log f ′(X|λ)− µX

σX

As was done for the cohort scoring, only the impostor targets of the
same gender as the test segment, or a fraction of them, are used for
computingµX andσX . At the opposite of Z-norm, it is possible
to conduct the normalization directly using the likelihoodsf ′(X|λ)
rather than the scoresS(X, λ), since the log-likelihood of the back-
ground model is a constant shared by all tests and is thus canceled
by mean subtraction.

4. EXPERIMENTAL RESULTS
Experimental results obtained with the various normalization

methods are given bellow.
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Nb. Gaussians τ min. DCF EER (%)

16 100 0.638 17.2
32 75 0.578 15.1
64 50 0.529 13.3

128 25 0.490 11.9
256 20 0.447 10.8
512 15 0.424 10.0

baseline:1024 10 0.410 9.9

Table 1: System performance for GMMs with increasing numbers
of Gaussians, using a matching MAP adaptation weightτ .

MAP adaptation min. DCF EER (%)

mean only 0.410 9.9
mean+weight 0.434 10.7

mean+weight+variance 0.540 12.5

Table 2: Impact of MAP adaptation of Gaussian mean, weight and
variance over speaker detection performance.

Baseline performance
Gaussian means of the target models are adapted from the refer-

ence models using MAP adaptation [8]. Evidently the prior weight
(τ ) needs to be tuned depending of the model complexity, rang-
ing to aboutτ = 100 for small model with 16 Gaussians to about
τ = 10 for system with 1024 Gaussians per gender model. Sys-
tem performances with 16 to 1024 Gaussians are reported in Ta-
ble 1. The baseline system with 1024 Gaussians has minimal DCF
of 0.410 and an ERR of 9.9%. As can be seen in Table 2, adapting
the Gaussian weights or variances is not helpful, this was already
in [5]. Concerning the number of EM iterations for the adaptation,
at least 4 iterations are needed when adapting the Gaussian weights
or variances in addition to the Gaussian means, but 2 iterations are
enough when only adapting the Gaussian means.

Feature normalization
Here we analyse the results with the following feature normal-

ization methods: CMS, CMS plus variance normalization, short-
term variance normalization and feature warping. For the first two
methods, the normalization is applied over the entire file. Perfor-
mances reported in Table 3 show that these two methods have very
similar EER, but normalization of the variance improves the DCF.
Feature warping was found to be especially efficient when applied
over a sliding window of about 3 seconds, which is consistent with
the results reported in [4, 10]. We also tested mean, mean plus
variance and variance-only normalization over a sliding window;
but we only report the best solution corresponding to a short-term
variance normalization on a 3 second window. Table 3 gives the
minimal DCF and EER for the most interesting conditions and Fig-
ure 1 contains the corresponding DET curves.

A significant part of the gain observed with feature warping

Feature normalization min. DCF EER (%)

none 0.544 13.3
mean 0.422 10.0

mean and variance 0.410 9.9
short-term variance 0.394 8.9

feature warping 0.378 8.5

Table 3: Speaker detection performances for mean, mean and vari-
ance, short-term variance and feature warping normalizations.
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Figure 1: DET curves for the feature normalizations of Table 3.
Circles are drawn at minimal DCF operating point.

Score normalization min. DCF EER (%)

baseline 0.410 9.9

cohort (all set,γ=1) 0.437 12.4
cohort (all set,γ=6) 0.376 11.0

cohort (top 6,γ=0.5) 0.363 10.9

T-norm (all set) 0.365 10.4
T-norm (top 80%) 0.360 10.4

Z-norm 0.405 9.6

Table 4: System performance for cohort normalization, Z-norm
and T-norm over baseline system.

seems to be due to the short-term variance normalization1. It may
be the case that cellular speech, as used in our experiments, is espe-
cially subject to varying additive noises, which are better addressed
by a short-term variance normalization.

Globally, feature warping brings about a 10% relative reduction
of the minimal DCF, and a 15% relative reduction of the EER com-
pared to a standard CMS solution.

Score normalization
Cohort normalization was done using impostor models from 60

male and 86 female speakers2 trained in a similar manner as the
target models. A simple sum of all cohort scores (i.e.,γ = 1)
significantly decreases the performance over the baseline system
as shown in Table 4. Usingγ = 6 results in a much better DCF
(a high value forγ emphasizes the highest impostor likelihoods).
The best result is obtained by keeping only the 6 highest impostor
likelihoods withγ = 0.5, thus including in the reference likelihood
only those speakers who are the most similar to the target. It should
be noted however that in terms of ERR the cohort method gives less
good results than the baseline setup.

1Feature warping was also applied to the energy, which was not the case
for the mean and variance normalizations and reduced the minimal DCF
from 0.384 to 0.378 but had no impact on the EER.

2The speakers still present in 2002 evaluation were discarded from the
initial 174 speakers set.
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Figure 2: DET curves for cohort score normalization (using rhe 6
nearest impostor speakers), Z-norm (using 150 impostor tests) and
T-norm (using 80% of impostor set).

T-norm gives better results than the optimized cohort method,
the optimal DCF being reached by discarding the 20% most dis-
tant impostor speakers. The DET curves shown in Figure 2 reveal
that T-norm performs better than the cohort method at all operating
points. Both are better than the baseline in the area of minimum
DCF, but this is reversed at low missed rates. The Z-norm param-
eters were estimated using 150 impostor test segments per gender.
It can be seen in Table 4 that Z-norm gives a slight improvement
over the baseline. The DET curves show that that Z-norm outper-
forms the baseline and the T-norm for low miss rates. Globally, we
observe that T-norm and Z-norm affect DET curve by rotating it in
opposite directions.

Combination of feature and score normalization
Table 5 summarizes the results obtained by combining feature

warping and T-norm as extensions to the baseline system. Starting
with a minimal DCF of 0.410 for the baseline system, feature warp-
ing and T-norm bring respectively 8% and 12% relative reductions
of the cost, and the combination of both reduces the DCF by 22%
reaching a minimal DCF of 0.320.

5. CONCLUSION
In this paper we have studied some feature and score normaliza-

tion methods for speaker verification on cellular data. Experimental
results were obtained for CMS and variance normalization, feature
warping, T-norm, Z-norm and the cohort method. Applied to cel-
lular telephone conversational speech, we observed that the main
impact of feature warping is due to local variance normalization,
and that it improves the DET curve over a large range of operating
points. The T-norm score normalization extends the classical cohort
approach by scaling the score distribution with the standard devi-
ation of the impostor scores, which significantly improves system
performance at low false alarm rates; however when favoring low
miss rates other normalization methods like Z-norm are more ade-
quate. Feature warping and T-norm seem to be independent since
their effect is cumulative, resulting in more than a 20% relative re-
duction of the minimal DCF from 0.410 to 0.320. Such a system is
approaching performance observed for land-line telephone speech

System min. DCF EER (%)

baseline 0.410 9.9
feature warping 0.378 8.5

T-norm 0.360 10.4
feature warping + T-norm 0.320 8.5

Table 5: System performance obtained for the combination of
feature normalization (feature warping) and score normalization
(T-norm).

under comparable conditions (i.e., 2 minutes of speech for training
and 15-45 seconds of speech for test).
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